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❖ Critical Interface between software and hardware

❖ An ISA includes the following …

 Instructions and Instruction Formats

 Data Types, Encodings, and Representations

 Programmable Storage: Registers and Memory

 Addressing Modes: to address Instructions and Data

 Handling Exceptional Conditions (like overflow)

❖ Examples (Versions) Introduced in

 Intel (8086, 80386, Pentium, Core, ...) 1978 

 MIPS (MIPS I, II, …, MIPS32, MIPS64) 1986

 ARM (version 1, 2, …) 1985

Instruction Set Architecture (ISA)
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Instructions

❖ Instructions are the language of the machine

❖ We will study the MIPS instruction set architecture

 Known as Reduced Instruction Set Computer (RISC)

 Elegant and relatively simple design

 Similar to RISC architectures developed in mid-1980’s and 90’s

 Popular, used in many products

▪ Silicon Graphics, ATI, Cisco, Sony, etc.

❖ Alternative to: Intel x86 architecture

 Known as Complex Instruction Set Computer (CISC)
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Overview of the MIPS Architecture
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MIPS General-Purpose Registers

❖ 32 General Purpose Registers (GPRs)

 All registers are 32-bit wide in the MIPS 32-bit architecture

 Software defines names for registers to standardize their use

 Assembler can refer to registers by name or by number ($ notation)

Name Register Usage

$zero $0 Always 0 (forced by hardware)

$at $1 Reserved for assembler use

$v0 – $v1 $2 – $3 Result values of a function

$a0 – $a3 $4 – $7 Arguments of a function

$t0 – $t7 $8 – $15 Temporary Values

$s0 – $s7 $16 – $23 Saved registers (preserved across call)

$t8 – $t9 $24 – $25 More temporaries

$k0 – $k1 $26 – $27 Reserved for OS kernel

$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)

$fp $30 Frame pointer (points to stack frame)

$ra $31 Return address (used by jal for function call)
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Instruction Formats

❖ All instructions are 32-bit wide, Three instruction formats:

❖ Register (R-Type)

 Register-to-register instructions

 Op: operation code specifies the format of the instruction

❖ Immediate (I-Type)

 16-bit immediate constant is part in the instruction

❖ Jump (J-Type)

 Used by jump instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

Op6 Rs5 Rt5 immediate16

Op6 immediate26
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Next . . .

❖ The MIPS Instruction Set Architecture

❖ Introduction to Assembly Language

❖ System Calls
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❖ Memory Alignment and Byte Ordering
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What is Assembly Language?

❖ Low-level programming language for a computer

❖ One-to-one correspondence with the machine instructions

❖ Assembly language is specific to a given processor

❖ Assembler: converts assembly program into machine code

❖ Assembly language uses:

 Mnemonics: to represent the names of low-level machine instructions

 Labels: to represent the names of variables or memory addresses

 Directives: to define data and constants

 Macros: to facilitate the inline expansion of text into other code
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Assembly Language Statements

❖ Three types of statements in assembly language

 Typically, one statement should appear on a line

1. Executable Instructions

 Generate machine code for the processor to execute at runtime

 Instructions tell the processor what to do

2. Pseudo-Instructions and Macros

 Translated by the assembler into real instructions

 Simplify the programmer task 

3. Assembler Directives

 Provide information to the assembler while translating a program

 Used to define segments, allocate memory variables, etc.

 Non-executable: directives are not part of the instruction set
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Assembly Language Instructions

❖ Assembly language instructions have the format:

[label:]   mnemonic   [operands]    [#comment]

❖ Label: (optional)

 Marks the address of a memory location, must have a colon

 Typically appear in data and text segments 

❖ Mnemonic

 Identifies the operation (e.g. add, sub, etc.)

❖ Operands

 Specify the data required by the operation

 Operands can be registers, memory variables, or constants

 Most instructions have three operands

L1: addiu $t0, $t0, 1 #increment $t0
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Comments

❖ Single-line comment

 Begins with a hash symbol # and terminates at end of line

❖ Comments are very important!

 Explain the program's purpose

 When it was written, revised, and by whom

 Explain data used in the program, input, and output

 Explain instruction sequences and algorithms used

 Comments are also required at the beginning of every procedure

▪ Indicate input parameters and results of a procedure

▪ Describe what the procedure does



Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 13

Program Template

# Title: Filename:

# Author: Date:

# Description:

# Input:

# Output:

################# Data segment #####################

.data

. . .

