
Integer Multiplication

and Division

COE 301
Computer Organization

Prof. Muhamed Mudawar

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 2

Presentation Outline

� Unsigned Integer Multiplication

� Signed Integer Multiplication

� Faster Integer Multiplication

� Integer Division

� Integer Multiplication and Division in MIPS

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 3

� Paper and Pencil Example:

Multiplicand 1100 2 = 12

Multiplier × 1101 2 = 13

1100

0000

1100

1100

Product 10011100 2 = 156

� n-bit multiplicand × n-bit multiplier = (2n)-bit pro duct

� Accomplished via shifting and addition

� Consumes more time and more chip area than addition

Unsigned Integer Multiplication

Binary multiplication is easy
0 × multiplicand = 0

1 × multiplicand = multiplicand

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 4

Unsigned Sequential Multiplication

� Initialize Product = 0

� Check each bit of the Multiplier

� If Multiplier bit = 1 then Product = Product + Multiplicand

� Rather than shifting the multiplicand to the left,

Shift the Product to the Right

Has the same net effect and produces the same result

Minimizes the hardware resources

� One cycle per iteration (for each bit of the Multiplier)

� Addition and shifting can be done simultaneously

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 5

� Initialize: HI = 0

� Initialize: LO = Multiplier

� Final Product in HI and LO registers

� Repeat for each bit of Multiplier

Unsigned Sequential Multiplier

= 0

Start

LO[0]?

Carry, Sum = HI + Multiplicand

32nd Repetition?

Done

= 1

No

Yes

HI = 0, LO=Multiplier

HI, LO = Shift Right (Carry, Sum, LO)
32-bit ALU

Control

64 bits

32 bits

write

add

LO[0]

Multiplicand

shift right

32 bits

HI LO

Sum
Carry

32 bits

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 6

Sequential Multiplier Example

� Consider: 11002 × 11012 , Product = 100111002

� 4-bit multiplicand and multiplier are used in this example

� 4-bit adder produces a 4-bit Sum + Carry bit

1 1 0 0Shift Right (Carry, Sum, LO) by 1 bit 0 1 1 1 1 0 0 1

LO[0] = 0 => NO addition

1 1 0 0Shift Right (HI, LO) by 1 bit 0 0 1 1 0 0 1 1

1 1 0 0Shift Right (Carry, Sum, LO) by 1 bit 0 1 1 0 0 1 1 0

1 1 0 0Shift Right (Carry, Sum, LO) by 1 bit 1 0 0 1 1 1 0 0

2

1 1 0 0 0 0 0 0 1 1 0 1Initialize (HI = 0, LO = Multiplier)0

1

3

4

Multiplicand Product = HI, LOCarryIteration

0 1 1 0 0 1 1 0 1LO[0] = 1 => ADD +

0 1 1 1 1 0 0 1 1LO[0] = 1 => ADD +

1 0 0 1 1 1 0 0 1LO[0] = 1 => ADD +

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 7

Next . . .

� Unsigned Integer Multiplication

� Signed Integer Multiplication

� Faster Integer Multiplication

� Integer Division

� Integer Multiplication and Division in MIPS

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 8

Signed Integer Multiplication

� First attempt:

� Convert multiplier and multiplicand into positive numbers

� If negative then obtain the 2's complement and remember the sign

� Perform unsigned multiplication

� Compute the sign of the product

� If product sign < 0 then obtain the 2's complement of the product

� Drawback: additional steps to compute the 2's complement

� Better version:

� Use the unsigned multiplication hardware

� When shifting right, extend the sign of the product

� If multiplier is negative, the last step should be a subtract

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 9

Signed Multiplication (Paper & Pencil)

� Case 1: Positive Multiplier

Multiplicand 1100 2 = -4

Multiplier × 0101 2 = +5

1111 1100

111100

Product 11101100 2 = -20

� Case 2: Negative Multiplier

Multiplicand 1100 2 = -4

Multiplier × 1101 2 = -3

1111 1100

111100

00100 (2's complement of 1100)

Product 00001100 2 = +12

Sign-extension

Sign-extension

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 10

� ALU produces: 32-bit sum + sign bit

� Sign bit can be computed:

� No overflow: sign = sum[31]

� If Overflow: sign = ~sum[31]

Signed Sequential Multiplier

= 0

Start

LO[0]?

31 iterations: Sign, Sum = HI + Multiplicand
Last iteration: Sign, Sum = HI – Multiplicand

32nd Repetition?

