
Introduction to Assembly

Language Programming

COE 301

Computer Organization

Prof. Muhamed Mudawar

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 2

Next . . .

❖ The MIPS Instruction Set Architecture

❖ Introduction to Assembly Language

❖ System Calls

❖ Defining Data

❖ Memory Alignment and Byte Ordering

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 3

❖ Critical Interface between software and hardware

❖ An ISA includes the following …

 Instructions and Instruction Formats

 Data Types, Encodings, and Representations

 Programmable Storage: Registers and Memory

 Addressing Modes: to address Instructions and Data

 Handling Exceptional Conditions (like overflow)

❖ Examples (Versions) Introduced in

 Intel (8086, 80386, Pentium, Core, ...) 1978

 MIPS (MIPS I, II, …, MIPS32, MIPS64) 1986

 ARM (version 1, 2, …) 1985

Instruction Set Architecture (ISA)

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 4

Instructions

❖ Instructions are the language of the machine

❖ We will study the MIPS instruction set architecture

 Known as Reduced Instruction Set Computer (RISC)

 Elegant and relatively simple design

 Similar to RISC architectures developed in mid-1980’s and 90’s

 Popular, used in many products

▪ Silicon Graphics, ATI, Cisco, Sony, etc.

❖ Alternative to: Intel x86 architecture

 Known as Complex Instruction Set Computer (CISC)

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 5

Overview of the MIPS Architecture

Memory

Up to 232 bytes = 230 words

4 bytes per word

$0

$1

$2

$31

Hi Lo

ALU

F0

F1

F2

F31
FP

Arith

EPC

Cause

BadVaddr

Status

EIU FPU

TMU

Execution &

Integer Unit

(Main proc)

Floating

Point Unit

(Coproc 1)

Trap &

Memory Unit

(Coproc 0)

. . .

. . .

Integer
mul/div

Arithmetic &

Logic Unit

32 General

Purpose

Registers

Integer

Multiplier/Divider

32 Floating-Point

Registers

Floating-Point

Arithmetic Unit

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 6

MIPS General-Purpose Registers

❖ 32 General Purpose Registers (GPRs)

 All registers are 32-bit wide in the MIPS 32-bit architecture

 Software defines names for registers to standardize their use

 Assembler can refer to registers by name or by number ($ notation)

Name Register Usage

$zero $0 Always 0 (forced by hardware)

$at $1 Reserved for assembler use

$v0 – $v1 $2 – $3 Result values of a function

$a0 – $a3 $4 – $7 Arguments of a function

$t0 – $t7 $8 – $15 Temporary Values

$s0 – $s7 $16 – $23 Saved registers (preserved across call)

$t8 – $t9 $24 – $25 More temporaries

$k0 – $k1 $26 – $27 Reserved for OS kernel

$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)

$fp $30 Frame pointer (points to stack frame)

$ra $31 Return address (used by jal for function call)

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 7

Instruction Formats

❖ All instructions are 32-bit wide, Three instruction formats:

❖ Register (R-Type)

 Register-to-register instructions

 Op: operation code specifies the format of the instruction

❖ Immediate (I-Type)

 16-bit immediate constant is part in the instruction

❖ Jump (J-Type)

 Used by jump instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

Op6 Rs5 Rt5 immediate16

Op6 immediate26

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 8

Next . . .

❖ The MIPS Instruction Set Architecture

❖ Introduction to Assembly Language

❖ System Calls

❖ Defining Data

❖ Memory Alignment and Byte Ordering

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 9

What is Assembly Language?

❖ Low-level programming language for a computer

❖ One-to-one correspondence with the machine instructions

❖ Assembly language is specific to a given processor

❖ Assembler: converts assembly program into machine code

❖ Assembly language uses:

 Mnemonics: to represent the names of low-level machine instructions

 Labels: to represent the names of variables or memory addresses

 Directives: to define data and constants

 Macros: to facilitate the inline expansion of text into other code

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 10

Assembly Language Statements

❖ Three types of statements in assembly language

 Typically, one statement should appear on a line

1. Executable Instructions

 Generate machine code for the processor to execute at runtime

 Instructions tell the processor what to do

2. Pseudo-Instructions and Macros

 Translated by the assembler into real instructions

 Simplify the programmer task

3. Assembler Directives

 Provide information to the assembler while translating a program

 Used to define segments, allocate memory variables, etc.

 Non-executable: directives are not part of the instruction set

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 11

Assembly Language Instructions

❖ Assembly language instructions have the format:

[label:] mnemonic [operands] [#comment]

❖ Label: (optional)

 Marks the address of a memory location, must have a colon

 Typically appear in data and text segments

❖ Mnemonic

 Identifies the operation (e.g. add, sub, etc.)

❖ Operands

 Specify the data required by the operation

 Operands can be registers, memory variables, or constants

 Most instructions have three operands

L1: addiu $t0, $t0, 1 #increment $t0

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 12

Comments

❖ Single-line comment

 Begins with a hash symbol # and terminates at end of line

❖ Comments are very important!

