
Pipelined Processor Design

COE 233

Logic Design and Computer Organization

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 2

Presentation Outline

❖ Serial versus Pipelined Execution

❖ Pipelined Datapath and Control

❖ Pipeline Hazards

❖ Data Hazards and Forwarding

❖ Load Delay, Hazard Detection, and Stall

❖ Control Hazards

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 3

❖ Laundry Example: Three Stages

1. Wash dirty load of clothes

2. Dry wet clothes

3. Fold and put clothes into drawers

❖ Each stage takes 30 minutes to complete

❖ Four loads of clothes to wash, dry, and fold

A B

C D

Laundry Example

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 4

❖ Sequential laundry takes 6 hours for 4 loads

❖ Intuitively, we can use pipelining to speed up laundry

Sequential Laundry

Time

6 PM

A

30 30 30

7 8 9 10 11 12 AM

30 30 30

B

30 30 30

C

30 30 30

D

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 5

❖ Pipelined laundry takes 3

hours for 4 loads

❖ Speedup factor is 2 for 4

loads

❖ Time to wash, dry, and

fold one load is still the

same (90 minutes)

Pipelined Laundry: Start Load ASAP

Time

6 PM

A

30

7 8 9 PM

B

30

30

C

30

30

30

D

30

30

30

30

30 30

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 6

Serial versus Pipelined Execution

❖ Consider a task that can be divided into k subtasks

 The k subtasks are executed on k different stages

 Each subtask requires one time unit

 The total execution time of the task is k time units

❖ Pipelining is to overlap the execution

 The k stages work in parallel on k different tasks

 Tasks enter/leave pipeline at the rate of one task per time unit

1 2 k…

1 2 k…

1 2 k…

1 2 k…

1 2 k…

1 2 k…

Serial Execution

One completion every k time units

Pipelined Execution

One completion every 1 time unit

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 7

Synchronous Pipeline

❖ Uses clocked registers between stages

❖ Upon arrival of a clock edge …

 All registers hold the results of previous stages simultaneously

❖ The pipeline stages are combinational logic circuits

❖ It is desirable to have balanced stages

 Approximately equal delay in all stages

❖ Clock period is determined by the maximum stage delay

S1 S2 Sk

R
e
g
is

te
r

R
e
g
is

te
r

R
e
g
is

te
r

R
e
g
is

te
r

Input

Clock

Output

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 8

❖ Let ti = time delay in stage Si

❖ Clock cycle t = max(ti) is the maximum stage delay

❖ Clock frequency f = 1/t = 1/max(ti)

❖ A pipeline can process n tasks in k + n – 1 cycles

 k cycles are needed to complete the first task

 n – 1 cycles are needed to complete the remaining n – 1 tasks

❖ Ideal speedup of a k-stage pipeline over serial execution

Pipeline Performance

k + n – 1Pipelined execution in cycles

Serial execution in cycles
== Sk → k for large n

nk
Sk

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 9

MIPS Processor Pipeline

❖ Five stages, one cycle per stage

1. IF: Instruction Fetch from instruction memory

2. ID: Instruction Decode, register read, and J/Br address

3. EX: Execute operation or calculate load/store address

4. MEM: Memory access for load and store

5. WB: Write Back result to register

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 10

Single-Cycle vs Pipelined Performance

❖ Consider a 5-stage instruction execution in which …

 Instruction fetch = ALU operation = Data memory access = 200 ps

 Register read = register write = 150 ps

❖What is the clock cycle of the single-cycle processor?

❖What is the clock cycle of the pipelined processor?

❖What is the speedup factor of pipelined execution?