################# Code segment #####################

.text

.globl main

main: # main program entry

. . .

li $v0, 10 # Exit program

syscall
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.DATA, .TEXT, & .GLOBL Directives

❖ .DATA directive

 Defines the data segment of a program containing data

 The program's variables should be defined under this directive

 Assembler will allocate and initialize the storage of variables

❖ .TEXT directive

 Defines the code segment of a program containing instructions

❖ .GLOBL directive

 Declares a symbol as global

 Global symbols can be referenced from other files

 We use this directive to declare main function of a program
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Layout of a Program in Memory
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0

Data Segment

Memory

Addresses

in Hex

Stack Grows

Downwards

Instructions

appear here

Static data

appear here



Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 16

Next . . .

❖ The MIPS Instruction Set Architecture

❖ Introduction to Assembly Language

❖ System Calls

❖ Defining Data

❖ Memory Alignment and Byte Ordering
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System Calls

❖ Programs do input/output through system calls

❖ The MIPS architecture provides a syscall instruction

 To obtain services from the operating system

 The operating system handles all system calls requested by program

❖ Since MARS is a simulator, it simulates the syscall services

❖ To use the syscall services:

 Load the service number in register $v0

 Load argument values, if any, in registers $a0, $a1, etc.

 Issue the syscall instruction

 Retrieve return values, if any, from result registers
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Syscall Services

Service $v0 Arguments / Result

Print Integer 1 $a0 = integer value to print

Print Float 2 $f12 =  float value to print

Print Double 3 $f12 = double value to print

Print String 4 $a0 = address of null-terminated string

Read Integer 5 Return integer value in $v0

Read Float 6 Return float value in $f0

Read Double 7 Return double value in $f0

Read String 8
$a0 = address of input buffer

$a1 = maximum number of characters to read

Allocate Heap 

memory
9

$a0 = number of bytes to allocate

Return address of allocated memory in $v0

Exit Program 10
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Syscall Services – Cont’d

Print Char 11 $a0 = character to print

Read Char 12 Return character read in $v0

Open File 13

$a0 = address of null-terminated filename string

$a1 = flags (0 = read-only, 1 = write-only)

$a2 = mode (ignored)

Return file descriptor in $v0 (negative if error)

Read

from File
14

$a0 = File descriptor

$a1 = address of input buffer

$a2 = maximum number of characters to read

Return number of characters read in $v0

Write to File 15

$a0 = File descriptor

$a1 = address of buffer

$a2 = number of characters to write

Return number of characters written in $v0

Close File 16 $a0 = File descriptor
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Reading and Printing an Integer

################# Code segment #####################

.text

.globl main

main: # main program entry

li $v0, 5 # Read integer

syscall # $v0 = value read

move $a0, $v0 # $a0 = value to print

li $v0, 1 # Print integer

syscall

li $v0, 10 # Exit program

syscall
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Reading and Printing a String

################# Data segment #####################

.data

str: .space  10 # array of 10 bytes

################# Code segment #####################

.text

.globl main

main: # main program entry

la $a0, str # $a0 = address of str

li $a1, 10 # $a1 = max string length

li $v0, 8 # read string

syscall

li $v0, 4 # Print string str

syscall

li $v0, 10 # Exit program

syscall
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Sum of Three Integers

# Sum of three integers

# Objective: Computes the sum of three integers. 

# Input: Requests three numbers, Output: sum

################### Data segment ###################

.data

prompt: .asciiz "Please enter three numbers: \n"

sum_msg: .asciiz "The sum is: "

################### Code segment ###################

.text

.globl main

main:

la    $a0,prompt # display prompt string

li    $v0,4

syscall

li    $v0,5 # read 1st integer into $t0

syscall

move  $t0,$v0
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Sum of Three Integers – (cont'd)

li    $v0,5 # read 2nd integer into $t1

syscall

move  $t1,$v0

li    $v0,5 # read 3rd integer into $t2

syscall

move  $t2,$v0

addu $t0,$t0,$t1 # accumulate the sum

addu $t0,$t0,$t2

la    $a0,sum_msg # write sum message

li    $v0,4

syscall

move  $a0,$t0 # output sum

li    $v0,1

syscall

li    $v0,10 # exit

syscall
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Next . . .

