Floating Point

COE 301 /ICS 233

Computer Organization
Dr. Muhamed Mudawar

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

Presentation Outline

*» Floating-Point Numbers

*» The IEEE 754 Floating-Point Standard
¢ Floating-Point Comparison, Addition and Subtraction
** Floating-Point Multiplication

“* MIPS Floating-Point Instructions and Examples

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide 2

The World is Not Just Integers

“* Programming languages support numbers with fraction
< Called floating-point numbers
< Examples:
3.14159265... (n)
2.71828... (¢
1.0 x 102 (seconds in a nanosecond)
8.64 x 1013 (nanoseconds in a day)

The last number is a large integer that cannot fit in a 32-bit register

“* We use a scientific notation to represent

<> Very small numbers (e.g. 1.0 x 10-9)
< Very large numbers (e.g. 8.64 x 10%3)

<~ Scientific notation: + d. fraction x 10 * exponent

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide 3

Floating-Point Numbers

*» Examples of floating-point numbers in base 10

-5.341x10° , 2.013x10!
t — decimal point

“» Examples of floating-point numbers in base 2

-1.00101x223 , 1,101101x23
" binary point

< Exponents are kept in decimal for clarity

*+ Floating-point numbers should be normalized
< Exactly one non-zero digit should appear before the point
* In a decimal number, this digit can be from 1 to 9

* In a binary number, this digit should be 1
< Normalized: -5.341x103% and 1.101101x2-3
<> NOT Normalized: -0.05341x10°> and 1101.101x2"°

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide 4

Floating-Point Representation

A floating-point number Is represented by the triple
< Sign bit (O Is positive and 1 is negative)
* Representation is called sign and magnitude

< Exponent field (signed value)
* Very large numbers have large positive exponents
* Very small close-to-zero numbers have negative exponents
= More bits in exponent field increases range of values

< Fraction field (fraction after binary point)

= More bits in fraction field improves the precision of FP numbers

S| Exponent Fraction

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide 5

TEEE 754 Floating-Point Standard

¢ Found in virtually every computer invented since 1980
< Simplified porting of floating-point numbers
< Unified the development of floating-point algorithms
< Increased the accuracy of floating-point numbers
“* Single Precision Floating Point Numbers (32 bits)
< 1-bit sign + 8-bit exponent + 23-bit fraction

S| Exponent8 Fraction?3

“» Double Precision Floating Point Numbers (64 bits)
< 1-bit sign + 11-bit exponent + 52-bit fraction

S Exponent! Fraction>?

(continued)

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide 6

Normalized Floating Point Numbers

¢ For a normalized floating point number (S, E, F)

S E F=ff,ff..

< Significand is equal to (1.F), = (L.f,f,f:f,...),
< IEEE 754 assumes hidden 1. (not stored) for normalized numbers

< Significand is 1 bit longer than fraction

*+ Value of a Normalized Floating Point Number:

+ (1_|:)2 X 2exponent_value

+ (1_f1f2f3f4)2 X 2exponent_value

+ (1 + flxz-l + f2><2'2 + f3x2-3 + f4x2-4)2 X 2exponent_value

S =0Is positive, S =1Is negative

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide 7

Biased Exponent Representation

** How to represent a signed exponent? Choices are ...

< Sign + magnitude representation for the exponent
< Two’s complement representation

<> Biased representation

*» IEEE 754 uses biased representation for the exponent

< Exponent Value = E — Bias (Bias is a constant)

** The exponent field is 8 bits for single precision
<> E can be in the range 0 to 255
< E=0and E = 255 are reserved for special use (discussed later)
< E =110 254 are used for normalized floating point numbers
< Bias = 127 (half of 254)
< Exponent value = E — 127 Range: -126 to +127

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide 8

Biased Exponent - Cont'd

¢ For double precision, the exponent field is 11 bits
<> E can be in the range 0 to 2047
<-E=0and E =2047 are reserved for special use
< E =110 2046 are used for normalized floating point numbers
<> Bias = 1023 (half of 2046)
<> Exponent value = E — 1023 Range: -1022 to +1023

“» Value of a Normalized Floating Point Number is

+ (1.F), x 2(E-Bias)
+ (1.f,5,f,f, ...), x 2(E-Bias)

+ (1 + fx21 + f,x22 + f,x23 + f,x2-4), x 2(E-Bias)

S =0Iis positive, S =1 is negative

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide 9

Examples of Single Precision Float

** What is the decimal value of this Single Precision float?

10/1111]1/1©/00/1|0|0|0|0|0|0|0/0|0/0|0000©OLO|O|000

¢ Solution:
< Sign = 1 is negative
< E=(01111100), =124, E — bias =124 — 127 = -3
< Significand = (1.0100 ... 0),=1 + 22 = 1.25 (1. is implicit)
<> Value in decimal = —-1.25 x 273 = -0.15625

+» What Is the decimal value of?

