Integer Multiplication

and Division

COE 301

Computer Organization
Prof. Muhamed Mudawar

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

Presentation Outline

** Unsigned Integer Multiplication
» Sighed Integer Multiplication

** Faster Integer Multiplication

«* Integer Division

» Integer Multiplication and Division in MIPS

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 2

Unsigned Integer Multiplication

*» Paper and Pencil Example:

Multiplicand 1100, =12
Multiplier x 1101, =13

1100 _ _
0000 Binary multiplication is easy

1100 0 x multiplicand =0
1100

1 x multiplicand = multiplicand

Product 10011100 , =156
¢ n-bit multiplicand x n-bit multiplier = (2n)-bit pro duct
* Accomplished via shifting and addition

“ Consumes more time and more chip area than addition

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 3

Unsigned Sequential Multiplication

* Initialize Product = 0
¢ Check each bit of the Multiplier
¢ If Multiplier bit = 1 then Product = Product + Multiplicand
*» Rather than shifting the multiplicand to the left,

Shift the Product to the Right

Has the same net effect and produces the same result

Minimizes the hardware resources

“ One cycle per iteration (for each bit of the Multiplier)

< Addition and shifting can be done simultaneously

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 4

Unsigned Sequential Multiplier

% Initialize: HI =0

(start)
 Initialize: LO = Multiplier !
HI = 0, LO=Multiplier

*» Final Product In Hl and LO registers

“+ Repeat for each bit of Multiplier

4

Multiplicand Carry, Sum = HI + Multiplicand
32 bits 32 bits
V — : - A 4
39-pit ALU 4 add HI, LO = Shift Right (Carry, Sum, LO)

Sum 32 bits NoO

Carry

32"d Repetition?

—> shift right
HI LO Control
64 bits write
LO[0]

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 5

Sequential Multiplier Example

% Consider: 1100, x 1101, , Product = 10011100,

“» 4-bit multiplicand and multiplier are used In this example

*» 4-bit adder produces a 4-bit Sum + Carry bit

Iteration Multiplicand | Carry | Product = HI, LO
0 | Initialize (HI = 0, LO = Multiplier) 1100 0000 1101
. LO[0] = 1 => ADD SR S NN 1) 1100)1101

Shift Right (Carry, Sum, LO) by 1 bit 1100 0110 0110
, LO[0] = 0 => NO addition

Shift Right (HI, LO) by 1 bit 1100 0011 0011

LO[0] = 1 => ADD S 3 N ' 1111]0011
3 Shift Right (Carry, Sum, LO) by 1 bit 1100 0111 1001
. LO[0] = 1 => ADD B NN] 0011]1001

Shift Right (Carry, Sum, LO) by 1 bit 1100 1001 1100

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM

© Muhamed Mudawar — slide 6

Next . ..

» Unsignhed Integer Multiplication
% Signed Integer Multiplication
» Faster Integer Multiplication

«* Integer Division

» Integer Multiplication and Division in MIPS

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 7

Signed Integer Multiplication

*» First attempt:
< Convert multiplier and multiplicand into positive numbers
» |f negative then obtain the 2's complement and remember the sign
< Perform unsigned multiplication
<> Compute the sign of the product
< If product sign < 0 then obtain the 2's complement of the product

<> Drawback: additional steps to compute the 2's complement

» Better version:
< Use the unsigned multiplication hardware
< When shifting right, extend the sign of the product

< If multiplier is negative, the last step should be a subtract

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 8

Signed Multiplication (Paper & Pencil)

*»» Case 1: Positive Multiplier

Multiplicand 1100, =-4
Multiplier X 0101, =+5

—1 111111100
—1111100

Sign-extension {

Product 11101100 , =-20

*» Case 2: Negative Multiplier

Multiplicand 1100, =-4
Multiplier X 1101, =-3

—1 11111100
—1111100
00100 (2's complement of 1100)

Sign-extension {

Product 00001100 , =+12

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 9

Signed Sequential Multiplier

“ ALU produces: 32-bit sum + sign bit (s)

 Sign bit can be computed:

< No overflow: sign = sum[31] t:

4 If Overflow: sign = ~sum[31] = 0

Multiplicand

32 bits 32 bits

\V4

\4

HI = 0, LO = Multiplier

31 iterations: Sign, Sum = HI + Multiplicand
Last iteration: Sign, Sum = HI — Multiplicand

Y

HI, LO = Shift Right (Sign, Sum, LO)

Sign sum 32 bits

A\32-bit ALU / add, sub

. No
—> shift right 32"d Repetition?
HI LO Control
) writ
64 bits €
LO[O]
Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 1C

