Pipelined Processor Design

COE 233
Logic Design and Computer Organization
Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

*» Serial versus Pipelined Execution

** Pipelined Datapath and Control

** Pipeline Hazards

*» Data Hazards and Forwarding

*» Load Delay, Hazard Detection, and Stall

s+ Control Hazards

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 2

Laundry Example

*» Laundry Example: Three Stages

1. Wash dirty load of clothes

2. Dry wet clothes -

3. Fold and put clothes into drawers

*» Each stage takes 30 minutes to complete 6 6

¢ Four loads of clothes to wash, dry, and fold 66

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 3

Sequential Laundry

6 PM 7 8 9 10 11 12 AM
Time | 30 | 30 [30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30]

5] S

®,
S, " =
®,

a'a

“ Sequential laundry takes 6 hours for 4 loads

¢ Intuitively, we can use pipelining to speed up laundry

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 4

Pipelined Laundry: Start Load ASAP

9PM
Time
30
¢ Pipelined laundry takes 3
hours for 4 loads
¢ Speedup factor is 2 for 4
loads
0 * Time to wash, dry, and
57: fold one load is still the

same (90 minutes)

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 5

Serial versus Pipelined Execution

*» Consider a task that can be divided into k subtasks
< The k subtasks are executed on k different stages
<> Each subtask requires one time unit

< The total execution time of the task is k time units

¢ Pipelining is to overlap the execution
< The k stages work in parallel on k different tasks

< Tasks enter/leave pipeline at the rate of one task per time unit

12 k 12 k
12 k 12 k
12 k 12 k
Serial Execution Pipelined Execution

One completion every k time units One completion every 1 time unit

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 6

Synchronous Pipeline

¢ Uses clocked registers between stages

“ Upon arrival of a clock edge ...

<> All registers hold the results of previous stages simultaneously
*+ The pipeline stages are combinational logic circuits
¢ It Is desirable to have balanced stages

< Approximately equal delay in all stages

*» Clock period is determined by the maximum stage delay

[[e [

Input L) %» » Sy my S » S, [% S K » E ~) Output
A A A A

Clock I 1 I !

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 7

Pipeline Performance

“ Let 7 = time delay in stage S,
“ Clock cycle 7= max(r) is the maximum stage delay
“ Clock frequency f = 1/7 = 1/max(r)

¢ A pipeline can process n tasks in k + n — 1 cycles
< k cycles are needed to complete the first task

< n —1 cycles are needed to complete the remaining n — 1 tasks

*» ldeal speedup of a k-stage pipeline over serial execution

Serial execution in cycles nk
Sy = = S, — k for large n
Pipelined execution in cycles K+n-1

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 8

MIPS Processor Pipeline

4

L)

» Five stages, one cycle per stage

®

1. IF: Instruction Fetch from instruction memory

2. ID: Instruction Decode, register read, and J/Br address
3. EX: Execute operation or calculate load/store address
4. MEM: Memory access for load and store

5. WB: Write Back result to register

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 9

Single-Cycle vs Pipelined Performance

*» Consider a 5-stage instruction execution in which ...
< Instruction fetch = ALU operation = Data memory access = 200 ps

< Register read = register write = 150 ps
*» What is the clock cycle of the single-cycle processor?
*» What is the clock cycle of the pipelined processor?

*» What is the speedup factor of pipelined execution?

+» Solution

Single-Cycle Clock = 200+150+200+200+150 = 900 ps

1= Reg ALU MEM Reg
900 ps > IF Reg ALU MEM Reg
> 900 ps >

A

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 10

Single-Cycle versus Pipelined - cont'd

% Pipelined clock cycle = max(200, 150) = 200 ps

1= Reg ALU MEM Reg
< 200 - F Reg ALU MEM | Reg
« 200 —» IF Reg ALU MEM Reg

+«— 200 >« 200 >« 200 >« 200 —»<« 200 —

¢ CPI for pipelined execution = 1
<> One instruction completes each cycle (ignoring pipeline fill)

s Speedup of pipelined execution = 900 ps /200 ps = 4.5
< Instruction count and CPI are equal in both cases