0|1|0|0|0|0/0/1110(0(109/1|11|0|0|0|0|0|0|0/0/0/0000© 00O

* Solution: mlict
.
<> Value in decimal = +(1.01001100 ... 0), x 2130-127 =

(1.01001100 ... 0), x 23 = (1010.01100 ... 0), = 10.375

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Examples of Double Precision Float

» What is the decimal value of this Double Precision float ?

0|0|0|0|0|0|0|0/0/00(0(0(0|0|0|0|0|0|0|0|0|0/0/0 00V LBLLL

¢ Solution:
< Value of exponent = (10000000101), — Bias = 1029 — 1023 =6
<> Value of double = (1.00101010 ... 0), x 26 (1. is implicit) =
(1001010.10 ... 0), =74.5

«» What is the decimal value of ?

0|0|0|0|0|0/0/0/00(0(0(0|0|0|0|0|0|0|0|0|0/0/0/0 00 BBBLI

“* Do it yourself! (answer should be —1.5 x 2-7 = -0.01171875)

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Decimal to Binary Floating-Point

*» Convert —0.8125 to single and double-precision floating-point

+» Solution:

<> Fraction bits can be obtained using multiplication by 2
0.8125 x 2 =1.625

0.625 x 2

0.25 x 2
0.5x2
Stop when fractional part is O, or after computing all required fraction bits
< Fraction = (o 1101)2 = (1 101) X 2"’1\"(Normalized)

""""

=1.25

=0.5
=1.0

\

J

0.8125 = (0.1101), = % + Y4 + 1/16 = 13/16

1

0

1

1

1

1

1

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

10

1

0

0

0

5119

0

0

0

0

0

0

0|0|0|0|0|0

0

0

0

0

0

%)

0

0

0

0

0

0

0|0|0|0|0|0

Floating Point

COE 301/ ICS 233 — Computer Organization

Single
Precision

Double
Precision

© Muhamed Mudawar — slide

Largest Normalized Float

** What is the Largest normalized float?

 Solution for Single Precision:

ei112211102(21221/1/12/2)2}12)21212)2(2)2111 1 1|11|11|1]1

< E —bias =254 — 127 = +127 (largest exponent for SP)
< Significand = (1.111 ... 1), = 1.99999988 = almost 2
< Value in decimal = 2 x 2+127 = 2+128 = 3, 4028 ... x 10*38

s+ Solution for Double Precision:

ei1/1221121111011/1/12/1/12)122121212(2)2 1111|1111
1111111,1/3/3)3)3)242 22 2\2)22)2)21211111111111111 111

<> Value in decimal = 2 x 2+1023 = 2+1024 = 1 79769 ... x 10+308

*» Overflow: exponent is too large to fit in the exponent field

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Smallest Normalized Float

** What is the smallest (in absolute value) normalized float?

* Solution for Single Precision:
(2] =) =) =) =) = = e))

< Exponent — bias =1 - 127 = -126 (smallest exponent for SP)

< Significand = (1.000 ... 0),=1
< Value in decimal =1 x 2126 = 1.17549 ... x 1038

s+ Solution for Double Precision:

0|0|0|0|0/0|0/9000000|0|0|0|0|0/000 0

< Value in decimal = 1 x 21022 = 2 22507 ... x 10308
“* Underflow: exponent is too small to fit in exponent field

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Zero, Infinity, and NaN

“» Zero
< Exponent field E = 0 and fraction F =0
< +0 and -0 are both possible according to sign bit S
“* Infinity
< Infinity is a special value represented with maximum Eand F =0
» For single precision with 8-bit exponent: maximum E = 255
* For double precision with 11-bit exponent: maximum E = 2047
< Infinity can result from overflow or division by zero
< +» and -« are both possible according to sign bit S

