Introduction

COE 301

Computer Organization
Dr. Muhamed Mudawar

Computer Engineering Department
King Fahd University of Petroleum and Minerals

Presentation Outline

+» Welcome to COE 301

* Assembly-, Machine-, and High-Level Languages
¢ Classes of Computers

* Programmer's View of a Computer System

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 2

Welcome to COE 301

¢ Instructor: Dr. Muhamed F. Mudawar
s Office: Building 22, Room 410-2
¢+ Office Phone: 4642

+» Schedule and Office Hours:

< http://faculty. kfupm.edu.sa/coe/mudawar/schedule/

s Course Web Page:

< http://faculty . kfupm.edu.sa/coe/mudawar/coe301/

s Email:

< mudawar@kfupm.edu.sa

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 3

http://faculty.kfupm.edu.sa/coe/mudawar/schedule/
http://faculty.kfupm.edu.sa/coe/mudawar/coe301/
mailto:mudawar@kfupm.edu.sa

Which Textbook will be Used?

s Computer Organization & Design:

The Hardware/Software Interface

< Fifth Edition, 2013

< David Patterson and John Hennessy

<> Morgan Kaufmann

+» Read the textbook in addition to slides

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 4

N/
0‘0

4

4

®

4

4

®

4

4

L)

4

4

L)

4

4

L)

4

4

L)

Introduction

Grading Policy

Quizzes

MIPS Programming
Lab Work

CPU Design Project
Midterm Exam

Final Exam

10%

10%

15%

15%

25%

25%

No makeup will be given for missing exam or quiz

COE 301 — Computer Organization - KFUPM

© Muhamed Mudawar — slide 5

Software Tools

< MIPS Simulators

< MARS: MIPS Assembly and Runtime Simulator

» Runs MIPS-32 assembly language programs

= Website: http://courses.missouristate.edu/KenVollmar/MARS/

< SPIM

» Also Runs MIPS-32 assembly language programs

= Website: http://www.cs.wisc.edu/~larus/spim.html

s CPU Design and Simulation Tool
< Logisim
= Educational tool for designing and simulating CPUs

= Website: http://ozark.hendrix.edu/~burch/logisim/

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 6

http://courses.missouristate.edu/KenVollmar/MARS/
http://www.cs.wisc.edu/~larus/spim.html
http://ozark.hendrix.edu/~burch/logisim/

Course Learning Outcomes

¢ Towards the end of this course, you should be able to ...
<> Describe the instruction set architecture of a processor
< Analyze, write, and test assembly language programs
<> Describe organization/operation of integer & floating-point units
< Design the datapath and control of a single-cycle CPU
< Design the datapath/control of a pipelined CPU & handle hazards
<> Describe the organization/operation of memory and caches

< Analyze the performance of processors and caches

*+ Required Background

< Ability to program confidently in Java or C

< Ability to design a combinational and sequential circuit

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 7

Next . ..

+» Welcome to COE 301

*» Assembly-, Machine-, and High-Level Languages
¢ Classes of Computers

* Programmer's View of a Computer System

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 8

Some Important Questions to Ask

“* What is Assembly Language?

“* What is Machine Language?

** How is Assembly related to a high-level language®?
“* Why Learn Assembly Language?

“ What is an Assembler, Linker, and Debugger?

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 9

Introduction

A Hierarchy of Languages

Machine independent
Machine specific

Application Programs

High-Level

Languages

Assembly

Language

Machine Language

Hardware

COE 301 — Computer Organization - KFUPM

High-Level Language

Low-Level Language

© Muhamed Mudawar — slide 10

Assembly and Machine Language

* Machine language
<> Native to a processor: executed directly by hardware
<> Instructions consist of binary code: 1s and Os

*» Assembly language
< Slightly higher-level language

<> Readability of instructions is better than machine language

< One-to-one correspondence with machine language instructions
*» Assemblers translate assembly to machine code

s Compilers translate high-level programs to machine code
<> Either directly, or

< Indirectly via an assembler

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 11

Compiler and Assembler

High-level languages

A

Assembly language

Machine language

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 12

Translating Languages

Program (C Language):

swap (int v[], int k) {
int temp;
temp = v[k];
vik] = v[k+1l];
v[k+1l] = temp;

{} Compiler

sll $2,$5, 2
add $2,$4,$2
lw $15,0($2)
lw $16,4($2)
sw $16,0(52)
sw $15,4($2)
jr $31

MIPS Assembly Language:

Introduction

Assembler

—

A statement in a high-level
language is translated
typically into several
machine-level instructions

MIPS Machine Language:

00051080
00821020
8C620000
8CF20004
ACF20000
AC620004
O3E00008

COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 13

Advantages of High-Level Languages

*+ Program development is faster

< High-level statements: fewer instructions to code

*+ Program maintenance Is easier

< For the same above reasons

*+ Programs are portable

< Contain few machine-dependent details

= Can be used with little or no modifications on different machines
< Compiler translates to the target machine language

<> However, Assembly language programs are not portable

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 14

Why Learn Assembly Language?