*» Speedup factor is less than 5 (number of pipeline stage)

<> Because the pipeline stages are not balanced

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 11

Pipeline Performance Summary

¢ Pipelining doesn’t improve latency of a single instruction

“ However, it improves throughput of entire workload

< Instructions are initiated and completed at a higher rate

“ In a k-stage pipeline, k instructions operate in parallel

< Overlapped execution using multiple hardware resources

< Potential speedup = number of pipeline stages k

** Pipeline rate is limited by slowest pipeline stage
*+ Unbalanced lengths of pipeline stages reduces speedup

¢ Also, time to fill and drain pipeline reduces speedup

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 12

Next . ..

¢ Serial versus Pipelined Execution

*» Pipelined Datapath and Control

** Pipeline Hazards

*» Data Hazards and Forwarding

*» Load Delay, Hazard Detection, and Stall

s+ Control Hazards

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 13

Single-Cycle Datapath
* Shown below is the single-cycle datapath
*» How to pipeline this single-cycle datapath?

Answer: Introduce pipeline registers at end of each stage

IF = Instruction Fetch E ID = Instruction Decode E EX = Execute E MEM = Memory Access E ¢
' @
Branch Target Address | & Register Read | i i m
cn
1 | R
Jump Target = PC[31:28] I Imm26 ! ! é
1
Next PC Address . i Lo
1 1 1 M
| |) S
@ Zero | ALU result \
|
1
. Data :
= Instruction Rs A BUSA !
) Memory A Memory !
Registers > L Address
1 O Address AL RB U | 0
o _ ' 1 ! Data_out 1
2 Instruction ; BusB 0 '
T RW Data_in
Rq Busw ‘ .
L
clk
' | | | |
PCSrc RegDst RegWr ALUSrc ALUOp MemRd MemWr WBdata

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 14

Pipelined Datapath

** Pipeline registers are shown in green, including the PC

*»» Same clock edge updates all pipeline registers and PC

< In addition to updating register file and data memory (for store)

IF = Instruction Fetch i ID = Instruction Decode EX = Execute ' MEM = Memory Access '

: & Register Read I : |

Branch Target Address ! ! ! !

1 1 1 1
Jump Target = PC[31:28] I Inm26 ! ! ! ! %
< 1 1 ®
= ' o0
Next PC Address 8 ’ m ! 'Y
- 1 =
pzd =
| =
+1 £ Zero ALU Result L
£ ! 'm
: 2

i N ' Data |

Instruction Rs A BusA M < ! !

) L8 Memory . ﬁ Memory !

Registers > @ Address
1 8 Address Rt U 0 %
= RB 1 T Data_out a
A ; 0 = 1
2 Instruction c 0 BusB fup 0 o
S R4l [PIRW ‘ a) Data_in
BusW 2
|
clk
' I i I | i o I I
PCSrc RegDst RegWr ALUSrc ALUOp MemRd MemWr WBdata

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 15

Problem with Register Destination

¢ Instruction in ID stage is different from the one in WB stage

< WB stage is writing to a different destination register

< Writing the destination register of the instruction in the ID Stage

IF = Instruction Fetch i ID = Instruction Decode EX = Execute ' MEM = Memory Access '
: & Register Read : : |
Branch Target Address ! ! ! !
1 1 1 1
Jump Target = PC[31:28] I Inm26 ! ! ! ! f)
< 1 1 ©
Next PC Address O E : ;0
a ! g
z =
| L=
+1 £ Zero ALU Result L
S ! 'm
I : =
g 1 1
Instruction Rs A BusA | < ! Data !
) L8 Memory " A Memory !
O Rt Registers > L o Address 0 ©
1 a Address U =
= RB 1 T Data_out =)
A ; [72] = 1
2 Instruction = 0 BusB 0 o
A Rdl, RW ‘) Data_in
,\ BusW T
|
clk
' I i I | i I I I
PCSrc RegDst RegWr ALUSrc ALUOp MemRd MemWr WBdata