Signed Multiplication Example

% Consider: 1100, (-4) x 1101, (-3), Product = 00001100,

*»» Check for overflow: No overflow = Extend sign bit

¢ Last iteration: add 2's complement of Multiplicand

Iteration Multiplicand | Sign Product = HI, LO
0 [Initialize (HI = 0, LO = Multiplier) 1100 0000 1101
. LO[0] = 1 => ADD L > Y1 »(1 1100]1101

Shift Right (Sign, Sum, LO) by 1 bit 1100 1110 0110
5 LO[0] = 0 => NO addition

Shift Right (Sign, HI, LO) by 1 bit 1100 1111 0011
; LO[0] = 1 => ADD L > Y1 (1 1011]0011

Shift Right (Sign, Sum, LO) by 1 bit 1100 1101 1001
. LO[0] = 1 => SUB (ADD 2's compl) 0100 +-+—(0 0001] 1001

Shift Right (Sign, Sum, LO) by 1 bit 0000 1100

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM

© Muhamed Mudawar — slide 11

Next . ..

» Unsigned Integer Multiplication
** Signed Integer Multiplication

» Faster Integer Multiplication

«* Integer Division

» Integer Multiplication and Division in MIPS

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 12

Faster Multiplier

“ Suppose we want to multiply two numbers A and B
< Example on 4-bit numbers: A =ay a, a, 8, and B = b; b, b; b,
“» Step 1: AND (multiply) each bit of A with each bit of B

< Requires n? AND gates and produces n? product bits

< Position of ajb; = (i+]). For example, Position of a,b; =2+3 =5

AxB

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 13

Adding the Partial Products

*» Step 2: Add the partial products
< The partial products are shifted and added to compute the product P
<> The partial products can be added in parallel

< Different implementations are possible

4-bit Multiplicand A, A, A, A,
4-bit Multiplier x Bj B, B, B,
Partial Products Can be added | AsBo AiBo AiBol AoBo
are shifted nparallel i AsB, ABy AB; AgBy
"""" A.B, A,B, AB, ASB

and added 372 272 172 Te2
|

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 14

4-bit x 4-bit Binary Multiplier

16 AND gates, Three 4-bit adders, a half-adder, and an OR gate

R
&kij%kij L%J&J ------ e %J\ljklkjj i\lj&kik);

— carry 4-bit Adder carry 4-bit Adder
4-bit Adder
Ps P, Ps P, P, Py

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 15

Carry Save Adders

“* A n-bit carry-save adder produces two n-bit outputs

< n-bit partial sum bits and n-bit carry bits

» All the n bits of a carry-save adder work in parallel
<> The carry does not propagate as in a carry-propagate adder

< This is why a carry-save is faster than a carry-propagate adder

*» Useful when adding multiple numbers (as in multipliers)

g1 D3y a; by a; by a3y b3y C3y a; by ¢, ag by ¢
V R T | ! J,J ! J,J { J,J
Coyv + — -+ « + [+ + [« ¢, + e+ +
v v v { v { v { v
S31 S1 So C'31 S';1 ¢y S Co S
Carry-Propagate Adder Carry-Save Adder

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 1€

Carry-Save Adders in a Multiplier

*» ADD the product bits vertically using Carry-Save adders
< Full Adder adds three vertical bits
< Half Adder adds two vertical bits

<> Each adder produces a partial sum and a carry

*» Use Carry-propagate adder for final addition

Ax B (@) 6
_©¢

@) @)
@ @)

©
®

J&

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 17

Carry-Save Adders in a Multiplier

Step 1: Use carry save adders to add the partial products

<> Reduce the partial products to just two numbers

Step 2: Use carry-propagate adder

to add last two numbers

agby

J Carry Save

ashb; ab, ashby ab; a,by a;by a;by agh,
\ 4 \ 4 jbs \ 4 \ 4 jbz \ 4 \ 4 jbz \ 4 \ 4
FA FA FA HA
- J / J / /
‘ a2b3 v ‘ y ‘ aob3 y ‘
FA <—'/- HA /— FA [HA Carry Save Adder
s 7 7 7
v ‘ ‘ A 4 ‘ y ‘
FA [« FA [« FA [HA Carry Propagate Adder
P, P, P, P, P, P, P,

Integer Multiplication and Division

COE 301/ ICS 233 Computer OrganizatioRHM

\ 4

Py

© Muhamed Mudawar — slide 18

Summary of a Fast Multiplier

<

A fast n-bit x n-bit multiplier requires:
<> n? AND gates to produce n? product bits in parallel
< Many adders to perform additions in parallel

¢ Uses carry-save adders to reduce delays

** Higher cost (more chip area) than sequential multiplier

* Higher performance (faster) than sequential multiplier

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 1€

Next . ..