❖ Solution

Single-Cycle Clock = 200+150+200+200+150 = 900 ps

Reg ALU MEMIF

900 ps

Reg

Reg ALU MEMIF

900 ps

Reg

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 11

Single-Cycle versus Pipelined – cont’d

❖ Pipelined clock cycle =

❖ CPI for pipelined execution =

 One instruction completes each cycle (ignoring pipeline fill)

❖ Speedup of pipelined execution =

 Instruction count and CPI are equal in both cases

❖ Speedup factor is less than 5 (number of pipeline stage)

 Because the pipeline stages are not balanced

900 ps / 200 ps = 4.5

1

max(200, 150) = 200 ps

200

IF Reg MEMALU Reg

IF Reg MEM RegALU

IF Reg MEMALU Reg200

200 200 200 200 200

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 12

Pipeline Performance Summary

❖ Pipelining doesn’t improve latency of a single instruction

❖ However, it improves throughput of entire workload

 Instructions are initiated and completed at a higher rate

❖ In a k-stage pipeline, k instructions operate in parallel

 Overlapped execution using multiple hardware resources

 Potential speedup = number of pipeline stages k

❖ Pipeline rate is limited by slowest pipeline stage

❖ Unbalanced lengths of pipeline stages reduces speedup

❖ Also, time to fill and drain pipeline reduces speedup

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 13

Next . . .

❖ Serial versus Pipelined Execution

❖ Pipelined Datapath and Control

❖ Pipeline Hazards

❖ Data Hazards and Forwarding

❖ Load Delay, Hazard Detection, and Stall

❖ Control Hazards

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 14

Single-Cycle Datapath

❖ Shown below is the single-cycle datapath

❖ How to pipeline this single-cycle datapath?

Answer: Introduce pipeline registers at end of each stage

Branch Target Address

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

Ext

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU result

clk

P
C

0
0

Data

Memory

Address

Data_in

Data_out

Registers

RA

RB

BusA

BusB

RW
BusW

1

0

Imm16

Next PC Address

0

1

1

0

+

0

1

2

IF = Instruction Fetch

+1

ID = Instruction Decode

& Register Read

EX = Execute MEM = Memory Access

W
B

 =
 W

ri
te

 B
a

c
k

ALUOpRegWrRegDst ALUSrc MemRd MemWr WBdataPCSrc

ExtOp

Zero

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 15

clk

Pipelined Datapath

❖ Pipeline registers are shown in green, including the PC

❖ Same clock edge updates all pipeline registers and PC

 In addition to updating register file and data memory (for store)

Branch Target Address

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

Ext

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU Result

1

0

Imm16

Next PC Address

0

1

+

0

1

2

IF = Instruction Fetch

+1

ID = Instruction Decode

& Register Read

EX = Execute MEM = Memory Access

W
B

 =
 W

ri
te

 B
a

c
k

ALUOpRegWrRegDst ALUSrc MemRd MemWr

1

0

WBdataPCSrc

ExtOp

Zero

Data

Memory

Address

Data_in

Data_out

Registers

RA

RB

BusA

BusB
RW

BusW

P
C

0
0

In
s
t

N
P

C B
T
A

A
B

Im
m

D
R

D
a
ta

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 16

Problem with Register Destination

❖ Instruction in ID stage is different from the one in WB stage

 WB stage is writing to a different destination register

 Writing the destination register of the instruction in the ID Stage

1

RegDst

0

clk

Branch Target Address

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

Ext

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU Result

Data

Memory

Address

Data_in

Data_out

Registers

RA

RB

BusA

BusB
RW

BusW

1

0

Imm16

Next PC Address +

0

1

2

IF = Instruction Fetch

+1

ID = Instruction Decode

& Register Read

EX = Execute MEM = Memory Access

W
B

 =
 W

ri
te

 B
a

c
k

ALUOpRegWr ALUSrc MemRd MemWr

1

0

WBdataPCSrc

ExtOp

Zero

P
C

0
0

In
s
t

N
P

C B
T
A

A
B

Im
m

D
R

D
a
ta

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 17

Registers

RA

RB

BusA

BusB

RW BusW

Pipelining the Destination Register

❖ Destination Register should be pipelined from ID to WB

 The WB stage writes back data knowing the destination register

clk

Branch Target Address

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

Ext

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU Result

Data

Memory

Address

Data_in

Data_out1

0

Imm16

Next PC Address

RegDst

+

0

1

2

IF = Instruction Fetch

+1

ID = Instruction Decode

& Register Read

EX = Execute MEM = Memory Access

W
B

 =
 W

ri
te

 B
a

c
k

ALUOpRegWr ALUSrc MemRd MemWr

1

0

WBdataPCSrc

ExtOp

Zero

P
C

0
0

In
s
t

N
P

C B
T
A

A
B

Im
m

D
R

D
a
ta

1

0

R
d

2

R
d
3

R
d
4

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 18

Graphically Representing Pipelines

❖ Multiple instruction execution over multiple clock cycles

 Instructions are listed in execution order from top to bottom

 Clock cycles move from left to right

 Figure shows the use of resources at each stage and each cycle

Time (in cycles)