Done

= 1

No

Yes

HI = 0, LO = Multiplier

HI, LO = Shift Right (Sign, Sum, LO)32-bit ALU

Control

64 bits

32 bits

write

add, sub

LO[0]

Multiplicand

shift right

32 bits

HI LO

sumsign 32 bits

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 11

Signed Multiplication Example

� Consider: 11002 (-4) × 11012 (-3), Product = 000011002

� Check for overflow: No overflow � Extend sign bit

� Last iteration: add 2's complement of Multiplicand

1 1 0 0Shift Right (Sign, Sum, LO) by 1 bit 1 1 0 1 1 0 0 1

LO[0] = 0 => NO addition

1 1 0 0Shift Right (Sign, HI, LO) by 1 bit 1 1 1 1 0 0 1 1

1 1 0 0Shift Right (Sign, Sum, LO) by 1 bit 1 1 1 0 0 1 1 0

Shift Right (Sign, Sum, LO) by 1 bit 0 0 0 0 1 1 0 0

2

1 1 0 0 0 0 0 0 1 1 0 1Initialize (HI = 0, LO = Multiplier)0

1

3

4

Multiplicand Product = HI, LOSignIteration

1 1 1 0 0 1 1 0 1LO[0] = 1 => ADD +

1 1 0 1 1 0 0 1 1LO[0] = 1 => ADD +

0 1 0 0 0 0 0 0 1 1 0 0 1LO[0] = 1 => SUB (ADD 2's compl) +

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 12

Next . . .

� Unsigned Integer Multiplication

� Signed Integer Multiplication

� Faster Integer Multiplication

� Integer Division

� Integer Multiplication and Division in MIPS

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 13

Faster Multiplier

� Suppose we want to multiply two numbers A and B

� Example on 4-bit numbers: A = a3 a2 a1 a0 and B = b3 b2 b1 b0

� Step 1: AND (multiply) each bit of A with each bit of B

� Requires n2 AND gates and produces n2 product bits

� Position of aibj = (i+j). For example, Position of a2b3 = 2+3 = 5

a0b0a1b0a2b0a3b0

a0b1a1b1a2b1a3b1

a0b2a1b2a2b2a3b2

a0b3a1b3a2b3a3b3

A × B

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 14

Adding the Partial Products
� Step 2: Add the partial products

� The partial products are shifted and added to compute the product P

� The partial products can be added in parallel

� Different implementations are possible

4-bit Multiplicand A3 A2 A1 A0

4-bit Multiplier × B3 B2 B1 B0

A3B0 A2B0 A1B0 A0B0

A3B1 A2B1 A1B1 A0B1

A3B2 A2B2 A1B2 A0B2

A3B3 A2B3 A1B3 A0B3

P7 P6 P5 P4 P3 P2 P1 P08-bit Product

Partial Products
are shifted
and added

Can be added
in parallel

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 15

4-bit × 4-bit Binary Multiplier

4-bit Adder

A3

0

A2 A1 A0

B0

A3

carry

A2 A1 A0

B1

4-bit Adder

A3

0

A2 A1 A0

B2

A3 A2 A1 A0

B3

4-bit Adder

carry

Half

Adder

carry

P0P1P4P5 P2P3P6P7

16 AND gates, Three 4-bit adders, a half-adder, and an OR gate

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 16

Carry Save Adders

� A n-bit carry-save adder produces two n-bit outputs

� n-bit partial sum bits and n-bit carry bits

� All the n bits of a carry-save adder work in parallel

� The carry does not propagate as in a carry-propagate adder

� This is why a carry-save is faster than a carry-propagate adder

� Useful when adding multiple numbers (as in multipliers)

Carry-Propagate Adder

+

a0 b0

s0

+

a1 b1

s1

+

a31 b31

s31

. . .cout cin

Carry-Save Adder

. . .+

a31 b31

s'31c'31

c31

+

a1 b1

s'1c'1

c1

+

a0 b0

s'0c'0

c0

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 17

Carry-Save Adders in a Multiplier

� ADD the product bits vertically using Carry-Save adders

� Full Adder adds three vertical bits

� Half Adder adds two vertical bits

� Each adder produces a partial sum and a carry

� Use Carry-propagate adder for final addition

a0b0a1b0a2b0a3b0

a0b1a1b1a2b1a3b1

a0b2a1b2a2b2a3b2

a0b3a1b3a2b3a3b3

A × B

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 18

Carry-Save Adders in a Multiplier

Step 1: Use carry save adders to add the partial products

� Reduce the partial products to just two numbers

Step 2: Use carry-propagate adder to add last two numbers

P0

FA

a2b0 a1b1

HAFA

FA

a3b0 a2b1 a0b0

HA

a1b0 a0b1

HA

HA

FAFAFA

FA

a3b1 a2b2

FA

a3b2

a2b3

a3b3

a1b3

a0b3

a1b2 a0b2

P1P2P3P4P5P6P7

Carry Save Adder

Carry Propagate Adder

Carry Save

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 19

Summary of a Fast Multiplier

� A fast n-bit × n-bit multiplier requires:

� n2 AND gates to produce n2 product bits in parallel

� Many adders to perform additions in parallel

� Uses carry-save adders to reduce delays

� Higher cost (more chip area) than sequential multiplier

� Higher performance (faster) than sequential multiplier

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 20

Next . . .

