
Prepared by Dr. Muhamed Mudawar Page 1 of 9

ICS 233 - Computer Architecture

& Assembly Language

Final Exam – Fall 2007

Wednesday, January 23, 2007

7:30 am – 10:00 am

Computer Engineering Department

College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals

Student Name: SOLUTION

Student ID:

Q1 / 10 Q2 / 20

Q3 / 15 Q4 / 15

Q5 / 20 Q6 / 25

Total / 105

Important Reminder on Academic Honesty

Using unauthorized information or notes on an exam, peeking at others work, or
altering graded exams to claim more credit are severe violations of academic
honesty. Detected cases will receive a failing grade in the course.

 Page 2 of 9

Q1. (10 pts) Consider the following MIPS code sequence:

lw $5, 100($2)

add $2, $3, $5

sub $5, $5, $2

sw $5, 100($2)

a) (5 pts) Identify all the RAW dependencies between pairs of instructions.

lw $5, 100($2) and add $2, $3, $5

lw $5, 100($2) and sub $5, $5, $2

add $2, $3, $5 and sub $5, $5, $2

add $2, $3, $5 and sw $5, 100($2)

sub $5, $5, $2 and sw $5, 100($2)

b) (3 pts) Identify all the WAR dependencies between pairs of instructions

lw $5, 100($2) and add $2, $3, $5

add $2, $3, $5 and sub $5, $5, $2

c) (2 pts) Identify all the WAW dependencies between pairs of instructions

lw $5, 100($2) and sub $5, $5, $2

 Page 3 of 9

 Q2. (20 pts) We have a program core consisting of five conditional branches. The program
core will be executed millions of times. Below are the outcomes of each branch for one
execution of the program core (T for taken and N for not taken).

 Branch 1: T-T-T-T-T
 Branch 2: N-N-N
 Branch 3: T-N-T-N-T-N-T-N
 Branch 4: T-T-T-N-N-N
 Branch 5: T-T-T-N-T-T-T-N-T

 Assume that the behavior of each branch remains the same for each program core

execution. For dynamic branch prediction schemes, assume that each branch has its own
prediction buffer and each buffer is initialized to the same state before each execution.
List the predictions and the accuracies for each of the following branch prediction
schemes:

a) Always taken
b) Always not taken
c) 1-bit predictor, initialized to predict taken
d) 2-bit predictor, initialized to weakly predict taken

a) Branch 1: prediction = T-T-T-T-T, correct = 5, wrong = 0

Branch 2: prediction = T-T-T, correct = 0, wrong = 3
Branch 3: prediction = T-T-T-T-T-T-T-T, correct = 4, wrong = 4
Branch 4: prediction = T-T-T-T-T-T, correct = 3, wrong = 3
Branch 5: prediction = T-T-T-T-T-T-T-T-T, correct = 7, wrong = 2

Total correct = 19, Total wrong = 12, Accuracy = 19/31 = 61.3%

b) Branch 1: prediction = N-N-N-N-N, correct = 0, wrong = 5
Branch 2: prediction = N-N-N, correct = 3, wrong = 0
Branch 3: prediction = N-N-N-N-N-N-N-N, correct = 4, wrong = 4
Branch 4: prediction = N-N-N-N-N-N, correct = 3, wrong = 3
Branch 5: prediction = N-N-N-N-N-N-N-N-N, correct = 2, wrong = 7

Total correct = 12, Total wrong = 19, Accuracy = 12/31 = 38.7%

c) Branch 1: prediction = T-T-T-T-T, correct = 5, wrong = 0
Branch 2: prediction = T-N-N, correct = 2, wrong = 1
Branch 3: prediction = T-T-N-T-N-T-N-T, correct = 1, wrong = 7
Branch 4: prediction = T-T-T-T-N-N, correct = 5, wrong = 1
Branch 5: prediction = T-T-T-T-N-T-T-T-N, correct = 5, wrong = 4

Total correct = 18, Total wrong = 13, Accuracy = 18/31 = 58.1%

d) Branch 1: prediction = T-T-T-T-T, correct = 5, wrong = 0

Branch 2: prediction = T-N-N, correct = 2, wrong = 1
Branch 3: prediction = T-T-T-T-T-T-T-T, correct = 4, wrong = 4
Branch 4: prediction = T-T-T-T-T-N, correct = 4, wrong = 2
Branch 5: prediction = T-T-T-T-T-T-T-T-T, correct = 7, wrong = 2

Total correct = 22, Total wrong = 9, Accuracy = 22/31 = 71%

 Page 4 of 9

Q3. (15 pts) Consider a direct-mapped cache with 128 blocks. The block size is 32 bytes.

a) (3 pts) Find the number of tag bits, index bits, and offset bits in a 32-bit address.

Offset bits = 5

Index bits = 7

Tag bits = 32 – 12 = 20 bits

b) (4 pts) Find the number of bits required to store all the valid and tag bits in the cache.