Pr
og

ra
m

 E
x
e
cu

ti
on

 O
rd

e
r

add $s1, $s2, $s3

CC2

Reg

IM

DM

Reg

sub $t5, $s2, $t3

CC4

ALU

IM

sw $s2, 10($t3)

DM

Reg

CC5

Reg

ALU

IM

DM

Reg

CC6

Reg

ALU DM

CC7

Reg

ALU

CC8

Reg

DM

lw $t6, 8($s5) IM

CC1

Reg

ori $s4, $t3, 7

ALU

CC3

IM

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 19

❖ Instruction-Time Diagram shows:

 Which instruction occupying what stage at each clock cycle

❖ Instruction flow is pipelined over the 5 stages

Instruction-Time Diagram

IF

WB

–

EX

ID

WB

–

EX

WB

MEM –

ID

IF

EX

ID

IF

TimeCC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3

MEM

EX

ID

IF

WB

MEM

EX

ID

IF

lw $t7, 8($s3)

lw $t6, 8($s5)

ori $t4, $s3, 7

sub $s5, $s2, $t3

sw $s2, 10($s3)I
ns

tr
uc

ti
on

 O
rd

e
r

Up to five instructions can be in the

pipeline during the same cycle

Instruction Level Parallelism (ILP)

ALU instructions skip

the MEM stage. Store

instructions skip the

WB stage

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 20

Control Signals

Same control signals used in the single-cycle datapath

Registers

RA

RB

BusA

BusB

RW BusW

clk

Branch Target Address

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

Ext

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU Result

Data

Memory

Address

Data_in

Data_out1

0

Imm16

Next PC Address

RegDst

+

0

1

2

IF = Instruction Fetch

+1

ID = Instruction Decode EX = Execute MEM = Memory Access

W
B

 =
 W

ri
te

 B
a

c
k

ALUOpRegWr ALUSrc MemRd MemWr

1

0

WBdataPCSrc

ExtOp

Zero

P
C

0
0

In
s
t

N
P

C B
T
A

A
B

Im
m

D
R

D
a
ta

1

0

R
d
2

R
d

3

R
d
4

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 21

RegWr

W
B

MemRd MemWr WBdata

Pipelined Control

PCSrc

RegDst

E
X

ExtOp

ExtOp

Registers

RA

RB

BusA

BusB

RW BusW

clk

Branch Target Address

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

Ext

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU Result

Data

Memory

Address

Data_in

Data_out1

0

Imm16

Next PC Address +

0

1

2

IF = Instruction Fetch

+1

ID = Instruction Decode EX = Execute MEM = Memory Access

W
B

 =
 W

ri
te

 B
a

c
k

1

0

P
C

0
0

In
s
t

N
P

C B
T
A

A
B

Im
m

D
R

D
a
ta

1

0

R
d
2

R
d
3

R
d
4

Main & ALU

Control

Op

func

ALUSrc ALUOp

M
E

M

Pipeline control signals

just like data

Zero

PC

Control
Zero

JBEQ, BNE

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 22

Pipelined Control – Cont'd

❖ ID stage generates all the control signals

❖ Pipeline the control signals as the instruction moves

 Extend the pipeline registers to include the control signals

❖ Each stage uses some of the control signals

 Instruction Decode and Register Read

▪ Control signals are generated

▪ RegDst and ExtOp are used in this stage, J (Jump) is used by PC control

 Execution Stage => ALUSrc, ALUOp, BEQ, BNE

▪ ALU generates zero signal for PC control logic (Branch Control)

