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COE 301 – Computer Organization 

Term 181 – Fall 2018 
 

Project: Pipelined Processor Design 

Objectives: 
• Designing a Pipelined 32-bit processor with 16-bit instructions 
• Using the Logisim simulator to model and test the processor 
• Teamwork 

Instruction Set Architecture 
In this project, you will design a 32-bit RISC processor with eight 32-bit general-purpose 
registers: R0 through R7. R0 is a normal register, NOT hardwired to zero. The program counter 
PC is a special-purpose 20-bit register. All instructions are only 16 bits. There are four 
instruction formats, R-type, I-type, B-type and J-type as shown below: 

R-type format 

5-bit opcode (Op), 3-bit register numbers (a, b, and d), and 2-bit function field f  

Op5 a3 b3 d3 f2 

I-type format 

5-bit opcode (Op), 3-bit register numbers (a and b), and 5-bit Immediate 

Op5 a3 b3 Imm5 

B-type format 

5-bit opcode (Op), 3-bit register number a, and 8-bit Immediate 

Op5 a3 Imm8 

J-type format 

5-bit opcode (Op) and11-bit Immediate 

Op5 Imm11 

Register Use 

Register a can be either the first source register or destination register. It can be read and written. 
Ra is the value of register a. For R-type, register a is always the first source register. However 
for the I-type and B-type, register a can be the first source or destination register. 

Register b is the second source register number, which is always read and never written. Rb is 
the value of source register b. 

Register d is the destination register number for the R-type only. It is always written and never 
read. Rd is the value written into destination register d. 
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Instruction Encoding 

Eight R-type, twelve I-type, ten B-type, and two J-type instructions are defined in the following 
table. The instructions, their meaning, and encoding are shown below: 

Instruction Meaning Encoding 
AND Rd = Ra & Rb Op = 0 a b d f = 0 
OR Rd = Ra | Rb Op = 0 a b d f = 1 
XOR Rd = Ra ^ Rb Op = 0 a b d f = 2 
NOR Rd = ~(Ra | Rb) Op = 0 a b d f = 3 
ADD Rd = Ra + Rb Op = 1 a b d f = 0 
SUB Rd = Ra – Rb Op = 1 a b d f = 1 
SLT Rd = Ra < Rb (Signed) Op = 1 a b d f = 2 
SEQ Rd = (Ra == Rb) Op = 1 a b d f = 3 
       
ANDI Ra = signed(Imm5) & Rb Op = 4 a b Imm5 
ORI Ra = signed(Imm5)  | Rb Op = 5 a b Imm5 
XORI Ra = signed(Imm5)  ^ Rb Op = 6 a b Imm5 
NORI Ra = ~(signed(Imm5)  | Rb) Op = 7 a b Imm5 
ADDI Ra = signed(Imm5)  + Rb Op = 8 a b Imm5 
SUBI Ra = signed(Imm5)  – Rb Op = 9 a b Imm5 
SLTI Ra = signed(Imm5)  < Rb (Signed) Op = 10 a b Imm5 
SEQI Ra = (signed(Imm5)  == Rb) Op = 11 a b Imm5 
SLL Ra = Rb << unsigned(Imm5) Op = 12 a b Imm5 
SRL Ra = Rb >> unsigned(Imm5) Op = 13 a b Imm5 
      
LW Ra � MEM[signed(Imm5) + Rb] Op = 16 a b Imm5 
SW MEM[signed(Imm5) + Rb] � Ra Op = 17 a b Imm5 
      
BEQZ Branch if (Ra == 0) Op = 20 a Imm8 
BNEZ Branch if (Ra != 0) Op = 21 a Imm8 
BLTZ Branch if (Ra < 0) Op = 22 a Imm8 
BGEZ Branch if (Ra >= 0) Op = 23 a Imm8 
BGTZ Branch if (Ra > 0) Op = 24 a Imm8 
BLEZ Branch if (Ra <= 0) Op = 25 a Imm8 
JR PC = Ra + signed(Imm8 << 1) Op = 26 a Imm8 
JALR R7 = PC+2; PC = Ra + signed(Imm8<<1) Op = 27 a Imm8 
     
SET Ra = signed(Imm8) Op = 28 a Imm8 
SSET Ra = {Ra[23:0],  Imm8} Op = 29 a Imm8 
     
J PC = PC + signed(Imm11<<1) Op = 30 Imm11 
JAL R7 = PC + 2; PC=PC+signed(Imm11<<1) Op = 31 Imm11 
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Instruction Description 

Opcodes 0 and 1 are used for R-type ALU instructions. (Opcodes 2 and 3 are not used) 

Opcodes 4 through 13 are used for I-type ALU instructions. Register a is the destination register. 
The 5-bit immediate constant replaces the first ALU operand, not the second one. It is always 
sign-extended for all I-type instructions. Rb is the second ALU operand. 