❖ The MIPS Instruction Set Architecture

❖ Introduction to Assembly Language

❖ System Calls

❖ Defining Data

❖ Memory Alignment and Byte Ordering
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Data Definition Statement

❖ The assembler uses directives to define data

❖ It allocates storage in the static data segment for a variable

❖ May optionally assign a name (label) to the data

❖ Syntax:

[name:]  directive initializer [, initializer]  . . .

var1: .WORD 10

❖ All initializers become binary data in memory
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Data Directives

❖ .BYTE Directive

 Stores the list of values as 8-bit bytes

❖ .HALF Directive

 Stores the list as 16-bit values aligned on half-word boundary 

❖ .WORD Directive

 Stores the list as 32-bit values aligned on a word boundary

❖ .FLOAT Directive

 Stores the listed values as single-precision floating point

❖ .DOUBLE Directive

 Stores the listed values as double-precision floating point
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String Directives

❖ .ASCII Directive

 Allocates a sequence of bytes for an ASCII string

❖ .ASCIIZ Directive

 Same as .ASCII directive, but adds a NULL char at end of string

 Strings are null-terminated, as in the C programming language

❖ .SPACE Directive

 Allocates space of n uninitialized bytes in the data segment
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Examples of Data Definitions

.DATA

var1:  .BYTE     'A', 'E', 127, -1, '\n'

var2:  .HALF     -10, 0xffff

var3:  .WORD     0x12345678:100

var4:  .FLOAT    12.3, -0.1

var5:  .DOUBLE   1.5e-10

str1:  .ASCII    "A String\n"

str2:  .ASCIIZ   "NULL Terminated String"

array: .SPACE    100

Array of 100 words

Initialized with

the same value

100 bytes (not initialized)
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Next . . .

❖ The MIPS Instruction Set Architecture

❖ Introduction to Assembly Language

❖ System Calls

❖ Defining Data

❖ Memory Alignment and Byte Ordering
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❖ Memory is viewed as an addressable array of bytes

❖ Byte Addressing: address points to a byte in memory

❖ However, words occupy 4 consecutive bytes in memory

 MIPS instructions and integers occupy 4 bytes

❖ Memory Alignment:

 Address must be multiple of size

 Word address should be a multiple of 4

 Double-word address should be a multiple of 8

❖ .ALIGN n directive

 Aligns the next data definition on a 2n byte boundary

 Forces the address of next data definition to be multiple of 2n

Memory Alignment

0

4

8

12

a
d

d
re

s
s

not aligned

. . .

aligned word

not aligned

Memory
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❖ Processors can order bytes within a word in two ways

❖ Little Endian Byte Ordering

 Memory address = Address of least significant  byte

 Example: Intel IA-32

❖ Big Endian Byte Ordering

 Memory address = Address of most significant byte

 Example: SPARC architecture

❖ MIPS can operate with both byte orderings 

Byte Ordering (Endianness)

Byte 0Byte 1Byte 2Byte 3

32-bit Register

MSB LSB

. . . . . .Byte 0Byte 1Byte 2Byte 3

a a+3a+2a+1

Memory

address

Byte 3Byte 0Byte 1Byte 2Byte 3

32-bit Register

MSB LSB

. . . . . .Byte 0 Byte 1 Byte 2

a a+3a+2a+1

Memory

address



Introduction to Assembly Language Programming COE 301 – KFUPM © Muhamed Mudawar – slide 32

❖ Assembler builds a symbol table for labels

 Assembler computes the address of each label in data segment

❖ Example Symbol Table

.DATA

var1:  .BYTE   1, 2,'Z'

str1:  .ASCIIZ "My String\n"

var2:  .WORD   0x12345678

.ALIGN  3

var3:  .HALF   1000

Symbol Table

Label

var1

str1

var2

var3

Address

0x10010000

0x10010003

0x10010010

0x10010018

var1

1 2 'Z'0x10010000

str1

'M' 'y' '  ' 'S' 't' 'r' 'i' 'n' 'g' '\n' 0

0x123456780x10010010

var2 (aligned)

1000

var3 (address is multiple of 8)

0 0 Unused

0 00 0

Unused
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