Introduction to Assembly

Language Programming

COE 301

Computer Organization
Prof. Muhamed Mudawar

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

Next . ..

*» The MIPS Instruction Set Architecture
¢ Introduction to Assembly Language

s System Calls

*» Defining Data

“ Memory Alignment and Byte Ordering

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 2

Instruction Set Architecture (ISA)

¢ Critical Interface between software and hardware
*» An |SA includes the following ...

< Instructions and Instruction Formats

< Data Types, Encodings, and Representations

< Programmable Storage: Registers and Memory

<> Addressing Modes: to address Instructions and Data

< Handling Exceptional Conditions (like overflow)

“ Examples (Versions) Introduced Iin
< Intel (8086, 80386, Pentium, Core, ...) 1978
< MIPS (MIPS I, I, ..., MIPS32, MIPS64) 1986

< ARM (version 1, 2, ...) 1985

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 3

Instructions

¢ Instructions are the language of the machine

“* We will study the MIPS instruction set architecture

< Known as Reduced Instruction Set Computer (RISC)
< Elegant and relatively simple design
< Similar to RISC architectures developed in mid-1980’s and 90’s
< Popular, used in many products
= Silicon Graphics, ATI, Cisco, Sony, etc.
% Alternative to: Intel x86 architecture

< Known as Complex Instruction Set Computer (CISC)

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 4

Overview of the MIPS Architecture

32 General
Purpose --
Registers

Arithmetic &
Logic Unit

4 bytes per word

Memory

Up to 232 bytes = 230 words

$0 Execution &

$1 Integer Unit

$2 (Main proc)

$31 l
Integer
_A'mul/div
W3 3
7 Hi Lo

Integer

Multiplier/Divider

Introduction to Assembly Language Programming

FPU FO Floating
F1 Point Unit
F2 (Coproc 1)
F[P F31
aith =
TMU | BadVaddr Trap &
Status | Memory Unit
Cause (Coproc 0)
EPC

COE 301 - KFUPM

32 Floating-Point
- Registers

Floating-Point

~~ Arithmetic Unit

© Muhamed Mudawar — slide 5

MIPS General-Purpose Registers

*» 32 General Purpose Registers (GPRS)
< All registers are 32-bit wide in the MIPS 32-bit architecture
< Software defines names for registers to standardize their use

<- Assembler can refer to registers by name or by number ($ notation)

Name Register Usage

$zero $0 Always 0 (forced by hardware)
$at $1 Reserved for assembler use

$vo - $vi $2 - $3 Result values of a function

$a0 - $a3 $4 - $7 Arguments of a function

$to - $t7 $8 - $15 Temporary Values

$s0 - $s7 $16 - $23 Saved registers (preserved across call)
$t8 - $t9 $24 - $25 More temporaries

$ko - $ki $26 - $27 Reserved for OS kernel

$gp $28 Global pointer (points to global data)
$sp $29 Stack pointer (points to top of stack)
$fp $30 Frame pointer (points to stack frame)
$ra $31 Return address (used by jal for function call)

Introduction to Assembly Language Programming

COE 301 - KFUPM © Muhamed Mudawar — slide 6

Instruction Formats

«» All Instructions are 32-bit wide, Three instruction formats:

*» Register (R-Type)

< Register-to-register instructions

<> Op: operation code specifies the format of the instruction

Op®

Rs®

Rt°

Rd®

sa®

funct®

“* Immediate (I-Type)

< 16-bit immediate constant is part in the instruction

Op®

Rs®

Rt°

immediatel®

“ Jump (J-Type)

<> Used by jump instructions

Op®

immediate?6

Introduction to Assembly Language Programming

COE 301 - KFUPM

© Muhamed Mudawar — slide 7

Next . ..

*» The MIPS Instruction Set Architecture
*» Introduction to Assembly Language
s System Calls
*» Defining Data

“ Memory Alignment and Byte Ordering

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 8

What is Assembly Language?