 Explain the program's purpose

 When it was written, revised, and by whom

 Explain data used in the program, input, and output

 Explain instruction sequences and algorithms used

 Comments are also required at the beginning of every procedure

▪ Indicate input parameters and results of a procedure

▪ Describe what the procedure does

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 13

Program Template

Title: Filename:

Author: Date:

Description:

Input:

Output:

################# Data segment #####################

.data

. . .

################# Code segment #####################

.text

.globl main

main: # main program entry

. . .

li $v0, 10 # Exit program

syscall

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 14

.DATA, .TEXT, & .GLOBL Directives

❖ .DATA directive

 Defines the data segment of a program containing data

 The program's variables should be defined under this directive

 Assembler will allocate and initialize the storage of variables

❖ .TEXT directive

 Defines the code segment of a program containing instructions

❖ .GLOBL directive

 Declares a symbol as global

 Global symbols can be referenced from other files

 We use this directive to declare main function of a program

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 15

Layout of a Program in Memory

Stack Segment
0x7FFFFFFF

Dynamic Area (Heap)

Static Area

Text Segment

Reserved

0x04000000

0x10000000

0

Data Segment

Memory

Addresses

in Hex

Stack Grows

Downwards

Instructions

appear here

Static data

appear here

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 16

Next . . .

❖ The MIPS Instruction Set Architecture

❖ Introduction to Assembly Language

❖ System Calls

❖ Defining Data

❖ Memory Alignment and Byte Ordering

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 17

System Calls

❖ Programs do input/output through system calls

❖ The MIPS architecture provides a syscall instruction

 To obtain services from the operating system

 The operating system handles all system calls requested by program

❖ Since MARS is a simulator, it simulates the syscall services

❖ To use the syscall services:

 Load the service number in register $v0

 Load argument values, if any, in registers $a0, $a1, etc.

 Issue the syscall instruction

 Retrieve return values, if any, from result registers

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 18

Syscall Services

Service $v0 Arguments / Result

Print Integer 1 $a0 = integer value to print

Print Float 2 $f12 = float value to print

Print Double 3 $f12 = double value to print

Print String 4 $a0 = address of null-terminated string

Read Integer 5 Return integer value in $v0

Read Float 6 Return float value in $f0

Read Double 7 Return double value in $f0

Read String 8
$a0 = address of input buffer

$a1 = maximum number of characters to read

Allocate Heap

memory
9

$a0 = number of bytes to allocate

Return address of allocated memory in $v0

Exit Program 10

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 19

Syscall Services – Cont’d

Print Char 11 $a0 = character to print

Read Char 12 Return character read in $v0

Open File 13

$a0 = address of null-terminated filename string

$a1 = flags (0 = read-only, 1 = write-only)

$a2 = mode (ignored)

Return file descriptor in $v0 (negative if error)

Read

from File
14

$a0 = File descriptor

$a1 = address of input buffer

$a2 = maximum number of characters to read

Return number of characters read in $v0

Write to File 15

$a0 = File descriptor

$a1 = address of buffer

$a2 = number of characters to write

Return number of characters written in $v0

Close File 16 $a0 = File descriptor

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 20

Reading and Printing an Integer

################# Code segment #####################

.text

.globl main

main: # main program entry

li $v0, 5 # Read integer

syscall # $v0 = value read

move $a0, $v0 # $a0 = value to print

li $v0, 1 # Print integer

syscall

li $v0, 10 # Exit program

syscall

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 21

Reading and Printing a String

################# Data segment #####################

.data

str: .space 10 # array of 10 bytes

################# Code segment #####################

.text

.globl main

main: # main program entry

la $a0, str # $a0 = address of str

li $a1, 10 # $a1 = max string length

li $v0, 8 # read string

syscall

li $v0, 4 # Print string str

syscall

li $v0, 10 # Exit program

syscall

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 22

Sum of Three Integers

Sum of three integers

Objective: Computes the sum of three integers.

Input: Requests three numbers, Output: sum

################### Data segment ###################

.data

prompt: .asciiz "Please enter three numbers: \n"

sum_msg: .asciiz "The sum is: "

################### Code segment ###################

.text

.globl main

main:

la $a0,prompt # display prompt string

li $v0,4

syscall

li $v0,5 # read 1st integer into $t0

syscall

move $t0,$v0

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 23

Sum of Three Integers – (cont'd)

li $v0,5 # read 2nd integer into $t1

syscall

move $t1,$v0

li $v0,5 # read 3rd integer into $t2

syscall

move $t2,$v0

addu $t0,$t0,$t1 # accumulate the sum

addu $t0,$t0,$t2

la $a0,sum_msg # write sum message

li $v0,4

syscall

move $a0,$t0 # output sum

li $v0,1

syscall

li $v0,10 # exit

syscall

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 24

Next . . .