“* NaN (Not a Number)
<> NaN is a special value represented with maximum E and F # O
< 0/0 => NaN, 0 x o =» NaN, sqrt(-1) =» NaN
< Operation on a NaN is typically a NaN: Op(X, NaN) = NaN

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Denormalized Numbers

*+ IEEE standard uses denormalized numbers to ...
<> Fill the gap between 0 and the smallest normalized float

< Provide gradual underflow to zero

“» Denormalized: exponent field E is O and fraction F # 0

< The Implicit 1. before the fraction now becomes 0. (denormalized)

 Value of denormalized number (S, 0, F)

Single precision: * (0.F), x 2-1
Double precision: % (0.F), x 21022

Negative Negative Positive Positive
Overflow Underflow | Underflow Overflow
— r A W A N —

I
-0 Normalized (—ve) Denorm + Denorm Normalized (+ve) Foo
) _2I128 _2—I126 O 2—I126 21I28 .

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Summary of IEEE 754 Encoding

Single-Precision Exponent = 8 Fraction = 23

Normalized Number 1to 254 Anything + (1.F), x 2E-127
Denormalized Number 0 nonzero + (0.F), x 27126
Zero 0 0 +0
Infinity 255 0 + oo

NaN 255 nonzero NaN
Double-Precision Exponent =11 | Fraction =52

Normalized Number 1 to 2046 Anything + (1.F), x 281023
Denormalized Number 0) nonzero + (0.F), x 271022
Zero 0 0 +0
Infinity 2047 0 + oo

NaN 2047 nonzero NaN

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Next . ..

*+ Floating-Point Numbers

“* The IEEE 754 Floating-Point Standard
“* Floating-Point Comparison, Addition and Subtraction
** Floating-Point Multiplication

“* MIPS Floating-Point Instructions and Examples

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating-Point Comparison

*» IEEE 754 floating point numbers are ordered (except NaN)

<> Because the exponent uses a biased representation ...

= Exponent value and its binary representation have same ordering
< Placing exponent before the fraction field orders the magnitude

= Larger exponent = larger magnitude

= For equal exponents, Larger fraction = larger magnitude

= 0<(0.F), x 2Fmn< (1.F), x 2EBias < o (E_. =1 — Bias)
< Sign bit provides a quick test for signed <

*» Integer comparator can compare the magnitudes

X=(Ex,Fy) — Integer [— X<Y
Magnitude |— X ==
Y = (EY’ FY) — Comparator |, X>Y

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating Point Addition

“» Consider Adding Single-Precision Floats:
1.11100100000000000000010 , x 24
+ 1.10000000000000110000101 , x 22

* Cannot add significands ... Why?
<> Because exponents are not equal
“ How to make exponents equal?

< Shift the significand of the lesser exponent right

< Difference between the two exponents =4 — 2 =2
< So, shift right second number by 2 bits and increment exponent

1.10000000000000110000101 X 27
= 0.01100000000000001100001 01 , X 2%

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating-Point Addition - cont'd

** Now, ADD the Significands:
1.11100100000000000000010 x 2 4
+ 1.10000000000000110000101 x 2 2

1.11100100000000000000010 x 2 4
+ 0.01100000000000001100001 01 x 2 4 (shift right)

10.01000100000000001100011 01 x 2 4 (result)
» Addition produces a carry bit, result is NOT normalized

“* Normalize Result (shift right and increment exponent):
10. 01000100000000001100011 01 x 2 4

= 1. 00100010000000000110001 101 x 2 > (normalized)

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Rounding

¢ Single-precision requires only 23 fraction bits
* However, Normalized result can contain additional bits

1.00100010000000000110001 | 1,01y x 25
RoundBit: R=1 & L StickyBit: S=1

*» Two extra bits are used for rounding

< Round bit: appears just after the normalized result

< Sticky bit: appears after the round bit (OR of all additional bits)
% Since RS = 11, increment fraction to round to nearest
1.00100010000000000110001 x 2 °
+1
1.001000100000000001100 10 x 2° (Rounded)

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating-Point Subtraction

» Addition is used when operands have the same sign
*» Addition becomes a subtraction when sign bits are different
“+ Consider adding floating-point numbers with different signs:

+ 1.00000000101100010001101 x 2°°
-~ 1.00000000000000010011010 x 27

+ 0.00001000000001011000100 01101 x 2-! (shift right 5 bits)
- 1.00000000000000010011010 x 21

0 0.00001000000001011000100 01101 x 2-1
1 0.1111117171717111111011600110 x 21 (2's complement)

1 1.00001000000001000101010 01101 x 2-! (Negative result)

- 0.11110111111110111010101 10011 x 2-! (Sign Magnitude)
*» 2's complement of result is required if result is negative

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating-Point Subtraction - cont'd

+ 1.00000000101100010001101 x 2°°
- 1.00000000000000010011010 x 2!