“* Low-level programming language for a computer

“+ One-to-one correspondence with the machine instructions
“» Assembly language is specific to a given processor
*» Assembler: converts assembly program into machine code

*» Assembly language uses:

< Mnemonics: to represent the names of low-level machine instructions
< Labels: to represent the names of variables or memory addresses
< Directives: to define data and constants

<> Macros: to facilitate the inline expansion of text into other code

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 9

Assembly Language Statements

s Three types of statements in assembly language

< Typically, one statement should appear on a line

1. Executable Instructions
< Generate machine code for the processor to execute at runtime
< Instructions tell the processor what to do
2. Pseudo-Instructions and Macros
< Translated by the assembler into real instructions
< Simplify the programmer task
3. Assembler Directives
< Provide information to the assembler while translating a program

< Used to define segments, allocate memory variables, etc.
<> Non-executable: directives are not part of the instruction set

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 10

Assembly Language Instructions

“» Assembly language instructions have the format:
[label:] mnemonic [operands] [#comment]
» Label: (optional)
< Marks the address of a memory location, must have a colon
< Typically appear in data and text segments

“* Mnemonic

< Identifies the operation (e.g. add, sub, etc.)
“ Operands

< Specify the data required by the operation

<> Operands can be registers, memory variables, or constants
<> Most instructions have three operands

L1: addiu $to, $to, 1 #increment $to

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 11

Comments

* Single-line comment
<> Begins with a hash symbol # and terminates at end of line

s Comments are very important!
< Explain the program's purpose
< When it was written, revised, and by whom
< Explain data used in the program, input, and output
< Explain instruction sequences and algorithms used

< Comments are also required at the beginning of every procedure
» Indicate input parameters and results of a procedure

= Describe what the procedure does

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 12

Program Template

Title: Filename:
Author: Date:

Description:

Input:

Output:

HH#H Y Data segment #iH##HEHEHEHEHEHEHEHHE
.data

Hi#HHGHEGHEH7EHE Code segment #HH#HHHHHHHGHHHHEHIHHHE

. text

.globl main

main: # main program entry

1li $vo, 10 # Exit program
syscall

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 13

DATA, TEXT, & .GLOBL Directives

«» DATA directive

< Defines the data segment of a program containing data
< The program's variables should be defined under this directive

< Assembler will allocate and initialize the storage of variables

» . TEXT directive

< Defines the code segment of a program containing instructions
“ .GLOBL directive

<> Declares a symbol as global
< Global symbols can be referenced from other files

<> We use this directive to declare main function of a program

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 14

Layout of a Program in Memory

OX7FFFFFFF
N

Memory
Addresses
in Hex

0x10000000

0x04000000

0

Introduction to Assembly Language Programming

Stack Segment

Dynamic Area (Heap)

Static Area

Stack Grows
Downwards

Data Segment
>

Static data

N

Text Segment

y appear here

Instructions

N

Reserved

COE 301 - KFUPM

appear here

© Muhamed Mudawar — slide 15

Next . ..

*» The MIPS Instruction Set Architecture
¢ Introduction to Assembly Language
“ System Calls

*» Defining Data

“ Memory Alignment and Byte Ordering

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 16

System Calls

“* Programs do input/output through system calls

“* The MIPS architecture provides a syscall instruction

<> To obtain services from the operating system

<> The operating system handles all system calls requested by program

** Since MARS is a simulator, it simulates the syscall services

¢ To use the syscall services:
< Load the service number in register $vo
< Load argument values, if any, in registers $a0, $al, etc.
< Issue the syscall instruction

< Retrieve return values, if any, from result registers

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 17

Syscall Services

Service $v0 | Arguments / Result

Print Integer 1 | $a0 = integer value to print

Print Float 2 | $f12 = float value to print

Print Double 3 | $f12 = double value to print

Print String 4 | $a0 = address of null-terminated string
Read Integer 5 | Return integer value in $vO

Read Float 6 | Return float value in $f0

Read Double 7 | Return double value in $f0

Read String 8 i:g = ?nd;;i(rensjrgfr:Efnut:ebruj‘ec:haracters to read
Allocate Heap 9 $a0 = number of bytes to allocate

memory Return address of allocated memory in $vO
Exit Program 10

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 18

Syscall Services - Cont'd

Print Char 11 | $a0 = character to print

Read Char 12 | Return character read in $v0

$a0 = address of null-terminated filename string
$al = flags (0 = read-only, 1 = write-only)