*+ Many reasons:

<> Accessibility to system hardware
< Space and time efficiency
< Writing a compiler for a high-level language
¢ Accessiblility to system hardware
< Assembly Language is useful for implementing system software
< Also useful for small embedded system applications
*» Programming in Assembly Language is harder

< Requires deep understanding of the processor architecture
< However, it is very rewarding to system software designers

<> Adds a new perspective on how programs run on real processors

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 15

Assembly Language Programming Tools

s Editor
< Allows you to create and edit assembly language source files

s Assembler
< Converts assembly language programs into object files
<> Obiject files contain the machine instructions
¢ Linker
< Combines object files created by the assembler with link libraries
< Produces a single executable program
*» Debugger
<> Allows you to trace the execution of a program

<> Allows you to view machine instructions, memory, and registers

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 16

Assemble and Link Process

Object
Assembler Eile
Object . Executable
Assembler File Linker File
Object _ L|nl§
Assembler File Libraries

“+ A program may consist of multiple source files
*» Assembler translates each source file into an object file
¢ Linker links all object files together and with link libraries

¢ The result executable file can run directly on the processor

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 17

MARS Assembler and Simulator Tool

. C:\Users\mudawar\Ducuments\+CO! 301\ Tools\MARS\Fibonacclasm - MARS 4.5

File Edit Run Settings Tools

Help

=

> ®

=

&

& (2

Bll= &

Run speed at max (no interaction)

[1,

(S)

- 1 -
Edit |/Execute | Fl/ Registers r{‘.oproc1 r{:oprocl)
Fibonacci.asm | MName MNumber Value
~) . R - T] . . . =1l 2 o o
1 # Compute first twelwve Fibonacci numbers and put 1n array, then print = z:im 1 0
2 .data evo 2 a
3 fibs: .word 0 : 12 # "array" of 12 words to contain fTib values ieva 3 i
4 size: .word 12 # size of "array” i[=a0 i B
b 1 5 1]
5 . text 153 2 :
5] Ta $t0, fibs # Jload address of arra ileas 7 a
7 la $t5, size # load address of size variable =||| i[lsxa B 0
8 Tw $t5, 0CELESD # load array size i st El o
9 11 ftz, 1 # 1 is first and second Fib. number 5? zt: is g
S|ET
10 add.d $fo, $fz, $f4 sea 12 0
11 sw $t2, 0CEtOD # F[0J] =1 ‘|5t 13 0
12 sw $t2, 4CEtl) # Fri1] = Ffoj] = 1 :||FE8 14 g
: —~ - 9 _ LI I - _ il = 7 15 a
13 addi $t1, $t5, -2 # Counter for loop, will execute (size-2) times : z:o T 5
14 Joop: lw $t3, 0CEtOD # Cet wvalue from array F[n] [sa1 17 0
15 Tw Ftd, 4CFt0D # Get wvalue Trom array Fln+1] ilea2 18 0
16 add $tz2, $t3, t4 # $t2 = F[n] + Fln+1] 6 EEE 13 a
- e an — o o ileaa 20 0
17 sw $t2, 8CEtOd # Store F(n+2] = F[n] + F[n+1] in array gg :5 21 5
18 addi $t0, $to, 4 # increment address of Fib. number source Isae 22 o
19 addi $t1, $t1, -1 # decrement loop counter s=7 23 a
20 bgtz $tl, Toop # repeat 1f not finished vet g s 24 o
21 la $a0, fibs # first argument for print (array) zzi ;2 g
22 add $al, $zero, $t5 # second argument for print (size) feer 27 1
23 jal print # call print routine. o B 28 268468224
24 11 $v0, 10 # system call for exit i|E=m 23 2147479548
- , —|| i[5 30 0
25 syscall # we are out of here. B | [zrg a1 q
[4] . | L] e 4194304
Line: 1 Column: 1 |v| Show Line Numbers i 0
R T U T U U U O e TOTTT 1o 0
Mars Messages rRuner |
Clear
Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 18

MARS Assembler and Simulator Tool

*» Simulates the execution of a MIPS program

<> No direct execution on the underlying Intel processor
¢ Editor with color-coded assembly syntax
< Allows you to create and edit assembly language source files
“ Assembler
< Converts MIPS assembly language programs into object files
¢ Console and file input/output using system calls
*» Debugger
<> Allows you to trace the execution of a program and set breakpoints

< Allows you to view machine instructions, edit registers and memory

*» Easy to use and learn assembly language programming

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 19

Next . ..