- 0.11110111111110111010101 10011 x 2! (Sign Magnitude)

¢ Result should be normalized (unless it is equal to zero)

< For subtraction, we can have leading zeros. To normalize, count the
number of leading zeros, then shift result left and decrement the
exponent accordingly.

Guard hit
- 0.11110111111110111010101 1) 0011 x 21

- 1.11101111111101110101011 @011 x 2-2 (Normalized)

“ Guard bit: guards against loss of a fraction bit

<> Needed for subtraction only, when result has a leading zero and
should be normalized.

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating-Point Subtraction - cont'd

+» Next, the normalized result should be rounded

Guard hit
- 9.11110111111110111010101:1) © 011 x 2-1

7N\ = ==

- 1.11101111111101110101011 91911 x 2-2 (Normalized)

—-—

Round bit: R=0 -- - - Sticky bit: S=1

* Since R = 0, It IS more accurate to truncate the result even
though S = 1. We simply discard the extra bits.

- 1.11101111111101110101011 © 011 x 2-2 (Normalized)
- 1.11101111111101110101011 x 22 (Rounded to nearest)

» IEEE 754 Representation of Result

10111110(11119/11|11|11]11]1]1]1 101111 ©9|11|9|11|0|1|1

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Rounding to Nearest Even

% Normalized result has the form: 1. f; f, ... R S
< The round bit R appears immediately after the last fraction bit f,

< The sticky bit S is the OR of all remaining additional bits
“* Round to Nearest Even: default rounding mode

¢ Four cases for RS:

< RS =00 =» Result is Exact, no need for rounding
< RS =01 =» Truncate result by discarding RS
< RS =11 =» Increment result: ADD 1 to last fraction bit
< RS =10 =» Tie Case (either truncate or increment result)
= Check Last fraction bit f, (f,; for single-precision or f-, for double)

= If f,is O then truncate result to keep fraction even

= If f,is 1 then increment result to make fraction even

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Additional Rounding Modes

*» IEEE 754 standard includes other rounding modes:
Round to Nearest Even: described in previous slide

1.
2. Round toward +Infinity: result is rounded up

Increment result if sign is positive and RorS =1

3. Round toward -Infinity: result is rounded down

Increment result if sign is negative and Ror S =1
4. Round toward 0O: always truncate result

¢+ Rounding or Incrementing result might generate a carry

< This occurs only when all fraction bits are 1

< Re-Normalize after Rounding step is required only in this case

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Example on Rounding

¢ Round following result using IEEE 754 rounding modes:

-1.11111111111111111111111 '@,"@,‘ x 277
Round Bit ! 1t Sticky Bit

* Round to Nearest Even:.
< Increment result since RS =10and f,; =1
< Incremented result: -10.00000000000000000000000 x 27
< Renormalize and increment exponent (because of carry)

<> Final rounded result: -1 .00000000000000000000000 x 2-°
** Round towards +«: Truncate result since negative

<> Truncated Result: -1.11111111111111111111111 x 27
*+ Round towards —: Increment since negative and R =1

<> Final rounded result: -1.00000000000000000000000 x 2-°
“+ Round towards O: Truncate always

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Accuracy can be a Big Problem

Valuel Value2 Value3 Value4 Sum
1.0E+30 -1.0E+30 9.5 -2.3 7.2
1.0E+30 9.5 -1.0E+30 -2.3 2.3
1.0E+30 9.5 2.3 -1.0E+30 0

*» Adding double-precision floating-point numbers (Excel)
*» Floating-Point addition is NOT associative
¢ Produces different sums for the same data values

“* Rounding errors when the difference in exponent is large

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating Point Addition / Subtraction

C Start)
v

. Compare the exponents of the two numbers. Shift the smaller
number to the right until its exponent would match the larger
exponent.

v

. Add / Subtract the significands according to the sign bits.