The I-type ALU instructions (ANDI through SEQI) have identical functionality as their 
corresponding R-type instructions (AND through SEQ), except that the first ALU operand is a 
signed immediate (Imm5 with range -16 to +15), and the destination register is Ra (not Rd). 

Programming Notes: 

R1 = R2 – 1 is translated into ADDI R1, –1, R2 (Ra = R1, Rb = R2, and Imm5 = –1). 

R1 = 1 – R2 is translated into SUBI R1, 1, R2 (Ra = R1, Rb = R2, and Imm5 = 1). 

R1 = –R2 is translated into SUBI, R1, 0, R2. 

R1 = R2 > 5 is translated into SLTI R1, 5, R2 (R1 = 5 < R2). 

R1 = R2 ≥ 5 is equivalent to SLTI R1, 4, R2 (R1 = 4 < R2). 

There are only two shift instructions: SLL and SRL with opcodes 12 and 13, respectively, with 
unsigned 5-bit immediate (shift amount) with values 0 to 31. 

Opcodes 16 and 17 define the load word (LW) and store word (SW) instructions. These two 
instructions address 32-bit words in memory. Displacement addressing is used. The effective 
memory address = sign_extend(Imm5) + Rb. Register a is a destination register for LW, but a 
source for SW. Loading/storing a byte or half word are not defined to simplify the project. 

Opcodes 20 through 25 define six branch instructions. Register a is source register for all branch 
instructions. The 32-bit value Ra is read and compared against zero. PC-relative addressing is 
used to define the target of a branch instruction. If the branch is taken, the 8-bit immediate is 
sign-extended and added to PC as follows: 

If (branch is taken) PC = PC + sign_extend(Imm8<<1) else PC = PC + 2. 

The PC register stores the address of a 16-bit instruction in memory. The address is always 
multiple of 2 (least-significant bit of PC register is always 0).  

The JR (Jump-Register) instruction does a register-indirect jump, where Imm8 is left-shifted 1 
bit and sign-extended: PC = Ra + sign_extend(Imm8<<1). The JALR (Jump-And-Link-Register) 
instruction saves the return address (PC+2) in R7. 

The SET instruction (opcode 28) sets destination register a with an 8-bit signed constant. The 
immediate constant is sign-extended to 32 bits before writing register a. The SSET instruction 
(opcode 29) reads and writes register a. It shifts the value of register a left 8 bits and sets the 
lower 8 bits: Ra = {Ra[23:0], Imm8}, where {} means concatenation. The SET and SSET 
instructions can be used together to form any 32-bit constant. For example, to initialize register 
R1 with constant 0x12345678, do the following: 

SET R1, 0x12 (first byte) 
SSET R1, 0x34 (second byte) 
SSET R1, 0x56 (third byte) 
SSET R1, 0x78 (fourth byte) 

Opcodes 30 and 31 define the jump (J) and jump-and-link (JAL) instructions. PC-relative 
addressing is used to compute the jump target address: PC = PC + sign_extend(Imm11<<1). In 
addition, the JAL instruction writes the return address (PC + 2) in register R7. 
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Although the instruction set is reduced, it is still rich enough to write useful programs. 
 
Memory 

Although the architecture is 32 bits, the size of the instruction and data memories will be 
restricted. This is because the Logisim tool supports only small size memories.  

Your processor will have separate instruction and data memories. The PC register should be 
restricted to 20 bits. The instruction memory can store 219 instructions, where each instruction 
occupies two bytes. 

The data memory will be also restricted to 220 bytes. The data memory can be made word 
addressable, since only the LW and SW instructions address memory. Words should be always 
aligned in memory. The least-significant two bits of the data address must be zeros, or simply 
ignored in the hardware implementation. 

Addressing Modes 

PC-relative addressing mode is used for all branch and jump instructions. 

For taken branches: PC = PC + sign_extend(Imm8<<1) 

For jumps: PC = PC + sign_extend(Imm11<<1) 

For JR and JALR: PC = Rs + sign_extend(Imm8<<1) 

To save the return address: R7 = PC + 2 (address of next instruction) 

For LW and SW, displacement addressing is used: Address = Rs + sign_extend(Imm5) 

Register File 

Implement a Register file containing Eight 32-bit registers R0 to R7 with two read ports and one 
write port. R0 is a normal register that can be read and written (NOT hardwired to zero). 

