COE 301 — Computer Organization
Term 181 — Fall 2018

Project: Pipelined Processor Design

Objectives:
» Designing a Pipelined 32-bit processor with 16Hstructions
» Using the Logisim simulator to model and test thecpssor
* Teamwork

Instruction Set Architecture

In this project, you will design a 32-bit RISC pessor with eight 32-bit general-purpose
registers: RO through R7. RO is a normal regi$t€T hardwired to zero. The program counter
PC is a special-purpose 20-bit register. All instians are only 16 bits. There are four
instruction formats, R-type, I-type, B-type and/ge as shown below:

R-type format
5-bit opcode (Op), 3-bit register numbeask{, andd), and 2-bit function field

op’ a b® d* 2

I-type format
5-bit opcode (Op), 3-bit register numbeasafidb), and 5-bit Immediate

op’ a b® Imm5

B-type format
5-bit opcode (Op), 3-bit register numtzgrand 8-bit Immediate

op a Imm8

J-type format
5-bit opcode (Op) and11-bit Immediate

op’ Imm11

Register Use

Registera can be either the first source register or destinaegister. It can be read and written.
Ra is the value of registaa. For R-type, registea is always the first source register. However
for the I-type and B-type, registarcan be the first source or destination register.

Registerb is the second source register number, which isydwead and never writteRb is
the value of source register

Registerd is the destination register number for the R-tgpdy. It is always written and never
read.Rd is the value written into destination registier

1

Instruction Encoding

Eight R-type, twelve I-type, ten B-type, and twoype instructions are defined in the following
table. The instructions, their meaning, and enapdire shown below:

Instruction| Meaning Encoding

AND Rd =Ra &Rb Op=0 a b di f30
OR Rd=Ra|Rb Op =40 a b d ffl
XOR Rd=Ra”Rb Op=0 a b d f=x2
NOR Rd = ~(Ra | Rb) Op =(a b d ff3
ADD Rd=Ra+Rb Op=1 a b d f=0
SUB Rd =Ra-Rb Op=1 a b d ffl
SLT Rd = Ra < Rb (Signed) Op=1 3 b d f=2
SEQ Rd = (Ra == Rb) Op=1 a b dg fg3
ANDI Ra = signed(Immb5) & Rb Op=14 a b Imm5
ORI Ra = signed(Imm5) | Rb Op=5b a 0] Imm5%
XORI Ra = signed(Imm5) " Rb Op=6 a I ImmS3
NORI Ra = ~(signed(Imm5) | Rb) Op=V) a b Imm5%
ADDI Ra = signed(Imm5) + Rb Op=8 a b Imm5
SUBI Ra = signed(Imm5) — Rb Op=9 a 0] Imm5%
SLTI Ra = signed(Imm5) < Rb (Signed) Op =10 a b mmb
SEQI Ra = (signed(Immb5) == Rb) Op=11 a D Immb
SLL Ra = Rb << unsigned(Immb5) Op=12 a b Imm5%
SRL Ra = Rb >> unsigned(Immb5) Op=13 a o Immb
LW Ra € MEM[signed(Imm5) + Rb] Op=16 a b Imm5
SW MEM[signed(Imm5) + Rb# Ra Op=17 a b Imm5
BEQZ Branch if (Ra == 0) Op=20 a Imm8
BNEZ Branch if (Ra != 0) Op=21 a Imm8

BLTZ Branch if (Ra < 0) Op=22 a Imm8

BGEZ Branch if (Ra >= 0) Op =238 a Imm8

BGTZ Branch if (Ra > 0) Op =24 a Imm8

BLEZ Branch if (Ra <= 0) Op=25% a Imm8

JR PC = Ra + signed(Imm8 << 1) Op = P26 A Imm8
JALR R7 = PC+2; PC = Ra + signed(Imm8<<l) Op =|27 a Imm8

SET Ra = signed(Imm8) Op =28 a Imm8
SSET Ra = {Ra[23:0], Imm8} Op=29 a Imm38

J PC = PC + signed(Imm11<<1) Op =30 Imm11

JAL R7 = PC + 2; PC=PC+signed(Imml1l<<il) Op =31 rhm

Instruction Description
Opcodes 0 and 1 are used for R-type ALU instrustig@pcodes 2 and 3 are not used)

Opcodes 4 through 13 are used for I-type ALU irdtams. Registea is the destination register.
The 5-bit immediate constant replaces the first Abjperand, not the second one. It is always
sign-extended for all I-type instructiorigb is the second ALU operand.