 Memory Stage => MemRd, MemWr, and WBdata

 Write Back Stage => RegWr control signal is used in the last stage

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 23

Control Signals Summary

Op

Decode

Stage

Execute

Stage

Memory

Stage

Write

Back

PC

Control

RegDst ExtOp ALUSrc ALUOp MemRd MemWr WBdata RegWr PCSrc

R-Type 1=Rd X 0=Reg func 0 0 0 1 0 = next PC

ADDI 0=Rt 1=sign 1=Imm ADD 0 0 0 1 0 = next PC

SLTI 0=Rt 1=sign 1=Imm SLT 0 0 0 1 0 = next PC

ANDI 0=Rt 0=zero 1=Imm AND 0 0 0 1 0 = next PC

ORI 0=Rt 0=zero 1=Imm OR 0 0 0 1 0 = next PC

LW 0=Rt 1=sign 1=Imm ADD 1 0 1 1 0 = next PC

SW X 1=sign 1=Imm ADD 0 1 X 0 0 = next PC

BEQ X X 0=Reg SUB 0 0 X 0 0 or 2 = BTA

BNE X X 0=Reg SUB 0 0 X 0 0 or 2 = BTA

J X X X X 0 0 X 0 1 = jump target

PCSrc = 0 or 2 (BTA) for BEQ and BNE, depending on the zero flag

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 24

Next . . .

❖ Serial versus Pipelined Execution

❖ Pipelined Datapath and Control

❖ Pipeline Hazards

❖ Data Hazards and Forwarding

❖ Load Delay, Hazard Detection, and Stall

❖ Control Hazards

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 25

❖ Hazards: situations that would cause incorrect execution

 If next instruction were launched during its designated clock cycle

1. Structural hazards

 Caused by resource contention

 Using same resource by two instructions during the same cycle

2. Data hazards

 An instruction may compute a result needed by next instruction

 Data hazards are caused by data dependencies between instructions

3. Control hazards

 Caused by instructions that change control flow (branches/jumps)

 Delays in changing the flow of control

❖ Hazards complicate pipeline control and limit performance

Pipeline Hazards

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 26

Structural Hazards

❖ Problem

 Attempt to use the same hardware resource by two different

instructions during the same clock cycle

❖ Example

 Writing back ALU result in stage 4

 Conflict with writing load data in stage 5

WB

WB

EX

ID

WB

EX MEM

IF ID

IF

TimeCC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3

EX

ID

IF

MEM

EX

ID

IF

lw $t6, 8($s5)

ori $t4, $s3, 7

sub $t5, $s2, $s3

sw $s2, 10($s3)I
ns

tr
uc

ti
on

s

Structural Hazard

Two instructions are

attempting to write the

register file during

same cycle

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 27

Resolving Structural Hazards

❖ Serious Hazard:

 Hazard cannot be ignored

❖ Solution 1: Delay Access to Resource

 Must have mechanism to delay instruction access to resource

 Delay all write backs to the register file to stage 5

▪ ALU instructions bypass stage 4 (memory) without doing anything

❖ Solution 2: Add more hardware resources (more costly)

 Add more hardware to eliminate the structural hazard

 Redesign the register file to have two write ports

▪ First write port can be used to write back ALU results in stage 4

▪ Second write port can be used to write back load data in stage 5

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 28

❖ Dependency between instructions causes a data hazard

❖ The dependent instructions are close to each other

 Pipelined execution might change the order of operand access

❖ Read After Write – RAW Hazard

 Given two instructions I and J, where I comes before J

 Instruction J should read an operand after it is written by I

 Called a data dependence in compiler terminology

I: add $s1, $s2, $s3 # $s1 is written

J: sub $s4, $s1, $s3 # $s1 is read

 Hazard occurs when J reads the operand before I writes it

Data Hazards

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 29

DMReg

IM

Reg

ALU

IM

DM

Reg

Reg

ALU

IM

DM

Reg

Reg

ALU DM

Reg

ALU

Reg

DM

IM

Reg

ALU

IM

Time (cycles)

Pr
og

ra
m

 E
x
e
cu

ti
on

 O
rd

e
r

value of $s2

sub $s2, $t1, $t3

CC1
10

CC2

add $s4, $s2, $t5

10

CC3

or $s6, $t3, $s2

10

CC4

and $s7, $t4, $s2

10

CC6
20

CC7
20

CC8
20

CC5

sw $t8, 10($s2)

