
MIPS Arithmetic

and Logic Instructions

COE 301
Computer Organization

Prof. Muhamed Mudawar

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 2

Presentation Outline

� Overview of the MIPS Architecture

� R-Type Instruction Format

� R-type Arithmetic, Logical, and Shift Instructions

� I-Type Instruction Format and Immediate Constants

� I-type Arithmetic and Logical Instructions

� Pseudo Instructions

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 3

Overview of the MIPS Architecture

Memory

Up to 232 bytes = 230 words

4 bytes per word

$0
$1
$2

$31

Hi Lo

ALU

F0
F1
F2

F31
FP

Arith

EPC
Cause

BadVaddr

Status

EIU FPU

TMU

Execution &
Integer Unit
(Main proc)

Floating
Point Unit
(Coproc 1)

Trap &
Memory Unit
(Coproc 0)

. . .

. . .

Integer
mul/div

Arithmetic &
Logic Unit

32 General
Purpose
Registers

Integer
Multiplier/Divider

32 Floating-Point
Registers

Floating-Point
Arithmetic Unit

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 4

MIPS General-Purpose Registers

� 32 General Purpose Registers (GPRs)
� All registers are 32-bit wide in the MIPS 32-bit architecture

� Software defines names for registers to standardize their use

� Assembler can refer to registers by name or by number ($ notation)

Name Register Usage
$zero $0 Always 0 (forced by hardware)

$at $1 Reserved for assembler use

$v0 – $v1 $2 – $3 Result values of a function

$a0 – $a3 $4 – $7 Arguments of a function

$t0 – $t7 $8 – $15 Temporary Values

$s0 – $s7 $16 – $23 Saved registers (preserved across call)

$t8 – $t9 $24 – $25 More temporaries

$k0 – $k1 $26 – $27 Reserved for OS kernel

$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)

$fp $30 Frame pointer (points to stack frame)

$ra $31 Return address (used for function call)

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 5

Instruction Categories

� Integer Arithmetic (our focus in this presentation)
� Arithmetic, logic, and shift instructions

� Data Transfer

� Load and store instructions that access memory

� Data movement and conversions

� Jump and Branch

� Flow-control instructions that alter the sequential sequence

� Floating Point Arithmetic

� Instructions that operate on floating-point registers

� Miscellaneous

� Instructions that transfer control to/from exception handlers

� Memory management instructions

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 6

Next . . .

� Overview of the MIPS Architecture

� R-Type Instruction Format

� R-type Arithmetic, Logical, and Shift Instructions

� I-Type Instruction Format and Immediate Constants

� I-type Arithmetic and Logical Instructions

� Pseudo Instructions

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 7

R-Type Instruction Format

� Op: operation code (opcode)

� Specifies the operation of the instruction

� Also specifies the format of the instruction

� funct : function code – extends the opcode

� Up to 26 = 64 functions can be defined for the same opcode

� MIPS uses opcode 0 to define many R-type instructions

� Three Register Operands (common to many instructions)

� Rs, Rt: first and second source operands

� Rd: destination operand

� sa: the shift amount used by shift instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 8

R-Type Integer Add and Subtract

Instruction Meaning Op Rs Rt Rd sa func

add $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x20

addu $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x21

sub $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x22

subu $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x23

� add, sub : arithmetic overflow causes an exception

� In case of overflow, result is not written to destination register

� addu, subu : arithmetic overflow is ignored

� addu, subu : compute the same result as add, sub

� Many programming languages ignore overflow

� The + operator is translated into addu

� The – operator is translated into subu

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 9

� Bits have NO meaning. The same n bits stored in a register
can represent an unsigned or a signed integer.

� Unsigned Integers: n-bit representation

� Signed Integers: n-bit 2's complement representation

Range, Carry, Borrow, and Overflow

max = 2n–1min = 0

Carry = 1
Addition

Numbers > max

Borrow = 1
Subtraction

Numbers < 0

Positive
Overflow

Numbers > max

Negative
Overflow

Numbers < min

max = 2n-1–1

Finite Set of Signed Integers

0min = -2n-1

Finite Set of Unsigned Integers

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 10

Carry and Overflow

� Carry is useful when adding (subtracting) unsigned integers
� Carry indicates that the unsigned sum is out of range

� Overflow is useful when adding (subtracting) signed integers
� Overflow indicates that the signed sum is out of range

� Range for 32-bit unsigned integers = 0 to (232 – 1)

� Range for 32-bit signed integers = -231 to (231 – 1)

11111 1 1 11 1
1000 0100 0000 0000 1110 0001 0100 0001
1111 1111 0000 0000 1111 0101 0010 0000

1000 0011 0000 0001 1101 0110 0110 0001

+

� Example 1: Carry = 1, Overflow = 0 (NO overflow)

Unsigned sum is out-of-range, but the Signed sum is correct

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 11

More Examples of Carry and Overflow

� Example 2: Carry = 0, Overflow = 1

01111 1 11 1
0010 0100 0000 0100 1011 0001 0100 0100
0111 1111 0111 0000 0011 0101 0000 0010