❖ The MIPS Instruction Set Architecture

❖ Introduction to Assembly Language

❖ System Calls

❖ Defining Data

❖ Memory Alignment and Byte Ordering

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 25

Data Definition Statement

❖ The assembler uses directives to define data

❖ It allocates storage in the static data segment for a variable

❖ May optionally assign a name (label) to the data

❖ Syntax:

[name:] directive initializer [, initializer] . . .

var1: .WORD 10

❖ All initializers become binary data in memory

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 26

Data Directives

❖ .BYTE Directive

 Stores the list of values as 8-bit bytes

❖ .HALF Directive

 Stores the list as 16-bit values aligned on half-word boundary

❖ .WORD Directive

 Stores the list as 32-bit values aligned on a word boundary

❖ .FLOAT Directive

 Stores the listed values as single-precision floating point

❖ .DOUBLE Directive

 Stores the listed values as double-precision floating point

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 27

String Directives

❖ .ASCII Directive

 Allocates a sequence of bytes for an ASCII string

❖ .ASCIIZ Directive

 Same as .ASCII directive, but adds a NULL char at end of string

 Strings are null-terminated, as in the C programming language

❖ .SPACE Directive

 Allocates space of n uninitialized bytes in the data segment

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 28

Examples of Data Definitions

.DATA

var1: .BYTE 'A', 'E', 127, -1, '\n'

var2: .HALF -10, 0xffff

var3: .WORD 0x12345678:100

var4: .FLOAT 12.3, -0.1

var5: .DOUBLE 1.5e-10

str1: .ASCII "A String\n"

str2: .ASCIIZ "NULL Terminated String"

array: .SPACE 100

Array of 100 words

Initialized with

the same value

100 bytes (not initialized)

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 29

Next . . .

❖ The MIPS Instruction Set Architecture

❖ Introduction to Assembly Language

❖ System Calls

❖ Defining Data

❖ Memory Alignment and Byte Ordering

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 30

❖ Memory is viewed as an addressable array of bytes

❖ Byte Addressing: address points to a byte in memory

❖ However, words occupy 4 consecutive bytes in memory

 MIPS instructions and integers occupy 4 bytes

❖ Memory Alignment:

 Address must be multiple of size

 Word address should be a multiple of 4

 Double-word address should be a multiple of 8

❖ .ALIGN n directive

 Aligns the next data definition on a 2n byte boundary

 Forces the address of next data definition to be multiple of 2n

Memory Alignment

0

4

8

12

a
d

d
re

s
s

not aligned

. . .

aligned word

not aligned

Memory

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 31

❖ Processors can order bytes within a word in two ways

❖ Little Endian Byte Ordering

 Memory address = Address of least significant byte

 Example: Intel IA-32

❖ Big Endian Byte Ordering

 Memory address = Address of most significant byte

 Example: SPARC architecture

❖ MIPS can operate with both byte orderings

Byte Ordering (Endianness)

Byte 0Byte 1Byte 2Byte 3

32-bit Register

MSB LSB

.Byte 0Byte 1Byte 2Byte 3

a a+3a+2a+1

Memory

address

Byte 3Byte 0Byte 1Byte 2Byte 3

32-bit Register

MSB LSB

.Byte 0 Byte 1 Byte 2

a a+3a+2a+1

Memory

address

Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 32

❖ Assembler builds a symbol table for labels

 Assembler computes the address of each label in data segment

❖ Example Symbol Table

.DATA

var1: .BYTE 1, 2,'Z'

str1: .ASCIIZ "My String\n"

var2: .WORD 0x12345678

.ALIGN 3

var3: .HALF 1000

Symbol Table

Label

var1

str1

var2

var3

Address

0x10010000

0x10010003

0x10010010

0x10010018

var1

1 2 'Z'0x10010000

str1

'M' 'y' ' ' 'S' 't' 'r' 'i' 'n' 'g' '\n' 0

0x123456780x10010010

var2 (aligned)

1000

var3 (address is multiple of 8)

0 0 Unused

0 00 0

Unused

	Slide 1: Introduction to Assembly Language Programming
	Slide 2: Next . . .
	Slide 3: Instruction Set Architecture (ISA)
	Slide 4: Instructions
	Slide 5: Overview of the MIPS Architecture
	Slide 6: MIPS General-Purpose Registers
	Slide 7: Instruction Formats
	Slide 8: Next . . .
	Slide 9: What is Assembly Language?
	Slide 10: Assembly Language Statements
	Slide 11: Assembly Language Instructions
	Slide 12: Comments
	Slide 13: Program Template
	Slide 14: .DATA, .TEXT, & .GLOBL Directives
	Slide 15: Layout of a Program in Memory
	Slide 16: Next . . .
	Slide 17: System Calls
	Slide 18: Syscall Services
	Slide 19: Syscall Services – Cont’d
	Slide 20: Reading and Printing an Integer
	Slide 21: Reading and Printing a String
	Slide 22: Sum of Three Integers
	Slide 23: Sum of Three Integers – (cont'd)
	Slide 24: Next . . .
	Slide 25: Data Definition Statement
	Slide 26: Data Directives
	Slide 27: String Directives
	Slide 28: Examples of Data Definitions
	Slide 29: Next . . .
	Slide 30: Memory Alignment
	Slide 31: Byte Ordering (Endianness)
	Slide 32: Symbol Table