Open File 13 $a2 = mode (ignored)
Return file descriptor in $v0 (negative if error)
$a0 = File descriptor

Read 14 $al = address of input buffer

from File $a2 = maximum number of characters to read
Return number of characters read in $v0
$a0 = File descriptor

Write to File 15 $al = address of buffer

$a2 = number of characters to write
Return number of characters written in $vO

Close File 16 | $a0 = File descriptor

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 19

Reading and Printing an Integer

Hi##aH#taH#HG##EE Code segment ##H#HH##HEHHHGHRFHHIHHH

.text

.globl main

main: # main program entry
1i $vO, 5 # Read integer
syscall # $vO = value read
move $a@, $vO # $a0 = value to print
1i $vo, 1 # Print integer
syscall
1i $vo, 10 # Exit program
syscall

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 20

Reading and Printing a String

HHHH#H##H######HH#H Data segment ###HHHHHHHHHHHHHHHHHEH
.data

str: .space 10 # array of 10 bytes
Hi##aHHtaH#HE##EE Code segment ##H#H###HHEHHHGHRFHHIHHH
. text
.globl main

main: # main program entry
la $a0, str # $a0 = address of str
1i $al, 10 # $al = max string length
1i $vo, 8 # read string
syscall
1i $vo, 4 # Print string str
syscall
1i $vo, 10 # Exit program

syscall

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 21

Sum of Three Integers

Sum of three integers

Objective: Computes the sum of three integers.

Input: Requests three numbers, Output: sum
HHHHHHHHtHHHHHHEHE Data segment HA#HHHHHHHHHHHHHHHHH
.data

prompt: .asciiz "Please enter three numbers: \n"
sum_msg: .asciiz "The sum is: "

HEHEHHGHH GGG #EE] Code segment ##H#HHHHHGHHHHGHIHHE
.text

.globl main

main:
la $a0, prompt # display prompt string
1i $vO,4
syscall
1i $vo,5 # read 1st integer into $to
syscall

move $t0,$vO

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 22

Sum of Three Integers - (cont d)

1i $vo,5 # read 2nd integer into $t1
syscall

move $t1,%$v0

1i $vo,5 # read 3rd integer into $t2
syscall

move $t2,$v0

addu $to,$to,stl # accumulate the sum

addu $to,%$to,$t2

la $a0,sum_msg # write sum message

1i $vo,4

syscall

move $a0,%$to # output sum

1i $vo,1

syscall

1i $vo,10 # exit

syscall

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 23

Next . ..

*» The MIPS Instruction Set Architecture
¢ Introduction to Assembly Language
s System Calls

¢ Defining Data

“ Memory Alignment and Byte Ordering

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 24

Data Definition Statement

+» The assembler uses directives to define data

¢ It allocates storage in the static data segment for a variable
* May optionally assign a name (label) to the data

* Syntax:
[name:] directive Initializer [, initializer] . ..

d 8 8

varl: .WORD 10

¢ All initializers become binary data in memory

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 25

Data Directives

» .BYTE Directive

< Stores the list of values as 8-bit bytes

» .HALF Directive

<> Stores the list as 16-bit values aligned on half-word boundary

» .WORD Directive

< Stores the list as 32-bit values aligned on a word boundary

» FLOAT Directive

< Stores the listed values as single-precision floating point

» DOUBLE Directive

< Stores the listed values as double-precision floating point

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 26

String Directives

» . ASCII Directive

< Allocates a sequence of bytes for an ASCII string

¢+ . ASCIIZ Directive

< Same as .ASCII directive, but adds a NULL char at end of string

< Strings are null-terminated, as in the C programming language

<+ SPACE Directive

<> Allocates space of n uninitialized bytes in the data segment

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 27

Examples of Data Definitions

.DATA
varl:
var2:
var3:
var4:
varbs:
strl:
str2:

array:

.BYTE

.HALF

.WORD

. FLOAT

.DOUBLE

.ASCII

.ASCIIZ

. SPACE

IAI’

-10, OXFfff

12.3,

'E', 127, -1, '\n'

Array of 100 words
0x12345678:100 < Initialized with

the same value

-0.1

1.5e-10

"A String\n"

"NULL Terminated String"

100

<— 100 bytes (not initialized)

Introduction to Assembly Language Programming

COE 301 - KFUPM

© Muhamed Mudawar — slide 28

Next . ..