» Unsigned Integer Multiplication
** Signed Integer Multiplication

» Faster Integer Multiplication

«* Integer Division

» Integer Multiplication and Division in MIPS

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 2C

Unsigned Division (Paper & Pencil)

10011, =19 Quotient
Divisor 1011,) 11011001, =217 Dividend

1011 |}]
10; Check how big a
v number can be
101 ; subtracted, creating a
1010 | bit of the quotient on
10100 each attempt
Dividend = -1011 |
Quotient x Divisor 1001 | Binary division is done
+ Remainder 10011 via shlftlng and
subtraction
217 =19 %11 + 8 -1011
1000, =8 Remainder

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 21

Sequential Division

*» Uses two registers: Hl and LO

 Initialize: HI = Remainder = 0 and LO = Dividend

» Shift (HI, LO) LEFT by 1 bit (also Shift Quotient LEFT)
< Shift the remainder and dividend registers together LEFT
<> Has the same net effect of shifting the divisor RIGHT

*» Compute: Difference = Remainder — Divisor

¢ If (Difference = 0) then
<> Remainder = Difference

< Set Least significant Bit of Quotient

+» Observation to Reduce Hardware:

< LO reqister can be also used to store the computed Quotient

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 22

Sequential Division Hardware

+ Initialize:
<> HI =0, LO = Dividend
» Results:

P
<

1. Shift (HI, LO) Left

< Hl = Remainder Difference = HI — Divisor
< LO = Quotient !
>0 <0
Divisor 2. Hl = Remainder = Difference
Set least significant bit of LO
‘ 32 bits
Vv b
32-bit ALU /</ = .
| sign 32"d Repetition?
Difference 1
b .
write
HI LO Control
- - shift left
32 bits 32 bits

set Isb

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 23

Unsigned Integer Division Example

“ Example: 1110, / 0100, (4-bit dividend & divisor)

“ Result Quotient = 0011, and Remainder = 0010,

“* 4-bit registers for Remainder and Divisor (4-bit ALU)

Iteration HI LO Divisor Difference
0 | Initialize 0000 1110 0100
Shift Left, Diff = HI - Divisor 0001 1100 0100 <0
! Diff < 0 => Do Nothing
Shift Left, Diff = HI - Divisor 0011 1000 0100 <0
2 Diff < 0 => Do Nothing
Shift Left, Diff = HI - Divisor 0111 0000 0100 0011
3 HI = Diff, set Isb of LO 0011 0001
Shift Left, Diff = HI - Divisor 0110 0010 0100 0010
4 HI = Diff, set Isb of LO 0010 0011

Integer Multiplication and Division

COE 301/ ICS 233 Computer OrganizatioRHM

© Muhamed Mudawar — slide 24

Sighed Integer Division

“ Simplest way Is to remember the signs
*» Convert the dividend and divisor to positive
<> Obtain the 2's complement if they are negative
¢ Do the unsigned division
*» Compute the signs of the guotient and remainder

<> Quotient sign = Dividend sign XOR Divisor sign

<> Remainder sign = Dividend sign

*+ Negate the quotient and remainder if their sign Is negative

< Obtain the 2's complement to convert them to negative

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 25

Signed Integer Division Examples

1. Positive Dividend and Positive Divisor

< Example: +17 / +3 Quotient =+5 Remainder = +2
2. Positive Dividend and Negative Divisor

< Example: +17 /-3 Quotient =-5 Remainder = +2
3. Negative Dividend and Positive Divisor

< Example: =17/ +3 Quotient =-5 Remainder = -2
4. Negative Dividend and Negative Divisor

< Example: =17 /-3 Quotient =+5 Remainder = -2

The following equation must always hold:

Dividend = Quotient x Divisor + Remainder

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 26

Next . ..

** Unsigned Integer Multiplication
** Signed Integer Multiplication

» Faster Integer Multiplication

«* Integer Division

» Integer Multiplication and Division in MIPS

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 27

Integer Multiplication in MIPS

“+ Multiply instructions
< mult Rs, Rt Signed multiplication

< multu Rs, Rt Unsigned multiplication

¢ 32-bit multiplication produces a 64-bit Product

$0
$1

“* Separate pair of 32-bit registers

< HI = high-order 32-bit of product $;;,1

|
< LO = low -order 32-bit of product Multiply
< MIPS also has a special mul instruction Divide
I_I_I
<- mul Rd, Rs, Rt Rd = Rs x Rt HI LO

<> Copy LO into destination register Rd

< Useful when the product is small (32 bits) and HI is not needed

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 28

Integer Division in MIPS

¢ Divide Instructions
< div Rs, Rt Signed division

< divu Rs, Rt Unsigned division

¢ Division produces quotient and remainder
“» Separate pair of 32-bit registers
< HI = 32-bit remainder
< LO = 32-bit quotient
< If divisor is O then result is unpredictable
“* Moving data from HI, LO to MIPS registers
< mfhi Rd (Rd = HI)
< mflo Rd (Rd=LO)