10

Example of a RAW Data Hazard

❖ Result of sub is needed by add, or, and, & sw instructions

❖ Instructions add & or will read old value of $s2 from reg file

❖ During CC5, $s2 is written at end of cycle, old value is read

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 30

RegReg

Solution 1: Stalling the Pipeline

❖ Three stall cycles during CC3 thru CC5 (wasting 3 cycles)

 The 3 stall cycles delay the execution of add and the fetching of or

 The 3 stall cycles insert 3 bubbles (No operations) into the ALU

❖ The add instruction remains in the second stage until CC6

❖ The or instruction is not fetched until CC6

DM

Reg

RegReg

Time (in cycles)

I
ns

tr
uc

ti
on

 O
rd

e
r value of $s2

CC1
10

CC2
10

CC3
10

CC4
10

CC6
20

CC7
20

CC8
20

CC5
10

add $s4, $s2, $t5 IM

or $s6, $t3, $s2 IM ALU

ALU Reg

sub $s2, $t1, $t3 IM Reg ALU DM Reg

CC9
20

DM

stall stall stall

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 31

DM

Reg

Reg

Reg

Reg

Reg

Time (cycles)

Pr
og

ra
m

 E
x
e
cu

ti
on

 O
rd

e
r

value of $s2

sub $s2, $t1, $t3 IM

CC1
10

CC2

add $s4, $s2, $t5 IM

10

CC3

or $s6, $t3, $s2

ALU

IM

10

CC4

and $s7, $s6, $s2

ALU

IM

10

CC6

Reg

DM

ALU

20

CC7

Reg

DM

ALU

20

CC8

Reg

DM

20

CC5

sw $t8, 10($s2)

Reg

DM

ALU

IM

10

Solution 2: Forwarding ALU Result

❖ The ALU result is forwarded (fed back) to the ALU input

 No bubbles are inserted into the pipeline and no cycles are wasted

❖ ALU result is forwarded from ALU, MEM, and WB stages

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 32

Implementing Forwarding

0

1

2

3

0

1

2

3

R

3232

clk

32

Rs

In
s
tr

u
c
ti
o

n

0

1

ALU result

32

0

1

Data

Memory

Address

Data_in

Data_out

32

R
d
4

A
L
U

Ext
Imm16

1

0

R
d
3

R
d
2

A
B

D
a
ta

D

Im
m

32

R
e
g

is
te

r
F

il
e

RB

BusA

BusB

RW BusW

RA

Rt

❖ Two multiplexers added at the inputs of A & B registers

 Data from ALU stage, MEM stage, and WB stage is fed back

❖ Two signals: ForwardA and ForwardB to control forwarding

ForwardA

ForwardB

32

Rd

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 33

Forwarding Control Signals

Signal Explanation

ForwardA = 0 First ALU operand comes from register file = Value of (Rs)

ForwardA = 1 Forward result of previous instruction to A (from ALU stage)

ForwardA = 2 Forward result of 2nd previous instruction to A (from MEM stage)

ForwardA = 3 Forward result of 3rd previous instruction to A (from WB stage)

ForwardB = 0 Second ALU operand comes from register file = Value of (Rt)

ForwardB = 1 Forward result of previous instruction to B (from ALU stage)

ForwardB = 2 Forward result of 2nd previous instruction to B (from MEM stage)

ForwardB = 3 Forward result of 3rd previous instruction to B (from WB stage)

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 34

Forwarding Example

0

1

2

3

0

1

2

3

R

3232

clk

32

Rs

In
s
tr

u
c
ti
o

n

0

1

ALU result

32

0

1

Data

Memory

Address

Data_in

Data_out

32

R
d
4

A
L
U

Ext
Imm16

1

0

R
d
3

R
d
2

A
B

D
a
ta

D

Im
m

32

R
e
g

is
te

r
F

il
e

RB

BusA

BusB

RW BusW

RA

Rt

32

Rd

Instruction sequence:

lw $t4, 4($t0)

ori $t7, $t1, 2

sub $t3, $t4, $t7

When sub instruction in ID stage

ori will be in the ALU stage

lw will be in the MEM stage

lw $t4,4($t0)ori $t7,$t1,2sub $t3,$t4,$t7

ForwardA = 2 (from MEM stage)

ForwardB = 1 (from ALU stage)