1010 0011 0111 0100 1110 0110 0100 0110

+

Unsigned sum is correct, but the Signed sum is out-of-range

� Example 3: Carry = 1, Overflow = 1

1 11 1 11 1
1000 0100 0000 0100 1011 0001 0100 0100
1001 1111 0111 0000 0011 0101 0000 0010

0010 0011 0111 0100 1110 0110 0100 0110

+

Both the Unsigned and Signed sums are out-of-range

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 12

Using Add / Subtract Instructions

� Consider the translation of: f = (g+h)–(i+j)

� Programmer / Compiler allocates registers to variables

� Given that: $t0=f, $t1=g, $t2=h, $t3=i, and $t4=j

� Called temporary registers: $t0=$8, $t1=$9, …

� Translation of: f = (g+h)–(i+j)

addu $t5, $t1, $t2 # $t5 = g + h

addu $t6, $t3, $t4 # $t6 = i + j

subu $t0, $t5, $t6 # f = (g+h)–(i+j)

� Assembler translates addu $t5,$t1,$t2 into binary code

000000

Op

01001

$t1

01010

$t2

01101

$t5

00000

sa

100001

addu

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 13

Logic Bitwise Operations

� Logic bitwise operations: and, or, xor, nor

� AND instruction is used to clear bits: x and 0 ���� 0

� OR instruction is used to set bits: x or 1 ���� 1

� XOR instruction is used to toggle bits: x xor 1 ���� not x

� NOT instruction is not needed, why?

not $t1, $t2 is equivalent to: nor $t1, $t2, $t2

x

0
0
1
1

y

0
1
0
1

x and y

0
0
0
1

x

0
0
1
1

y

0
1
0
1

x or y

0
1
1
1

x

0
0
1
1

y

0
1
0
1

x xor y

0
1
1
0

x

0
0
1
1

y

0
1
0
1

x nor y

1
0
0
0

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 14

Logic Bitwise Instructions

Instruction Meaning Op Rs Rt Rd sa func

and $t1, $t2, $t3 $t1 = $t2 & $t3 0 $t2 $t3 $t1 0 0x24

or $t1, $t2, $t3 $t1 = $t2 | $t3 0 $t2 $t3 $t1 0 0x25

xor $t1, $t2, $t3 $t1 = $t2 ^ $t3 0 $t2 $t3 $t1 0 0x26

nor $t1, $t2, $t3 $t1 = ~($t2|$t3) 0 $t2 $t3 $t1 0 0x27

� Examples:

Given: $t1 = 0xabcd1234 and $t2 = 0xffff0000

and $t0, $t1, $t2 # $t0 = 0xabcd0000

or $t0, $t1, $t2 # $t0 = 0xffff1234

xor $t0, $t1, $t2 # $t0 = 0x54321234

nor $t0, $t1, $t2 # $t0 = 0x0000edcb

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 15

Shift Operations

� Shifting is to move the 32 bits of a number left or right

� sll means shift left logical (insert zero from the right)

� srl means shift right logical (insert zero from the left)

� sra means shift right arithmetic (insert sign-bit)

� The 5-bit shift amount field is used by these instructions

shift-in 0. . .shift-out
sll 32-bit value

. . .shift-in 0 shift-out
srl

. . .shift-in sign-bit shift-out
sra

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 16

Shift Instructions

� sll, srl, sra: shift by a constant amount

� The shift amount (sa) field specifies a number between 0 and 31

� sllv, srlv, srav: shift by a variable amount

� A source register specifies the variable shift amount between 0 and 31

� Only the lower 5 bits of the source register is used as the shift amount

Instruction Meaning Op Rs Rt Rd sa func

sll $t1,$t2,10 $t1 = $t2 << 10 0 0 $t2 $t1 10 0

srl $t1,$t2,10 $t1 = $t2 >>> 10 0 0 $t2 $t1 10 2

sra $t1,$t2,10 $t1 = $t2 >> 10 0 0 $t2 $t1 10 3

sllv $t1,$t2,$t3 $t1 = $t2 << $t3 0 $t3 $t2 $t1 0 4

srlv $t1,$t2,$t3 $t1 = $t2 >>>$t3 0 $t3 $t2 $t1 0 6

srav $t1,$t2,$t3 $t1 = $t2 >> $t3 0 $t3 $t2 $t1 0 7

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 17

$t1 = 0x0000abcd

$t1 = 0xcd123400

Shift Instruction Examples

� Given that: $t2 = 0xabcd1234 and $t3 = 16

sll $t1, $t2, 8

sra $t1, $t2, 4 $t1 = 0xfabcd123

srlv $t1, $t2, $t3

Rt = $t2Op Rs = $t3 Rd = $t1 sa srlv

01010000000 01011 01001 00000 000110

srl $t1, $t2, 4 $t1 = 0x0abcd123

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 18

Binary Multiplication

� Shift Left Instruction (sll) can perform multiplication

� When the multiplier is a power of 2

� You can factor any binary number into powers of 2

� Example: multiply $t0 by 36

$t0*36 = $t0*(4 + 32) = $t0*4 + $t0*32

sll $t1, $t0, 2 # $t1 = $t0 * 4

sll $t2, $t0, 5 # $t2 = $t0 * 32

addu $t3, $t1, $t2 # $t3 = $t0 * 36

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 19

Your Turn . . .