!

. Normalize the sum, either shifting right and incrementing the
exponent or shifting left and decrementing the exponent.

v

. Round the significand to the appropriate number of bits, and
renormalize if rounding generates a carry.

Floating Point

Overflow or

underflow? Exception)

(Done)

Shift significand right by
d=|Ex—-Ey|

Add significands when signs
of X and Y are identical,
Subtract when different.

Convert negative result from 2's
complement to sign-magnitude.

Normalization shifts right by 1 if
there is a carry, or shifts left by the
number of leading zeros in the
case of subtraction.

Rounding either truncates fraction,
or adds a 1 to least significant
fraction bit.

COE 301/ ICS 233 — Computer Organization

© Muhamed Mudawar — slide

Floating Point Adder Block Diagram

EX EY
— _ 1 Fy 1 Fy
Exponent / S1gn P
(0 1
Subtractor / o i) v S v
> wap
d=|Ex—Ey| - ‘ -
» Shift Right
dd / subtract A4
Sx > - a suptrac =\ N
Add/sub Sign | \ Significand
Computation |, sign Adder/Subtractor
Sy > \
max (Eyx, Ey) 1
C ‘ C
Detect carry, or | Shift Right / Left
hz Countleading 0's | z
\ 4 g ‘
Inc / Dec [« c Rounding Logic
y \ 4 ‘
SZ EZ I:Z

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Next . ..

*+ Floating-Point Numbers

“* The IEEE 754 Floating-Point Standard
¢ Floating-Point Comparison, Addition and Subtraction
¢ Floating-Point Multiplication

“* MIPS Floating-Point Instructions and Examples

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating Point Multiplication Example

*» Consider multiplying:
-1.110 1000 0100 0000 1010 0001 , X 274

x 1.100 0000 0001 0000 0000 0000 , X 27

* Unlike addition, we add the exponents of the operands
< Result exponent value = (-4) + (-2) = -6

“ Using the biased representation: E, = E, + E, — Bias
< Ey=(-4) + 127 =123 (Bias = 127 for single precision)
$ Ey = (=2) + 127 = 125
< E, =123 +125-127 = 121 (exponent value = —6)

¢+ Sign bit of product can be computed independently

* Sign bit of product = Sign, XOR Sign, = 1 (negative)

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating-Point Multiplication, cont'd

“* Now multiply the significands:

(Multiplicand) 1.11010000100000010100001
(Multiplier) x (1.10000000061000000000000

111010000100000010100001
111010000100000010100001
1.119010000100000010100001

190.1011100011111011111100110010100001000000000000

» 24 bits x 24 bits =» 48 bits (double number of bits)
¢ Multiplicand x 0 =0 Zero rows are eliminated
¢ Multiplicand x 1 = Multiplicand (shifted left)

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating-Point Multiplication, cont'd

“* Normalize Product:
-10. 101110001111101111110011001... x 2 6
Shift right and increment exponent because of carry bit
=- 1. 010111000111110111111001100... x 2 -
“* Round to Nearest Even: (keep only 23 fraction bits)

-1.01011100011111011111100 | ()fco...)x 2

Round bit = 1, Sticky bit = 1, so increment fraction
Final result =-1. 0101110001111101111110 1 x 2
“* IEEE 754 Representation

10/11110(190101110001111101111/1/101

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating Point Multiplication

C Start)
v

. Add the biased exponents of the two numbers, subtracting the
bias from the sum to get the new biased exponent

!

. Multiply the significands. Set the result sign to positive if
operands have same sign, and negative otherwise

Biased Exponent Addition

Result sign S, = Sy xor S, can be
computed independently

v

. Normalize the product if necessary, shifting its significand right
and incrementing the exponent

v

. Round the significand to the appropriate number of bits, and
renormalize if rounding generates a carry

Since the operand significands
1.Fyand 1.F,are21 and < 2,
their product is =2 1 and < 4.
To normalize product, we need to
shift right at most by 1 bit and
increment exponent

Floating Point

Overflow or
underflow?

(Done)

Exception)

Rounding either truncates fraction,
or adds a 1 to least significant
fraction bit

COE 301/ ICS 233 — Computer Organization

© Muhamed Mudawar — slide

Extra Bits to Maintain Precision

*+ Floating-point numbers are approximations for ...
< Real numbers that they cannot represent

¢ Infinite real numbers exist between 1.0 and 2.0

<> However, exactly 223 fractions represented in Single Precision

< Exactly 252 fractions can be represented in Double Precision

“ Extra bits are generated in intermediate results when ...