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 35

RAW Hazard Detection

❖ Current instruction is being decoded in the Decode stage

❖ Previous instruction is in the Execute stage

❖ Second previous instruction is in the Memory stage

❖ Third previous instruction is in the Write Back stage

If ((Rs != 0) and (Rs == Rd2) and (EX.RegWr)) ForwardA = 1

Else if ((Rs != 0) and (Rs == Rd3) and (MEM.RegWr)) ForwardA = 2

Else if ((Rs != 0) and (Rs == Rd4) and (WB.RegWr)) ForwardA = 3

Else ForwardA = 0

If ((Rt != 0) and (Rt == Rd2) and (EX.RegWr)) ForwardB = 1

Else if ((Rt != 0) and (Rt == Rd3) and (MEM.RegWr)) ForwardB = 2

Else if ((Rt != 0) and (Rt == Rd4) and (WB.RegWr)) ForwardB = 3

Else ForwardB = 0

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 36

Hazard Detecting and Forwarding Logic

ForwardB ForwardA

Rs

Rt

Hazard

Detect &

Forward

0

1

2

3

0

1

2

3

R

3232

clk

32

Rs

In
s
tr

u
c
ti
o

n

0

1

ALU result

32

0

1

Data

Memory

Address

Data_in

Data_out

32

R
d
4

A
L
U

Ext
Imm16

1

0

R
d
3

R
d
2

A
B

D
a
ta

D

Im
m

32

R
e
g

is
te

r
F

il
e

RB

BusA

BusB

RW BusW

RA

Rt

32

Rd

Main

& ALU

Control

Op

func

W
B

RegDst

E
X

ExtOp

ExtOp

ALUSrc

ALUOp

M
E

M

MemRd

MemWr

WBdata

RegWr RegWrRegWr

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 37

Next . . .

❖ Serial versus Pipelined Execution

❖ Pipelined Datapath and Control

❖ Pipeline Hazards

❖ Data Hazards and Forwarding

❖ Load Delay, Hazard Detection, and Stall

❖ Control Hazards

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 38

Reg

Reg

Reg

Time (cycles)

Pr
og

ra
m

 O
rd

e
r

CC2

add $s4, $s2, $t5

Reg

IF

CC3

or $t6, $t3, $s2

ALU

IF

CC6

Reg

DM

ALU

CC7

Reg

Reg

DM

CC8

Reg

lw $s2, 20($t1) IF

CC1 CC4

and $t7, $s2, $t4

DM

ALU

IF

CC5

DM

ALU

Load Delay

❖ Unfortunately, not all data hazards can be forwarded

 Load has a delay that cannot be eliminated by forwarding

❖ In the example shown below …

 The LW instruction does not read data until end of CC4

 Cannot forward data to ADD at end of CC3 - NOT possible

However, load can

forward data to 2nd next

and later instructions

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 39

Detecting RAW Hazard after Load

❖ Detecting a RAW hazard after a Load instruction:

 The load instruction will be in the EX stage

 Instruction that depends on the load data is in the decode stage

❖ Condition for stalling the pipeline

if ((EX.MemRd == 1) // Detect Load in EX stage

and (ForwardA==1 or ForwardB==1)) Stall // RAW Hazard

❖ Insert a bubble into the EX stage after a load instruction

 Bubble is a no-op that wastes one clock cycle

 Delays the dependent instruction after load by one cycle

▪ Because of RAW hazard

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 40

Regor $t6, $s3, $s2 IM DM RegALU

RegALU DMReg

add $s4, $s2, $t5 IM

Reglw $s2, 20($s1) IM

stall

ALU

bubble bubble bubble

DM Reg

Stall the Pipeline for one Cycle

❖ ADD instruction depends on LW ➔ stall at CC3

 Allow Load instruction in ALU stage to proceed

 Freeze PC and Instruction registers (NO instruction is fetched)

 Introduce a bubble into the ALU stage (bubble is a NO-OP)

❖ Load can forward data to next instruction after delaying it

Time (cycles)