 Total number of tag and valid bits = 128 * (20 + 1) = 2688 bits

c) (8 pts) Given the following sequence of address references in decimal:

20000, 20004, 20008, 20016, 24108, 24112, 24116, 24120

Starting with an empty cache, show the index and tag for each address and indicate
whether a hit or a miss.

Address = Hex Offset (5 bits) Index (7 bits) Tag Hit or Miss

20000 = 0x4E20 0x00 = 0 0x71 = 113 4 Miss (initially empty)

20004 = 0x4E24 0x04 = 4 0x71 = 113 4 Hit

20008 = 0x4E28 0x08 = 8 0x71 = 113 4 Hit

20016 = 0x4E30 0x10 = 16 0x71 = 113 4 Hit

24108 = 0x5E2C 0x0C = 12 0x71 = 113 5 Miss (different tag)

24112 = 0x5E30 0x10 = 16 0x71 = 113 5 Hit

24116 = 0x5E34 0x14 = 20 0x71 = 113 5 Hit

24120 = 0x5E38 0x18 = 24 0x71 = 113 5 Hit

 Page 5 of 9

Q4. (15 pts) A processor runs at 2 GHz and has a CPI of 1.2 without including the stall
cycles due to cache misses. Load and store instructions count 30% of all instructions.

 The processor has an I-cache and a D-cache. The hit time is 1 clock cycle. The I-cache
has a 2% miss rate. The D-cache has a 5% miss rate on load and store instructions.

 The miss penalty is 50 ns, which is the time to access and transfer a cache block between
main memory and the processor.

a) (3 pts) What is the average memory access time for instruction access in clock cycles?

 Miss penalty = 50 ns * 2 GHz = 100 clock cycles

 AMAT = hit time + miss rate * miss penalty = 1 + 0.02 * 100 = 3 clock cycles

b) (3 pts) What is the average memory access time for data access in clock cycles?

 AMAT = 1 + 0.05 * 100 = 6 clock cycles

c) (4 pts) What is the number of stall cycles per instruction and the overall CPI?

Stall cycles per instruction = 1 * 0.02 * 100 + 0.3 * 0.05 * 100 = 3.5 cycles

Overall CPI = 1.2 + 3.5 = 4.7 cycles per instruction

d) (5 pts) You are considering replacing the 2 GHz CPU with one that runs at 4 GHz, but is
otherwise identical. How much faster does the new processor run? Assume that hit time
in the I-cache and the D-cache is 1 clock cycle in the new processor, and the time to
access and transfer a cache block between main memory and the processor is still 50 ns.

 For the new processor running at 4 GHz:

 Miss penalty = 50 ns * 4 GHz = 200 clock cycles

 Stall cycles per instruction:

 (1 * 0.02 + 0.3 * 0.05) * 200 = 7 cycles

 Overall CPI = 1.2 + 7 = 8.2 cycles per instruction

 Speedup = (CPIc / CPId) * (Clock Rated / Clock Ratec) = (4.7 / 8.2) * (4/2) = 1.146

 Page 6 of 9

Q5. (20 pts) Consider the following idea: we want to modify all load and store instructions in the instruction set such that the offset is always 0. The load
and store instructions can be of the R-type and there is NO need for the ALU to compute the memory address. This means that all load and store
instructions will have the following format, where Rs is the register that contains the memory address.

 LW Rt, (Rs) # No immediate constant used
 SW Rt, (Rs) # No immediate constant used

a) (10 pts) Draw the modified single-cycle datapath. Identify the changes that you are making to the single-cycle datapath.

m
u
x

0

1

m
u
x

0

1

Data
Memory

m
u
x

0

1

Imm16
Extend

Rs

Rt

Instruction
Memory

Inc

PC

00

m
u
x

0

1

Address

Instruction

A
d
d

A
L
U

ALU result

zero

ID = Decode and
Register Fetch

EX = Execute and
Memory Access

IF = Instruction
Fetch

WB = Write
Back

Rd

Registers

B
u

sW

R
w

Address

Data in

 Page 7 of 9

b) (4 pts) Assume that the operation delays for the major components are as follows:

 Instruction Memory: 200 ps

 Data Memory: 200 ps

 ALU: 150 ps

 Register file (read or write): 100 ps

 Ignore the delays in the multiplexers, control, PC access, extension logic, and wires.

 What is the cycle time for the single-cycle datapath BEFORE and AFTER making the
modification?

 BEFORE making the modification:

 Cycle time = 200 + 100 + 150 + 200 + 100 = 750 ps

 AFTER making the modification:

 Cycle time = 200 + 100 + max(150, 200) + 100 = 200 + 100 + 200 + 100 = 600 ps

c) (6 pts) Because we have removed the offset in all load and store instructions, all original
load-store instructions with non-zero offsets would now require an additional ADDI
instruction to compute the address. This will increase the instruction count.

 Suppose we have a program in which 20% of the instructions are load-store instructions.
Assume further that only 10% of the original load-store instructions have a non-zero
offset and would require an additional ADDI instruction to compute the address.