Arithmetic and Logic Unit (ALU)   

Implement a 32-bit ALU to perform all the required operations: 

AND, OR, XOR, NOR, ADD, SUB, SLT, SEQ, SLL, SRL 

In addition, you should have special support for the SET and SSET instruction. 
 
Program Execution 

The program will be loaded and will start at address 0 in the instruction memory. The data 
segment will be loaded and will start also at address 0 in the data memory. You can also have a 
stack segment to support procedures. The stack segment can occupy the upper part of the data 
memory and can grow backwards towards lower memory addresses. The stack segment is 
implemented completely in software. You can dedicate register R6 as the stack pointer. To 
terminate the execution of a program, the last instruction in the program can jump to itself 
indefinitely (because there is no underlying operating system to terminate the program). 
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Build a Single-Cycle Processor 

Start by building the datapath and control of a single-cycle processor and ensure its correctness. 
You should have sufficient test cases that ensure the correct execution of ALL instructions in the 
instruction set. You should also write test cases that show the correct execution of complete 
programs. To verify the correctness of your design, show the values of all registers (R0 to R7) at 
the top-level of your design. Provide output pins for registers R0 through R7, and make their 
values visible at the top level of your design to simplify testing and verification. 

Build a Pipelined Processor 

Once you have succeeded in building a single-cycle processor and verified its correctness, design 
and implement a pipelined version of your design. Make a copy of your single-cycle design, then 
convert it and implement a pipelined datapath and its control logic. Add pipeline registers 
between stages. Design the control logic to detect data dependencies among instructions and 
implement the forwarding logic. You should handle properly the control hazards of the branch 
and jump instructions. Also, stall the pipeline after a LW instruction, if it is followed by a 
dependent instruction. 

Design Alternatives 

When designing the datapath and control unit, explore alternative design options and justify why 
a given design alternative is chosen. For example, when designing the control unit consider 
implementing it using a decoder and a set of OR/NOR gates, versus using a ROM to store the 
control signals, versus optimizing the equation of each control signal separately. When designing 
the ALU, consider alternative designs and justify why a design alternative is chosen. The same 
should be applied for all design decisions in your CPU, such as handling control and data 
hazards in the pipeline. 
 
Testing and Verification 
To demonstrate that your CPU is working, you should do the following: 

1. Write a sequence of instructions to verify the correctness of ALL instructions. Use SET and 
SSET to initialize registers or load their values from memory. Demonstrate the correctness of 
all ALU R-type and I-type instructions. Demonstrate the correctness of LW and SW 
instructions. Similarly, you should demonstrate the correctness of all branch and jump 
instructions. 

2. Write a simple program that counts the number of 1's in a 32-bit register. 

3. Write a sort procedure of your choice (selection sort, bubble sort, etc.). Write a main function 
to call the sort procedure and sort an array of integers in the data memory. 

Document all your test programs and files and include them in the report document. 
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Project Report 

The report document must contain sections highlighting the following:  

1 – Design and Implementation 

• Highlight the design choices you made and why, and any notable features that your 
processor has. 

• Provide drawings of the various components and the overall datapath. 
• Provide a complete description of the control logic and the control signals. Provide a 

table giving the control signal values for each instruction. 
• Provide a complete description of the forwarding logic, the cases that were handled, and 

the logic you have implemented to handle the control hazards.  

2 – Simulation and Testing 
• Describe the test programs that you used to test your design with sufficient comments 

describing the programs, their input, and expected output. List all the instructions that 
were tested and work correctly. List all the instructions that do not run properly. 

• Describe all the cases that you handled involving data dependences between instructions, 
data forwarding, and stalling the pipeline. 

• Provide snapshots showing test programs and their output results. 

3 – Teamwork 

• Two or at most three students can form a group. Write the names of all the group 
members on the project report title page. 

• Group members are required to coordinate their work among themselves, so that    
everyone is involved in design, implementation, simulation, and testing. 

• Show the work done by each group member using a chart. 

PROJECT DEADLINES 

The single-cycle processor design should be completed during week 12 of the 
semester. It should be fully operational and will be evaluated by your lab 
instructor in the LAB during week 12 of the semester. You should have 
sufficient test cases ready to prove that your CPU is fully functional. 

The pipelined processor design should be completed during week 14 of the 
semester. It should be fully operational and demonstrated in the LAB during 
week 15 of the semester. You should have sufficient test cases ready to prove 
that your pipelined CPU is fully functional. 

Submit a hard copy of the project report document to your LAB instructor 
during week 15 of the semester. 

If your CPU is not fully operational then identify which instructions do not 
work properly, or which hazards are not handled properly to avoid the loss of 
many marks. 

Submit a zip file containing the logisim design circuits, the test programs, and 
the project report document on Blackboard during week 15 of the semester. 