Pr
og

ra
m

 O
rd

e
r

CC2 CC3 CC6 CC7 CC8CC1 CC4 CC5

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 41

lw $s2, 8($s1) MEM WBEXIDStallIF

lw $s1, ($t5) MEM WBEXIDIF

Showing Stall Cycles

❖ Stall cycles can be shown on instruction-time diagram

❖ Hazard is detected in the Decode stage

❖ Stall indicates that instruction is delayed

❖ Instruction fetching is also delayed after a stall

❖ Example:

add $v0, $s2, $t3 - WBEXIDStallIF

sub $v1, $s2, $v0 - WBEXIDIF

TimeCC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3 CC10

Data forwarding is shown using green arrows

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 42

Hazard Detecting and Forwarding Logic

ForwardB ForwardA

Rs

Rt

Hazard Detect

Forward

and Stall

MemRd RegWr RegWrRegWr
Stall

D
is

a
b
le

 P
C

D
is

a
b
le

 I
R

Bubble = 0

0

1

2

3

0

1

2

3

R

3232

clk

32

Rs

In
s
tr

u
c
ti
o

n

0

1

ALU result

32

0

1

Data

Memory

Address

Data_in

Data_out

32

R
d
4

A
L
U

Ext
Imm16

1

0

R
d
3

R
d
2

A
B

D
a
ta

D

Im
m

32

R
e
g

is
te

r
F

il
e

RB

BusA

BusB

RW BusW

RA

Rt

32

Rd

Main

& ALU

Control

Op

func

W
B

MemRd

MemWr

WBdata

RegDst

E
X

ExtOp

M
E

M

P
C

Control Signals
0

1

ALUSrc

ALUOp

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 43

Code Scheduling to Avoid Stalls

❖ Compilers reorder code in a way to avoid load stalls

❖ Consider the translation of the following statements:

A = B + C; D = E – F; // A thru F are in Memory

❖ Slow code:

lw $t0, 4($s0) # &B = 4($s0)

lw $t1, 8($s0) # &C = 8($s0)

add $t2, $t0, $t1 # stall cycle

sw $t2, 0($s0) # &A = 0($s0)

lw $t3, 16($s0) # &E = 16($s0)

lw $t4, 20($s0) # &F = 20($s0)

sub $t5, $t3, $t4 # stall cycle

sw $t5, 12($0) # &D = 12($0)

❖ Fast code: No Stalls

lw $t0, 4($s0)

lw $t1, 8($s0)

lw $t3, 16($s0)

lw $t4, 20($s0)

add $t2, $t0, $t1

sw $t2, 0($s0)

sub $t5, $t3, $t4

sw $t5, 12($s0)

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 44

❖ Instruction J should write its result after it is read by I

❖ Called anti-dependence by compiler writers

I: sub $t4, $t1, $t3 # $t1 is read

J: add $t1, $t2, $t3 # $t1 is written

❖ Results from reuse of the name $t1

❖ NOT a data hazard in the 5-stage pipeline because:

 Reads are always in stage 2

 Writes are always in stage 5, and

 Instructions are processed in order

❖ Anti-dependence can be eliminated by renaming

 Use a different destination register for add (eg, $t5)

Name Dependence: Write After Read

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 45

Name Dependence: Write After Write

❖ Same destination register is written by two instructions

❖ Called output-dependence in compiler terminology

I: sub $t1, $t4, $t3 # $t1 is written

J: add $t1, $t2, $t3 # $t1 is written again

❖ Not a data hazard in the 5-stage pipeline because:

 All writes are ordered and always take place in stage 5

❖ However, can be a hazard in more complex pipelines

 If instructions are allowed to complete out of order, and

 Instruction J completes and writes $t1 before instruction I

❖ Output dependence can be eliminated by renaming $t1

❖ Read After Read is NOT a name dependence

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 46

Next . . .

❖ Serial versus Pipelined Execution

❖ Pipelined Datapath and Control

❖ Pipeline Hazards

❖ Data Hazards and Forwarding

❖ Load Delay, Hazard Detection, and Stall

❖ Control Hazards

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 47

Control Hazards

❖ Jump and Branch can cause great performance loss

❖ Jump instruction needs only the jump target address

❖ Branch instruction needs two things:

Branch Result Taken or Not Taken

Branch Target Address

▪ PC + 4 If Branch is NOT taken

▪ PC + 4 + 4 × immediate If Branch is Taken

❖ Jump and Branch targets are computed in the ID stage

At which point a new instruction is already being fetched

 Jump Instruction: 1-cycle delay

Branch: 2-cycle delay for branch result (taken or not taken)

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 48

1-Cycle Jump Delay

❖ Control logic detects a Jump instruction in the 2nd Stage

❖ Next instruction is fetched anyway

❖ Convert Next instruction into bubble (Jump is always taken)

J L1 IF

cc1

Next instruction

. . .