< Shifting and adding/subtracting a p-bit significand
<> Multiplying two p-bit significands (product is 2p bits)

“+ But when packing result fraction, extra bits are discarded
*» Few extra bits are needed: guard, round, and sticky bits

“* Minimize hardware but without compromising accuracy

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Advantages of IEEE 754 Standard

*» Used predominantly by the industry

*+ Encoding of exponent and fraction simplifies comparison

< Integer comparator used to compare magnitude of FP numbers

¢ Includes special exceptional values: NaN and
< Special rules are used such as:
= 0/0is NaN, sqrt(—1) is NaN, 1/0is «, and 1/~ is 0
< Computation may continue in the face of exceptional conditions
*+ Denormalized numbers to fill the gap
< Between smallest normalized number 1.0 x 25mn and zero
< Denormalized numbers , values 0.F x 2°mn | are closer to zero

<> Gradual underflow to zero

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating Point Complexities

¢ Operations are somewhat more complicated
¢ In addition to overflow we can have underflow

¢ Accuracy can be a big problem
< Extra bits to maintain precision: guard, round, and sticky
<> Four rounding modes
<> Division by zero yields Infinity
< Zero divide by zero yields Not-a-Number

< Other complexities

“* Implementing the standard can be tricky

** Not using the standard can be even worse

Floating Point COE 301/ ICS 233 — Computer Organization

© Muhamed Mudawar — slide

Next . ..

*+ Floating-Point Numbers

“* The IEEE 754 Floating-Point Standard
¢ Floating-Point Comparison, Addition and Subtraction
*+ Floating-Point Multiplication

“* MIPS Floating-Point Instructions and Examples

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

MIPS Floating Point Coprocessor

¢ Called Coprocessor 1 or the Floating Point Unit (FPU)
% 32 separate floating point registers: $f0, $f1, ..., $f31
** FP registers are 32 bits for single precision numbers
“+ Even-odd register pair form a double precision register

*» Use the even number for double precision registers
< $f0, $2, $f4, ..., $f30 are used for double precision

*» Separate FP instructions for single/double precision
< Single precision: add.s, sub.s, mul.s, div.s (.s extension)

<> Double precision: add.d, sub.d, mul.d, div.d (.d extension)

¢ FP instructions are more complex than the integer ones

<> Take more cycles to execute

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating-Point Arithmetic Instructions

Instruction Meaning Op® | fmt> | ft> | fs*> | fd°> | func®
add.s $f5,%$f3,%f4 $f5 = $f3 + $f4 Ox11 |ox10 | $f4 | $f3 | $f5 %)
sub.s $f5,%$f3,%f4 $f5 = $f3 - $f4 ox11 |ox10 | $f4 | $f3 | $f5
mul.s $f5,$f3,$f4 |$f5 = $f3 x $f4 Ox11 |Ox10| $f4 |$f3|$f5| 2
div.s $f5,$f3,$f4 |$f5 = $f3 / $f4 Ox11 |ox10| $f4 |$f3|$f5| 3
sqrt.s $f5,%f3 $f5 = sqrt($f3) Ox11l |Ox10| © |[$f3|$f5| 4
abs.s $f5,%f3 $f5 = abs($f3) Ox11l |Ox10| © |[$Ff3| $f5 5
neg.s $f5,%f3 $f5 = -($f3) Ox11l |Ox10| © |[$f3| $f5 7
add.d $f6,$f2,$f4 |$f6,7=9f2,3+$f4,5 | ox1l |ox1l| $f4 [$f2|%f6| o
sub.d $f6,$f2,$f4 |$f6,7=9$f2,3-$f4,5 | ox11l |ox11| $f4 |$f2|$f6| 1
mul.d $f6,$f2,$f4 |$f6,7=9$f2,3x$f4,5 | oOx11l |ox11| $f4 |$f2|$f6| 2
div.d $f6,$f2,$f4 |$f6,7=9f2,3/$f4,5 | oxl1l |ex1il| $f4 |$f2|$f6| 3
sgqrt.d $f6,%$f2 $f6,7 = sqrt($f2,3) Ox11 |ox11| © |$f2| $f6 4
abs.d $f6,%$f2 $f6,7 = abs($f2,3) Oox11 [Ox11| © |$f2| $f6 5
neg.d $f6,$f2 $f6,7 = -($£2,3) ox11 |ox11| o |$f2|$f6| 7