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM

$0
$1

$31
|

Multiply
Divide

I_I_I

HI LO

© Muhamed Mudawar — slide 28

Integer Multiply and Divide Instructions

Instruction Meaning Format

mult Rs, Rt HI, LO =Rs x_ Rt Op=0 Rs Rt (%) (%) ox18
multu Rs, Rt HI, LO =Rs x, Rt Op=0 Rs Rt (%] (%) 0x19
mul Rd, Rs, Rt Rd = Rs x, Rt Ox1c Rs Rt Rd (%) 2

div Rs, Rt HI, LO=Rs / Rt Op=0 Rs Rt (%] (%) Ox1la
divu Rs, Rt HI, LO=Rs /,Rt Op=0 Rs Rt (%) Ox1b
mfhi Rd Rd = HI Op =0 %) %) Rd %) ox10
mflo Rd Rd = LO Op=0 (%) (%) Rd (%) Ox12
mthi Rs HI = Rs Op=0 | Rs %) %) %) ox11
mtlo Rs LO = Rs Op=0 Rs (%) (%) (%) Ox13

x, = Signed multiplication,

/< = Signed division,

Integer Multiplication and Division

NO arithmetic exception

x, = Unsigned multiplication

/, = Unsigned division

COE 301/ ICS 233 Computer OrganizatioRHM

can OCcur

© Muhamed Mudawar — slide 3C

String to Integer Conversion

¢ Consider the conversion of string "91052" into an integer

I9I

I1I

lel

I5I

I2I

* How to convert the string into an integer?

o Initialize: sum =0

*» Load each character of the string into a register
< Check if the character is in the range: '0"' to '9"

< Convert the character into a digit in the range: @ to 9

< Compute: sum = sum * 10 + digit

< Repeat until end of string or a non-digit character is encountered

** To convert "91052", initialize sum to O then ...
< sum =9, then 91, then 910, then 9105, then 91052

COE 301/ ICS 233 Computer OrganizatioRHM

Integer Multiplication and Division

© Muhamed Mudawar — slide 31

String to Integer Conversion Function

str2int: Convert a string of digits into unsigned integer
Input: $a0@ = address of null terminated string
Output: $vO = unsigned integer value

T T

str2int:
1i $vo, 0O # Initialize: $vO = sum = O
1i $to, 10 # Initialize: $t0 = 10

L1: 1b $t1l, 0(%$a0) # load $t1 = str[i]
blt $tl, '9', done # exit loop if ($t1 < '@')
bgt $t1, '9', done # exit loop if ($t1 > '9")
addiu $t1, $t1, -48 # Convert character to digit
mul $vo, $vo, $to # $vO = sum * 10
addu $vO, $vO, $t1 # $vO = sum * 10 + digit
addiu $a0, %$a0, 1 # $a0 = address of next char
j L1 # loop back

done: jr $ra # return to caller

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 32

Integer to String Conversion

*» Convert an unsigned 32-bit integer into a string

“* How to obtain the decimal digits of the number?
<> Divide the number by 10, Remainder = decimal digit (O to 9)
< Convert decimal digit into its ASCII representation ('O' to '9")
< Repeat the division until the quotient becomes zero

< Digits are computed backwards from least to most significant

“» Example: convert 2037 to a string
< Divide 2037/10 quotient =203 remainder=7 char="7"
< Divide 203/10 quotient=20 remainder=3 char ="3'
< Divide 20/10 guotient = 2 remainder =0 char ="0’
< Divide 2/10 guotient =0 remainder =2 char="2

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 33

Integer to String Conversion Function

int2str: Converts an unsigned integer into a string
Input: $a0@ = value, $al = buffer address (12 bytes)
Output: $v0 = address of converted string in buffer

int2str:

1i $to, 10 $t0 = divisor = 10
addiu $vo, %$al, 11 start at end of buffer
sb $zero, 0($v0O) store a NULL character
L2: divu $a0, $t0 LO = value/10, HI = valueX%lo
mflo $a0 $a0 = value/10
mfhi $t1 $t1 = value%10

addiu $t1, $t1, 48
addiu $vo, $vo, -1
sb $t1, 0($ve)
bnez $a0, L2

jr $ra

convert digit into ASCII
point to previous byte
store character in memory
loop if value is not ©
return to caller

H H H H H H HEH H R

=+

Integer Multiplication and Division COE 301/ ICS 233 Computer OrganizatioRHM © Muhamed Mudawar — slide 34