� Unsigned Integer Multiplication

� Signed Integer Multiplication

� Faster Integer Multiplication

� Integer Division

� Integer Multiplication and Division in MIPS

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 21

= 19 Quotient

Divisor 1011 2 11011001 2 = 217 Dividend
-1011

10

101

1010

10100

-1011

1001

10011

-1011

1000 2 = 8 Remainder

Unsigned Division (Paper & Pencil)

Dividend =

Quotient × Divisor

+ Remainder

217 = 19 × 11 + 8

10011 2

Check how big a
number can be

subtracted, creating a
bit of the quotient on

each attempt

Binary division is done
via shifting and

subtraction

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 22

Sequential Division

� Uses two registers: HI and LO

� Initialize: HI = Remainder = 0 and LO = Dividend

� Shift (HI, LO) LEFT by 1 bit (also Shift Quotient LEFT)

� Shift the remainder and dividend registers together LEFT

� Has the same net effect of shifting the divisor RIGHT

� Compute: Difference = Remainder – Divisor

� If (Difference ≥ 0) then

� Remainder = Difference

� Set Least significant Bit of Quotient

� Observation to Reduce Hardware:

� LO register can be also used to store the computed Quotient

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 23

Sequential Division Hardware

� Initialize:
� HI = 0, LO = Dividend

� Results:
� HI = Remainder

� LO = Quotient

Start

Difference?

2. HI = Remainder = Difference
Set least significant bit of LO

32nd Repetition?

Done

< 0≥ 0

No

Yes

1. Shift (HI, LO) Left
Difference = HI – Divisor

shift left

Divisor

32-bit ALU

LO

32 bits

write

sub

32 bits

Difference
sign

set lsb

HI
32 bits

Control

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 24

Unsigned Integer Division Example

� Example: 11102 / 01002 (4-bit dividend & divisor)

� Result Quotient = 00112 and Remainder = 00102

� 4-bit registers for Remainder and Divisor (4-bit ALU)

Diff < 0 => Do Nothing

2

0 0 0 0 1 1 1 0Initialize0

1

3

4

HI DifferenceLOIteration

0 1 0 0

Divisor

< 0Shift Left, Diff = HI - Divisor 0 0 0 1 1 1 0 0 0 1 0 0

< 0Shift Left, Diff = HI - Divisor 0 0 1 1 1 0 0 0 0 1 0 0

0 0 1 1Shift Left, Diff = HI - Divisor 0 1 1 1 0 0 0 0 0 1 0 0

0 0 1 0Shift Left, Diff = HI - Divisor 0 1 1 0 0 0 1 0 0 1 0 0

HI = Diff, set lsb of LO 0 0 0 10 0 1 1

HI = Diff, set lsb of LO 0 0 1 10 0 1 0

Diff < 0 => Do Nothing

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 25

Signed Integer Division

� Simplest way is to remember the signs

� Convert the dividend and divisor to positive

� Obtain the 2's complement if they are negative

� Do the unsigned division

� Compute the signs of the quotient and remainder

� Quotient sign = Dividend sign XOR Divisor sign

� Remainder sign = Dividend sign

� Negate the quotient and remainder if their sign is negative

� Obtain the 2's complement to convert them to negative

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 26

Signed Integer Division Examples

1. Positive Dividend and Positive Divisor

� Example: +17 / +3 Quotient = +5 Remainder = +2

2. Positive Dividend and Negative Divisor

� Example: +17 / –3 Quotient = –5 Remainder = +2

3. Negative Dividend and Positive Divisor

� Example: –17 / +3 Quotient = –5 Remainder = –2

4. Negative Dividend and Negative Divisor

� Example: –17 / –3 Quotient = +5 Remainder = –2

The following equation must always hold:

Dividend = Quotient × Divisor + Remainder

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 27

Next . . .

� Unsigned Integer Multiplication

� Signed Integer Multiplication

� Faster Integer Multiplication

� Integer Division

� Integer Multiplication and Division in MIPS

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 28

Integer Multiplication in MIPS

� Multiply instructions

� mult Rs, Rt Signed multiplication

� multu Rs, Rt Unsigned multiplication

� 32-bit multiplication produces a 64-bit Product

� Separate pair of 32-bit registers

� HI = high-order 32-bit of product

� LO = low -order 32-bit of product

� MIPS also has a special mul instruction

� mul Rd, Rs, Rt Rd = Rs × Rt

� Copy LO into destination register Rd

� Useful when the product is small (32 bits) and HI is not needed

Multiply

Divide

$0

HI LO

$1

..