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating-Point Load and Store

“» Separate floating-point load and store instructions

< 1lwcl: load word coprocessor 1

<> 1dcl: load double coprocessor 1 C_;ene_ral PUrpose

& 9 1 register Is used as the

swcl: store word coprocessor address register

<> sdcl: store double coprocessor 1
Instruction Meaning Op® | rs> | ft> | Immediate?®
lwcl $f2, 8($t0) $f2 €, Mem[$t0+8] |Ox31|$t0 | $f2 8
swcl $f2, 8($t0) $f2 >, Mem[$t0+8] |[0Ox39 | $tO | $f2 8
ldcl $f2, 8($t0) $f2,3 €, Mem[$t0+8] |Ox35|$t0 | $f2 8
sdcl $f2, 8($t0) | $f2,3 D, Mem[$t0+8] |0x3d|$to | $f2 8

Floating Point

COE 301/ ICS 233 — Computer Organization

© Muhamed Mudawar — slide

Data Movement Instructions

“* Moving data between general purpose and FP registers

< mfcl: move from coprocessor 1 (to a general purpose register)

< mtcl: move to coprocessor 1 (from a general purpose register)

“* Moving data between FP registers

< mov.s: move single precision float

< mov.d: move double precision float = even/odd pair of registers

Instruction Meaning Opé |fmt5| rt® | £s° | £d° |func
mfcl $to, $f2 $to = $f2 ox11 | 0 |$to| $f2| o %)
mtcl $to, $f2 $f2 = $to ox11 | 4 |$to| $f2| o %)
mov.s $f4, $f2 $f4 = $f2 Ox11 (Ox10| © | $f2 | $f4 | 6
mov.d $f4, $f2 $f4,5 = $f2,3 | Ox11 |Ox11| © | $f2 |$f4| 6

Floating Point

COE 301/ ICS 233 — Computer Organization

© Muhamed Mudawar — slide

Convert Instructions

s Convert instruction: cvt.x.y

<> Convert the source formaty into destination format x
¢ Supported Formats:

< Single-precision float = .s

<> Double-precision float = .d

< Signed integer word = .w (in a floating-point register)
Instruction Meaning Op® | fmt® fs5 | fd5 | func
cvt.s.w $F2,$Ff4 |$F2 = W2S($F4) ox11 |Ox14| © | $f4 | $F2 | ox20
cvt.s.d $f2,$f4 |$f2 = D2P($f4,5) ox11 |ox11| © | $f4 | $F2 | ox20
cvt.d.w $f2,$f4 |$f2,3 = W2D($f4) ox11 |ox14 | © | $f4 | $F2 | ox21
cvt.d.s $f2,$f4 |$f2,3 = S2D($f4) ox11 |ox10| © | $f4 | $F2 | ox21
cvt.w.s $f2,%f4 $f2 = S2W($f4) Ox11l |0x10| © | $f4 | $f2 | ox24
cvt.w.d $f2,%f4 $f2 = D2W($f4,5) Ox11 (ox11| © $f4 | $f2 | ox24

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Floating-Point Compare and Branch

*» Floating-Point unit has eight condition code cc flags

*» Three comparisons: eqg (equal), It (less than), le (less or equal)

< Set to O (false) or 1 (true) by any comparison instruction

*» Two branch instructions based on the condition flag

Instruction Meaning Op® | fmt> | ft> | fs® func
c.eq.s cc $f2,%9f4 cc = ($f2 == %$f4) Ox11 |ox10 | $f4 | $f2 | cc | 6x32
c.eq.d cc $f2,%f4 cc = ($f2,3 ==$f4,5) Oox11 |ox11| $f4 | $f2 | cc | ©x32
c.lt.s cc $f2,%$f4 cc = ($f2< $f4) Ox11 [Ox10 | $f4 | $f2 | cc | Ox3cC
c.lt.d cc $f2,9f4 cc = ($f2,3< $f4,5) Oox11 |ox11l| $f4 | $f2 | cc | Ox3c
c.le.s cc $f2,%$f4 cc = ($f2<=9%$f4) Ox11 [Ox10 | $f4 | $f2 | cc | Ox3e
c.le.d cc $f2,9f4 cc = ($f2,3 <= $f4,5) Oox11 |ox11l| $f4 | $f2 | cc | Ox3e
bclf cc Label branch if (cc == 0) ox11 8 |cc,0| 16-bit Offset
bclt cc Label branch if (cc == 1) ox11 8 |cc,1| 16-bit Offset