+» Welcome to COE 301

* Assembly-, Machine-, and High-Level Languages
*» Classes of Computers

* Programmer's View of a Computer System

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 20

Classes of Computers

*» Personal computers

< General purpose, variety of software, subject to cost/performance
s Server computers

< Network based, high capacity, performance, and reliability

< Range from small servers to building sized
% Supercomputers

<> High-end scientific and engineering calculations

< Highest capability but only a small fraction of the computer market

* Embedded computers

<> Hidden as components of systems

< Stringent power/performance/cost constraints

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 21

Classes of Computers (cont'd)

*+ Personal Mobile Device (PMD)
<> Battery operated
< Connects to the Internet
< Low price: hundreds of dollars

< Smart phones, tablets, electronic glasses
¢ Cloud Computing
<> Warehouse Scale Computers (WSC)
< Software, Platform, and Infrastructure as a Service

<> However, security concerns of storing "sensitive data" in "the cloud"

< Examples: Amazon and Google

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 22

Components of a Computer System

s* Processor Computer
< Datapath and Control Memory
< Memory & Storage | 10 Devices
< Main Memory [Control } 1 Input
{ Disk Storage Processor LBJ | Output |
¢ Input / Output devices [Datapath] > - Disk
< User-interface devices f
< Network adapters Network

* For communicating with other computers

¢ Bus: Interconnects processor to memory and I/O

*» Essentially the same components for all kinds of computers

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 23

Fetch - Execute Cycle

A 4

Fetch instruction

Instruction Fetch : :
Compute address of next instruction

v

Generate control signals for instruction
Read operands from registers

Instruction Decode

\ 4

Execute Compute result value

\ 4

Memory Access Read or write memory

\ 4

Infinite Cycle implemented in Hardware

Writeback Result Writeback result in aregister

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 24

Clock

Operation of digital hardware is governed by a clock

<«— Clock period —»

Clock (cycles) [
Data transfer
and computation < >< >< >
Update state <:> <:> <:>

Clock period: duration of a clock cycle

= €.9., 250 ps =0.25 ns = 0.25 x10° sec

Clock frequency (rate) = 1 / clock period

= €.9.,1/0.25 x10° sec = 4.0x10° Hz = 4.0 GHz

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 25

Memory and Storage Devices

*» Volatile Memory Devices

< RAM = Random Access Memory

< DRAM = Dynamic RAM

= Dense but must be refreshed (typical choice for main memory)

< SRAM: Static RAM

» Faster but less dense than DRAM (typical choice for cache memory)

*+ Non-Volatile Storage Devices

<> Magnetic Disk

< Flash Memory (Solid State Disk)

<% Optical Disk (CDROM, DVD)

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 26

Units for Storage and Memory

Decimal Binary
term Abbreviation Value term Abbreviation Value % Larger

kilobyte kibibyte

megabyte MB 106 mebibyte MiB 22‘O 5%
gigabyte GB 10° gibibyte GiB 230 7%
terabyte B8 1072 tebibyte TiB o 10%
petabyte PB 10 pebibyte PiB e 13%
exabyte EB 10°% exbibyte EiB i 15%
zettabyte ZB 10% zebibyte ZiB 27 18%
yottabyte YB 102 yobibyte YiB 280 21%

\ J\. J
Y Y
Size of disk storage Size of memory
Value = 10" (base 10) Value = 2" (base 2)

*» The binary terms are used to avoid the confusion with the
commonly used decimal terms. The size of memory is 2"
because the memory address is an n-bit binary number.

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 27

Next . ..

+» Welcome to COE 301

* Assembly-, Machine-, and High-Level Languages
¢ Classes of Computers

“* Programmer's View of a Computer System

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 28

Programmer’s View of a Computer System

Software <

Application Programs
High-Level Language

Assembly Language

Interface
SW & HW

Hardware <

Operating System

Instruction Set
Architecture

Microarchitecture

Introduction

Physical Design

Level 5

Level 4

Level 3

Level 2

Level 1

Level O

COE 301 — Computer Organization - KFUPM

Increased level
of abstraction

A

v

Each level hides
the detalls of the
level below it

© Muhamed Mudawar — slide 29

Programmer's View (cont'd)

s Application Programs (Level 5)
< Written in high-level programming languages
< Such as Java, C++, Pascal, Visual Basic . . .

<> Programs compile into assembly language level (Level 4)

% Assembly Language (Level 4)
< Instruction mnemonics (symbols) are used
<> Have one-to-one correspondence to machine language
< Calls functions written at the operating system level (Level 3)

< Programs are translated into machine language (Level 2)
¢ Operating System (Level 3)
<> Provides services to level 4 and 5 programs

< Translated to run at the machine instruction level (Level 2)

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 30

Programmer's View (cont'd)

¢ Instruction Set Architecture (Level 2)

< Interface between software and hardware

< Specifies how a processor functions

<> Machine instructions, registers, and memory are exposed

<> Machine language is executed by Level 1 (microarchitecture)
¢ Microarchitecture (Level 1)

< Controls the execution of machine instructions (Level 2)

< Implemented by digital logic
*» Physical Design (Level 0)

< Implements the microarchitecture at the transistor-level

<> Physical layout of circuits on a chip

Introduction COE 301 — Computer Organization - KFUPM © Muhamed Mudawar — slide 31