The I-type ALU instructions (ANDI through SEQI) havidentical functionality as their
corresponding R-type instructions (AND through SE€Xcept that the first ALU operand is a
signed immediate (Imm5 with range -16 to +15), #eddestination register is Ra (not Rd).

Programming Notes:

R1 = R2 — 1 is translated into ADDI R1, -1, R2 (RR1, Rb = R2, and Imm5 = -1).
R1 =1 - R2 s translated into SUBI R1, 1, R2 (RR% Rb = R2, and Imm5 = 1).
R1 = -R2 is translated into SUBI, R1, 0, R2.

R1 = R2 > 5 s translated into SLTI R1, 5, R2 (R% = R2).

R1 =R2>5is equivalent to SLTI R1, 4, R2 (R1 = 4 < R2).

There are only two shift instructions: SLL and SRith opcodes 12 and 13, respectively, with
unsigned 5-bit immediate (shift amount) with valOe® 31.

Opcodes 16 and 17 define the load word (LW) andesteord (SW) instructions. These two
instructions address 32-bit words in memory. Disphaent addressing is used. The effective
memory address = sign_extend(Imm5) + Rb. Regatsra destination register for LW, but a
source for SW. Loading/storing a byte or half ward not defined to simplify the project.

Opcodes 20 through 25 define six branch instrusti®egister is source register for all branch
instructions. The 32-bit valuBa is read and compared against zero. PC-relativeeasithg is
used to define the target of a branch instructibthe branch is taken, the 8-bit immediate is
sign-extended and added to PC as follows:

If (branch is taken) PC = PC + sign_extend(Imm8<e&l&g PC = PC + 2.

The PC register stores the address of a 16-bituictstn in memory. The address is always
multiple of 2 (least-significant bit of PC regisisralways 0).

The JR (Jump-Register) instruction does a registirect jump, where Imma8 is left-shifted 1
bit and sign-extended: PC = Ra + sign_extend(Imm$<&he JALR (Jump-And-Link-Register)
instruction saves the return address (PC+2) in R7.

The SET instruction (opcode 28) sets destinatigister a with an 8-bit signed constant. The
immediate constant is sign-extended to 32 bitsreefariting registera. The SSET instruction
(opcode 29) reads and writes regidett shifts the value of registex left 8 bits and sets the
lower 8 bits: Ra = {Ra[23:0], Imm8}, where {} mearncatenation. The SET and SSET
instructions can be used together to form any 82dmstant. For example, to initialize register
R1 with constant 0x12345678, do the following:

SET R1, 0x12 (first byte)
SSET R1, 0x34 (second byte)
SSET R1, 0x56 (third byte)
SSET R1, 0x78 (fourth byte)

Opcodes 30 and 31 define the jump (J) and jumphakd¢(JAL) instructions. PC-relative
addressing is used to compute the jump target asldRC = PC + sign_extend(Imm11l<<1). In
addition, the JAL instruction writes the return esls (PC + 2) in register R7.

3

Although the instruction set is reduced, it isl stdh enough to write useful programs.

Memory

Although the architecture is 32 bits, the size é instruction and data memories will be
restricted. This is because thagisim tool supports only small size memories.

Your processor will have separate instruction aathdnemories. The PC register should be
restricted to 20 bits. The instruction memory ctores 2 instructions, where each instruction
occupies two bytes.

The data memory will be also restricted t§ Bytes. The data memory can be maeted
addressable, since only the LW and SW instructions address orgmWords should be always
aligned in memory. The least-significant two bifstlee data address must be zeros, or simply
ignored in the hardware implementation.

Addressing Modes

PC-relative addressing mode is used for all bramzhjump instructions.

For taken branches: PC = PC + sign_extend(Imm8<<1)

For jumps: PC = PC + sign_extend(Imm11<<1)

For JR and JALR: PC = Rs + sign_extend(Imm8<<1)

To save the return address: R7 = PC + 2 (addrassxbfinstruction)

For LW and SW, displacement addressing is usedreésdd= Rs + sign_extend(Immb5)

Register File

Implement a Register file containing Eight 32-lgigisters RO to R7 with two read ports and one
write port. RO is a normal register that can belraad written (NOT hardwired to zero).

Arithmetic and Logic Unit (ALU)

Implement a 32-bit ALU to perform all the requiregerations:

AND, OR, XOR, NOR, ADD, SUB, SLT, SEQ, SLL, SRL

In addition, you should have special support fer 8T and SSET instruction.