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Example 1: Area of a Circle

.data
pi: .double 3.1415926535897924
msg: .asciiz "Circle Area = "

. text

main:
ldc1 $f2, pi # $f2,3 = pi
1i $vo, 7 # read double (radius)
syscall # $f0,1 = radius

mul.d $f12, $f0, $f0 # $f12,13 = radius*radius
mul.d $f12, $f2, $f12 # $f12,13 = area

la $a0, msg

1i $vo, 4 # print string (msg)
syscall

1i $vo, 3 # print double (area)

syscall # print $f12,13

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Example 2: Matrix Multiplication

void mm (int n, float X[n][n], Y[n][n], Z[n][n]) {
for (int 1i=0; il=n; i=i+1) {
for (int j=0; jl=n; j=j+1) {
float sum = 0.0;
for (int k=0; k!=n; k=k+1) {
sum = sum + Y[i][k] * Z[k][J];
}

X[1][J] = sum;

}
}
}

“* Matrix size is passed in $a0 = n
“* Matrix addresses in $al = &X, $a2 = &Y, and $a3 = &Z
“* What is the MIPS assembly code for the procedure?

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Access Pattern for Matrix Multiply

X[1][3] Y[1i][k] Z[k][]]
— X
Matrix X is accessed Matrix Y is accessed Matrix Z accessed by
by row. by row. column.

&X[1][F] = &X + (i*n + j)*4 = &X[i][j-1] + 4
&Y[1][K] = &Y + (i*n + k)*4 = &Y[i][k-1] + 4
&Z[k][F] = & + (k*n + j)*4 = &[k-1][]] + 4*n

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Matrix Multiplication Procedure (1 of 3)

arguments $a0=n, $al=8&X, $a2=8Y, $a3=RZ
mm: sll $t0, %$a0, 2 # $t0 = n*4 (row size)
1i $t1, © #$tl =1 =0

Outer for (i = . . .) 1loop starts here
L1: 1i $t2, © # $t2 = j =0

Middle for (j . .) loop starts here
L2: 1i $t3, © # $t3 = k = 0
move $t4, %$a2 # $t4 = &Y[1][9]
sll $t5, $t2, 2 # $t5 = j*4
addu $t5, $a3, $t5 # $t5 = &Z[0O][]]
mtcl $zero, $f0 # $f0 = sum = 0.0

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

Matrix Multiplication Procedure (2 of 3)

Inner for (k
$t3 = k, $t4
L3: lwcl $f1,
lwcl $f2,
mul.s $f3,
add.s $fo,
addiu $t3,
addiu $t4,
addu $t5,
bne $t3,

= . . .) loop starts here
= &Y[1][k], $t5 = &Z[k][]]

0(%t4)
0($t5)
$f1, $f2
$fo, $f3
$t3, 1
$t4, 4
$t5, $to
$a0, L3

End of inner for loop

Floating Point

load $f1 = Y[i][k’
load $f2 = Z[k][7’
Y[i][k]*Z[

$f3
sum
k =k
$t4 =
$t5 =

sum + $f3
+ 1
&Y[i][k]
&Z[k][]]

k][]7]

loop back if (k != n)

COE 301/ ICS 233 — Computer Organization

© Muhamed Mudawar — slide

Matrix Multiplication Procedure (3 of 3)

swcl $fo, 0(%al)
addiu %$al, %$al, 4
addiu $t2, $t2, 1
bne $t2, $a0, L2
End of middle for loop

store X[1][j] = sum
$al = &X[1i][]]
#j=7J+1
loop L2 if (j != n)
addu $a2, $a2, $t0 # $a2 = &Y[1][9]
addiu $t1, $t1, 1 #i=1+1
bne $t1, $a0, L1 # loop L1 if (i != n)
End of outer for loop

jr $ra # return to caller

Floating Point COE 301/ ICS 233 — Computer Organization © Muhamed Mudawar — slide