*» The MIPS Instruction Set Architecture
¢ Introduction to Assembly Language
s System Calls

*» Defining Data

“* Memory Alignment and Byte Ordering

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 29

Memory Alignment

** Memory Is viewed as an addressable array of bytes
*» Byte Addressing: address points to a byte in memory

*» However, words occupy 4 consecutive bytes in memory

< MIPS instructions and integers occupy 4 bytes
Memory

“* Memory Alignment:

< Address must be multiple of size

address

aligned word

<> Word address should be a multiple of 4 12 a”gned-
8
<> Double-word address should be a multiple of 8 4 -
0 - not aligned

% .ALIGN n directive
< Aligns the next data definition on a 2" byte boundary

< Forces the address of next data definition to be multiple of 2"

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 30

Byte Ordering (Endianness)

¢ Processors can order bytes within a word in two ways

¢ Little Endian Byte Ordering

< Memory address = Address of least significant byte
< Example: Intel IA-32

MSB LSB address a a+l a+2 a+3
Byte 3 | Byte 2 | Byte1 | Byte O <:> ... | ByteO | Bytel | Byte 2 | Byte 3
32-bit Register Memory

*+ Big Endian Byte Ordering
< Memory address = Address of most significant byte
< Example: SPARC architecture

MSB LSB address a atl at2 a+3
Byte3 | Byte2 [Byte1 [Byte0 | {"="» ...[Byte3[Byte2 [Bytel | Byte O
32-bit Register Memory

** MIPS can operate with both byte orderings

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 31

Symbol Table

“» Assembler builds a symbol table for labels

< Assembler computes the address of each label in data segment

s Example Symbol Table

.DATA

varl: .BYTE 1, 2,'Z'
strl: .ASCIIZ "My String\n"
var2: .WORD ©x12345678
.ALIGN 3

var3: .HALF 1000

Label Address

varl 9x10010000
strl 0x10010003
var2 0x10010010
var3 0x10010018

strl

1
var ‘l .

ox10010000 |1 |2 ['Z['M|'y ['['S'[t || ['n'|'g|\W][0|0 0| Unused
0x10010010 | 0x12345678 | 0 | 0 | O | O | 1000

var2 (aligned)) Unused L var3 (address is multiple of 8)

Introduction to Assembly Language Programming COE 301 - KFUPM © Muhamed Mudawar — slide 32

	Slide 1: Introduction to Assembly Language Programming
	Slide 2: Next . . .
	Slide 3: Instruction Set Architecture (ISA)
	Slide 4: Instructions
	Slide 5: Overview of the MIPS Architecture
	Slide 6: MIPS General-Purpose Registers
	Slide 7: Instruction Formats
	Slide 8: Next . . .
	Slide 9: What is Assembly Language?
	Slide 10: Assembly Language Statements
	Slide 11: Assembly Language Instructions
	Slide 12: Comments
	Slide 13: Program Template
	Slide 14: .DATA, .TEXT, & .GLOBL Directives
	Slide 15: Layout of a Program in Memory
	Slide 16: Next . . .
	Slide 17: System Calls
	Slide 18: Syscall Services
	Slide 19: Syscall Services – Cont’d
	Slide 20: Reading and Printing an Integer
	Slide 21: Reading and Printing a String
	Slide 22: Sum of Three Integers
	Slide 23: Sum of Three Integers – (cont'd)
	Slide 24: Next . . .
	Slide 25: Data Definition Statement
	Slide 26: Data Directives
	Slide 27: String Directives
	Slide 28: Examples of Data Definitions
	Slide 29: Next . . .
	Slide 30: Memory Alignment
	Slide 31: Byte Ordering (Endianness)
	Slide 32: Symbol Table