sll $t1, $t0, 1 # $t1 = $t0 * 2

sll $t2, $t0, 3 # $t2 = $t0 * 8

sll $t3, $t0, 4 # $t3 = $t0 * 16

addu $t4, $t1, $t2 # $t4 = $t0 * 10

addu $t5, $t4, $t3 # $t5 = $t0 * 26

Multiply $t0 by 26, using shift and add instructions

Hint: 26 = 2 + 8 + 16

Multiply $t0 by 31, Hint: 31 = 32 – 1

sll $t1, $t0, 5 # $t1 = $t0 * 32

subu $t2, $t1, $t0 # $t2 = $t0 * 31

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 20

Next . . .

� Overview of the MIPS Architecture

� R-Type Instruction Format

� R-type Arithmetic, Logical, and Shift Instructions

� I-Type Instruction Format and Immediate Constants

� I-type Arithmetic and Logical Instructions

� Pseudo Instructions

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 21

I-Type Instruction Format

� Constants are used quite frequently in programs

� The R-type shift instructions have a 5-bit shift amount constant

�What about other instructions that need a constant?

� I-Type: Instructions with Immediate Operands

� 16-bit immediate constant is stored inside the instruction

�Rs is the source register number

�Rt is now the destination register number (for R-type it was Rd)

� Examples of I-Type ALU Instructions:

�Add immediate: addi $t1, $t2, 5 # $t1 = $t2 + 5

�OR immediate: ori $t1, $t2, 5 # $t1 = $t2 | 5

Op6 Rs5 Rt5 immediate16

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 22

I-Type ALU Instructions

Instruction Meaning Op Rs Rt Immediate

addi $t1, $t2, 25 $t1 = $t2 + 25 0x8 $t2 $t1 25

addiu $t1, $t2, 25 $t1 = $t2 + 25 0x9 $t2 $t1 25

andi $t1, $t2, 25 $t1 = $t2 & 25 0xc $t2 $t1 25

ori $t1, $t2, 25 $t1 = $t2 | 25 0xd $t2 $t1 25

xori $t1, $t2, 25 $t1 = $t2 ^ 25 0xe $t2 $t1 25

lui $t1, 25 $t1 = 25 << 16 0xf 0 $t1 25

� addi : overflow causes an arithmetic exception

� In case of overflow, result is not written to destination register

� addiu : same operation as addi but overflow is ignored

� Immediate constant for addi and addiu is signed

� No need for subi or subiu instructions

� Immediate constant for andi , ori , xori is unsigned

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 23

� Given that registers $t0, $t1, $t2 are used for A, B, C

Examples of I-Type ALU Instructions

Expression Equivalent MIPS Instruction

A = B + 5;

C = B – 1;

A = B & 0xf;

C = B | 0xf;

C = 5;

A = B;

addiu $t0, $t1, 5

addiu $t2, $t1, -1

andi $t0, $t1, 0xf

ori $t2, $t1, 0xf

addiu $t2, $zero, 5

addiu $t0, $t1, 0

No need for subiu, because addiu has signed immediate

Register $zero has always the value 0

Rt = $t2Op = addiu Rs = $t1 -1 = 0b1111111111111111

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 24

� I-Type instructions can have only 16-bit constants

� What if we want to load a 32-bit constant into a register?

� Can’t have a 32-bit constant in I-Type instructions ����

� The sizes of all instructions are fixed to 32 bits

� Solution: use two instructions instead of one ☺☺☺☺

� Suppose we want: $t1 = 0xAC5165D9 (32-bit constant)

lui: load upper immediate

32-bit Constants

Op6 Rs5 Rt5 immediate16

lui $t1, 0xAC51

ori $t1, $t1, 0x65D9

0xAC51$t1

Upper
16 bits

0x0000

Lower
16 bits

0xAC51$t1 0x65D9

MIPS Instruction Set Architecture COE 301 – Computer Organization – KFUPM © Muhamed Mudawar – slide 25

Pseudo-Instructions

� Introduced by the assembler as if they were real instructions

� Facilitate assembly language programming

Pseudo-Instruction Equivalent MIPS Instruction

move $t1, $t2

not $t1, $t2

neg $t1, $t2

li $t1, -5

li $t1, 0xabcd1234

The MARS tool has a long list of pseudo-instructions

addu $t1, $t2, $zero

nor $t1, $t2, $zero

sub $t1, $zero, $t2

lui $t1, 0xabcd

ori $t1, $t1, 0x1234

addiu $t1, $zero, -5