L1: Target instruction

cc2

ID

IF

Jump

Target

Addr

cc4 cc5 cc6 cc7cc3

BubbleBubble BubbleBubble

IF Reg DMALU Reg

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 49

2-Cycle Branch Delay

❖ Control logic detects a Branch instruction in the 2nd Stage

❖ ALU computes the Branch outcome in the 3rd Stage

❖ Next1 and Next2 instructions will be fetched anyway

❖ Convert Next1 and Next2 into bubbles if branch is taken

Beq $t1,$t2,L1 IF

cc1

Next1

cc2

Reg

IF

Next2

cc4 cc5 cc6 cc7

IF Reg DMALU

BubbleBubble Bubble

BubbleBubble BubbleBubble

L1: target instruction

cc3

Branch

Target

Addr

ALU

Reg

IF

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 50

If Branch is NOT Taken . . .

❖ Branches can be predicted to be NOT taken

❖ If branch outcome is NOT taken then

 Next1 and Next2 instructions can be executed

 Do not convert Next1 & Next2 into bubbles

 No wasted cycles

Beq $t1,$t2,L1 IF

cc1

Next1

cc2

Reg

IF

Next2

cc3

NOT TakenALU

Reg

IF Reg

cc4 cc5 cc6 cc7

ALU DM

ALU DM

Reg

Reg

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 51

J

J

Pipelined Jump and Branch

Main

& ALU

Control

Op

func

ForwardB

ForwardA

Rs

Rt
Forward & Stall

Rd2, Rd3, Rd4

RegWr, MemRd

0

1

2

3

0

1

2

3

R

32

32

Rs

In
s
tr

u
c
ti
o

n
0

1

A
L
U

Ext
Imm16

1

0

R
d
3

R
d
2

A
B D

Im
m

32

R
e
g

is
te

r
F

il
e

RB

BusA

BusB

RW BusW

RA

Rt

32

Rd

Zero

Address

Instruction

Instruction

Memory

Branch Target Address

Jump Target = PC[31:28] ‖ Imm26

Next PC Address +

0

1

2

+1

P
C

0
0

N
P

C B
T
A

0

1

Bubble = 0

Stall

D
is

a
b
le

 P
C

D
is

a
b
le

 I
R

Bubble = NOP

Kill1
Jump

kills next

instruction

Kill2

Taken branch kills two

M
E

M

Control Signals
0

1

Control Signals

E
X

PC

Control

PCSrc

BEQ, BNE
BEQ, BNEZero

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 52

PC Control for Pipelined Jump and Branch

if ((BEQ && Zero) || (BNE && !Zero))

{ Jmp=0; Br=1; Kill1=1; Kill2=1; }

else if (J)

{ Jmp=1; Br=0; Kill1=1; Kill2=0; }

else

{ Jmp=0; Br=0; Kill1=0; Kill2=0; }

Br = ((BEQ · Zero) + (BNE · Zero))

Jmp = J · Br

Kill1 = J + Br

Kill2 = Br

PCSrc = { Br, Jmp } // 0, 1, or 2

Br JmpKill1Kill2

BEQ BNE J

Zero

PCSrc

Pipelined Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 53

Jump and Branch Impact on CPI

❖ Base CPI = 1 without counting jump and branch

❖ Unconditional Jump = 5%, Conditional branch = 20%

❖ 90% of conditional branches are taken

❖ Jump kills next instruction, Taken Branch kills next two

❖What is the effect of jump and branch on the CPI?

Solution:

❖ Jump adds 1 wasted cycle for 5% of instructions = 1 × 0.05

❖ Branch adds 2 wasted cycles for 20% × 90% of instructions

= 2 × 0.2 × 0.9 = 0.36

❖ New CPI = 1 + 0.05 + 0.36 = 1.41 (due to wasted cycles)