 What is the percent increase in the instruction count when additional ADDI instructions
are used?

 Percent increase in the instruction count = 20% * 10% = 2% (for additional ADDI)

 Which design is better, the original one that allowed non-zero offsets, or the modified
one with zero offsets, and why?

 Execution Time = Instruction Count * CPI * Clock Cycle

 CPI = 1 in both cases because this is single-cycle design

 Original Design Execution Time = I-Count * 1 * 750 ps = 750 I-Count

 Modified Design Execution Time = 1.02 I-Count * 1 * 600 ps = 612 I-Count

 Modified Design is better because it takes less time to execute program

 What is the speedup factor?

Speedup factor = 750 / (600*1.02) = 1.225

 Page 8 of 9

Q6. (25 pts) Use the following MIPS code fragment:

I1: ADDI $3, $0, 100 # $3 = 100
I2: ADD $4, $0, $0 # $4 = 0
Loop:
I3: LW $5, 0($1) # $5 = MEM[$1]
I4: ADD $4, $4, $5 # $4 = $4 + $5
I5: LW $6, 0($2) # $6 = MEM[$2]
I6: SUB $4, $4, $6 # $4 = $4 – $6
I7: ADDI $1, $1, 4 # $1 = $1 + 4
I8: ADDI $2, $2, 4 # $2 = $2 + 4
I9: ADDI $3, $3, -1 # $3 = $3 – 1
I10: BNE $3, $0, Loop if ($3 != 0) goto Loop

a) (10 pts) Show the timing of one loop iteration on the 5-stage MIPS pipeline without forwarding hardware. Complete the timing table, showing
all the stall cycles. Assume that the branch will stall the pipeline for 1 clock cycle only.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

I1: ADDI IF ID EX M WB

I2: ADD IF ID EX M WB

I3: LW IF ID EX M WB

I4: ADD IF stall stall ID EX M WB

I5: LW IF ID EX M WB

I6: SUB IF stall stall ID EX M WB

I7: ADDI IF ID EX M WB

I8: ADDI IF ID EX M WB

I9: ADDI IF ID EX M WB

I10: BNE IF stall stall ID

I3: LW IF IF ID EX M WB

I4: ADD IF stall stall ID EX M WB

 Time of one loop iteration = 15 cycles

2 stall cycles

2 stall cycles

2 stall cycles

1 delay cycle

 Page 9 of 9

b) (5 pts) According to the timing diagram of part (a), compute the number of clock cycles
and the average CPI to execute ALL the iterations of the above loop.

There are 100 iterations

 Each iteration requires 15 cycles =
8 cycles to start the 8 instructions in loop body + 7 stall cycles
There are 2 additional cycles to start the first 2 instructions before the loop.
Therefore, total cycles = 100 * 15 + 2 (can be ignored) = 1502 cycles ≈ 1500 cycles

 Total instruction executed = 2 + 8 * 100 = 802 instructions (counting first two)
 Average CPI = 1502 / 802 = 1.87
 If we ignore first two instructions and the time to terminate last iteration then
 Average CPI = 1500/800 = 1.88 (almost same answer)

c) (5 pts) Reorder the instructions of the above loop to fill the load-delay and the branch-
delay slots, without changing the computation. Write the code of the modified loop.

 ADDI $3, $0, 100 # $3 = 100
 ADD $4, $0, $0 # $4 = 0
 Loop:
 LW $5, 0($1) # $5 = MEM[$1]
 LW $6, 0($2) # Moved earlier to avoid load-delay
 ADDI $3, $3, -1 # Moved earlier
 ADD $4, $4, $5 # $4 = $4 + $5
 ADDI $1, $1, 4 # $1 = $1 + 4
 ADDI $2, $2, 4 # $2 = $2 + 4
 BNE $3, $0, Loop # if ($3 != 0) goto Loop
 SUB $4, $4, $6 # Fills branch delay slot

 Other re-orderings are possible as long as we avoid the load

delay and we fill branch delay slot with an independent
instruction. We should be able to reduce the stall cycles to 0.

d) (5 pts) Compute the number of cycles and the average CPI to execute ALL the iteration
of the modified loop. What is the speedup factor?

There are 100 iterations

 Each iteration requires 8 cycles =
8 cycles to start the 8 instructions in loop body + 0 stall cycles
There are 2 additional cycles to start the first 2 instructions before the loop
+ 4 additional cycles to terminate the ADDI instruction in the last iteration.
Therefore, total cycles = 100 * 8 + 6 (can be ignored) = 806 cycles ≈ 800 cycles

 Total instruction executed = 2 + 8 * 100 = 802 instructions (counting first two)
 Average CPI = 806 / 802 = 1.00
 If we ignore first two instructions and the time to terminate last iteration then
 Average CPI = 800/800 = 1.00 (almost same answer)
 Speedup Factor = CPIpart-b/CPIpart-d = 1.88/1.00 = 1.88