Program Execution

The program will be loaded and will start at addrésin the instruction memory. The data
segment will be loaded and will start also at agsli@ in the data memory. You can also have a
stack segment to support procedures. The stackesggran occupy the upper part of the data
memory and can grow backwards towards lower menaoigresses. The stack segment is
implemented completely in software. You can dedicagister R6 as the stack pointer. To
terminate the execution of a program, the lastriietibn in the program can jump to itself
indefinitely (because there is no underlying opagasystem to terminate the program).

Build a Single-Cycle Processor

Start by building the datapath and control of ajlgircycle processor and ensure its correctness.
You should have sufficient test cases that endqweeorrect execution of ALL instructions in the
instruction set. You should also write test cases show the correct execution of complete
programs. To verify the correctness of your dessfpow the values of all registers (RO to R7) at
the top-level of your design. Provide output pins ffegisters RO through R7, and make their
values visible at the top level of your designito@ify testing and verification.

Build a Pipelined Processor

Once you have succeeded in building a single-gyaeessor and verified its correctness, design
and implement a pipelined version of your desigak®la copy of your single-cycle design, then
convert it and implement a pipelined datapath asdcontrol logic. Add pipeline registers
between stages. Design the control logic to dedetd dependencies among instructions and
implement the forwarding logic. You should handtegerly the control hazards of the branch
and jump instructions. Also, stall the pipelineeafa LW instruction, if it is followed by a
dependent instruction.

Design Alternatives

When designing the datapath and control unit, eephiternative design options and justify why
a given design alternative is chosen. For examplen designing the control unit consider
implementing it using a decoder and a set of OR/Nfais, versus using a ROM to store the
control signals, versus optimizing the equatioeath control signal separately. When designing
the ALU, consider alternative designs and justityyva design alternative is chosen. The same
should be applied for all design decisions in y@RU, such as handling control and data
hazards in the pipeline.

Testing and Verification
To demonstrate that your CPU is working, you shaddhe following:

1. Write a sequence of instructions to verify the eotness of ALL instructions. Use SET and
SSET to initialize registers or load their valuesi memory. Demonstrate the correctness of
all ALU R-type and I-type instructions. Demonstratee correctness of LW and SW
instructions. Similarly, you should demonstrate ttwrectness of all branch and jump
instructions.

2. Write a simple program that counts the number ©frila 32-bit register.

3. Write a sort procedure of your choice (selectior, dmbble sort, etc.). Write a main function
to call the sort procedure and sort an array @&gets in the data memory.

Document all your test programs and files and idelthem in the report document.

Project Report
The report document must contain sections highhgththe following:
1 — Design and Implementation

» Highlight the design choices you made and why, ang notable features that your
processor has.

* Provide drawings of the various components ancteeall datapath.

* Provide a complete description of the control logid the control signals. Provide a
table giving the control signal values for eachringtion.

» Provide a complete description of the forwardingidpthe cases that were handled, and
the logic you have implemented to handle the cohtraards.

2 — Simulation and Testing
» Describe the test programs that you used to test gesign with sufficient comments
describing the programs, their input, and expectaiphut. List all the instructions that
were tested and work correctly. List all the instions that do not run properly.
» Describe all the cases that you handled involviaig dlependences between instructions,
data forwarding, and stalling the pipeline.
* Provide snapshots showing test programs and thgubresults.

3 — Teamwork

« Two or at most three students can form a grouptéMhe names of all the group
members on the project report title page.

 Group members are required to coordinate their wamkong themselves, so that
everyone is involved in design, implementation,idation, and testing.

« Show the work done by each group member using i cha

PROJECT DEADLINES

The single-cycle processor design should be com@dtduring week 12 of the
semester. It should be fully operational and will b evaluated by your lab
instructor in the LAB during week 12 of the semeste You should have
sufficient test cases ready to prove that your CP$ fully functional.

The pipelined processor design should be completetiiring week 14 of the
semester. It should be fully operational and demoniated in the LAB during
week 15 of the semester. You should have sufficietest cases ready to prove
that your pipelined CPU is fully functional.

Submit a hard copy of the project report document © your LAB instructor
during week 15 of the semester.

If your CPU is not fully operational then identify which instructions do not
work properly, or which hazards are not handled prgerly to avoid the loss of
many marks.

Submit a zip file containing the logisim design cruits, the test programs, and
the project report document on Blackboard during wesk 15 of the semester.