$31

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 29

Integer Division in MIPS

� Divide instructions

� div Rs, Rt Signed division

� divu Rs, Rt Unsigned division

� Division produces quotient and remainder

� Separate pair of 32-bit registers

� HI = 32-bit remainder

� LO = 32-bit quotient

� If divisor is 0 then result is unpredictable

� Moving data from HI, LO to MIPS registers

� mfhi Rd (Rd = HI)

� mflo Rd (Rd = LO)

Multiply

Divide

$0

HI LO

$1

..

$31

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 30

Integer Multiply and Divide Instructions

Instruction Meaning Format

mult Rs, Rt HI, LO = Rs ×s Rt Op = 0 Rs Rt 0 0 0x18

multu Rs, Rt HI, LO = Rs ×u Rt Op = 0 Rs Rt 0 0 0x19

mul Rd, Rs, Rt Rd = Rs ×s Rt 0x1c Rs Rt Rd 0 2

div Rs, Rt HI, LO = Rs /s Rt Op = 0 Rs Rt 0 0 0x1a

divu Rs, Rt HI, LO = Rs /u Rt Op = 0 Rs Rt 0 0 0x1b

mfhi Rd Rd = HI Op = 0 0 0 Rd 0 0x10

mflo Rd Rd = LO Op = 0 0 0 Rd 0 0x12

mthi Rs HI = Rs Op = 0 Rs 0 0 0 0x11

mtlo Rs LO = Rs Op = 0 Rs 0 0 0 0x13

×s = Signed multiplication, ×u = Unsigned multiplication

/s = Signed division, /u = Unsigned division

NO arithmetic exception can occur

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 31

String to Integer Conversion

� Consider the conversion of string "91052" into an integer

� How to convert the string into an integer?

� Initialize: sum = 0

� Load each character of the string into a register

� Check if the character is in the range: '0' to '9'

� Convert the character into a digit in the range: 0 to 9

� Compute: sum = sum * 10 + digit

� Repeat until end of string or a non-digit character is encountered

� To convert "91052", initialize sum to 0 then …

� sum = 9, then 91, then 910, then 9105, then 91052

'9' '1' '0' '5' '2'

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 32

String to Integer Conversion Function
#---

str2int: Convert a string of digits into unsigned integer

Input: $a0 = address of null terminated string

Output: $v0 = unsigned integer value

#---

str2int:

li $v0, 0 # Initialize: $v0 = sum = 0

li $t0, 10 # Initialize: $t0 = 10

L1: lb $t1, 0($a0) # load $t1 = str[i]

blt $t1, '0', done # exit loop if ($t1 < '0')

bgt $t1, '9', done # exit loop if ($t1 > '9')

addiu $t1, $t1, -48 # Convert character to digit

mul $v0, $v0, $t0 # $v0 = sum * 10

addu $v0, $v0, $t1 # $v0 = sum * 10 + digit

addiu $a0, $a0, 1 # $a0 = address of next char

j L1 # loop back

done: jr $ra # return to caller

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 33

Integer to String Conversion

� Convert an unsigned 32-bit integer into a string

� How to obtain the decimal digits of the number?

� Divide the number by 10, Remainder = decimal digit (0 to 9)

� Convert decimal digit into its ASCII representation ('0' to '9')

� Repeat the division until the quotient becomes zero

� Digits are computed backwards from least to most significant

� Example: convert 2037 to a string

� Divide 2037/10 quotient = 203 remainder = 7 char = '7'

� Divide 203/10 quotient = 20 remainder = 3 char = '3'

� Divide 20/10 quotient = 2 remainder = 0 char = '0'

� Divide 2/10 quotient = 0 remainder = 2 char = '2'

Integer Multiplication and Division COE 301 / ICS 233 Computer Organization – KFUPM © Muhamed Mudawar – slide 34

Integer to String Conversion Function
#--

int2str: Converts an unsigned integer into a string

Input: $a0 = value, $a1 = buffer address (12 bytes)

Output: $v0 = address of converted string in buffer

#--

int2str:

li $t0, 10 # $t0 = divisor = 10

addiu $v0, $a1, 11 # start at end of buffer

sb $zero, 0($v0) # store a NULL character

L2: divu $a0, $t0 # LO = value/10, HI = value%10

mflo $a0 # $a0 = value/10

mfhi $t1 # $t1 = value%10

addiu $t1, $t1, 48 # convert digit into ASCII

addiu $v0, $v0, -1 # point to previous byte

sb $t1, 0($v0) # store character in memory

bnez $a0, L2 # loop if value is not 0

jr $ra # return to caller