Pipelined Processor Design

COE 233 — Logic Design and Computer Organization

© Muhamed Mudawar — slide 16

Pipelining the Destination Register

¢ Destination Register should be pipelined from ID to WB

<> The WB stage writes back data knowing the destination register

IF = Instruction Fetch

Branch Target Address

Jump Target = PC[31:28] | Imm26

Next PC Address

NPC

ID = Instruction Decode

& Register Read

BTA |--}----

Imm

EX = Execute

Zero

MEM = Memory Access

ALU Result

Write Back

WB

Instruction Rs A BusA < Data
AEE Memory . A Memory
Registers > L Address
1 8 Address Rt U
: i = 1 Data_out
2 Instruction c BusB 0 0
X ‘) Data_in
RW Busw %
A A A
0
1
clk
PCSrc RegDst RegWr ALUSrc ALUOp MemRd MemWr WBdata

Pipelined Processor Design

COE 233 — Logic Design and Computer Organization

© Muhamed Mudawar — slide 17

Graphically Representing Pipelines

¢ Multiple instruction execution over multiple clock cycles
< Instructions are listed in execution order from top to bottom
< Clock cycles move from left to right

< Figure shows the use of resources at each stage and each cycle

— Time (in cycles) —— CCL + CC2 + CC3 + CC4 + CC5 =+ CC6 + CCT + CC8 —
] i

—§ lw $16, 8($s5) M -EZReg:i ALU i DM FiHReg| |

@) . — - - — i |

.;:_3 add $s1, $s2, $s3 i HHreoHiP-a 0 i omLiHReg|

5 | L] i i i i ' |

Q | : i i i Tl—JT :

L%)' ori $s4, $13,7 M IM HiOReg[li>AuHi DM HiHReg| |

£ | i - = = - = -

%’, sub $t5, $s2, $1t3 | ‘H IM HiOReg[]! ALU-E-[D|\/|]-§-Reg
& T e o i—n

l sw $s2,10($t3) 'H IM HiHReg [JiC>ALU HiH DM

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 18

Instruction-Time Diagram

¢ Instruction-Time Diagram shows:

<> Which instruction occupying what stage at each clock cycle

“ Instruction flow is pipelined over the 5 stages

Up to five instructions can be in the _ _ _
pipeline during the same cycle |- __ ALU instructions skip
Instruction Level Parallelism (ILP) > the MEM stage. Store
| K instructions skip the
. y WB stage
S lw $t7,8($s3) IF | ID | EX [MEM| WB ~7 :
S Iw $t6,8($s5) F | D | EX |MEM| WB |/ |
< I
% ori $t4,$s3,7 IF | ID | EX| =" wWB i
£ sub $s5, $s2, $t3 IF | D |Ex| - |wB]|
S sw $s2,10($s3) IF | ID | EX |MEM| L
l CC1 CC2 CC3 CCA CC5 CC6 CC7T CC8 CC9 Time

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 19

Control Signals

IF = Instruction Fetch i ID =Instruction Decode | EX=Execute | MEM = Memory Access |
1 1 1 1
Branch Target Address ! ! ! !
1 1 1 1
Jump Target = PC[31:28] I Inm26 ! ! ! ! %
< 1 1 @
= ' , 0
Next PC Address 8 ’ m ! ! @
z : : g
1 1
+1 @ g Zero | ALU Result Lo
& I ! I m
- 1 1
1 ! ;
- 1 1
Instruction Rs A BUSA L, < ! Data !
0 S Memory A Memory !
O Registers > L Address -
1 S Address Rt U IS,
: 7 R 1 Data_out a
2 Instruction c BusB jmp{ m 0 _
yy ‘ Data_in
RW BusW n
A A
0
1
clk
PCSrc RegDst RegWr ALUSrc ALUOp MemRd MemWr WBdata

Same control signhals used in the single-cycle datapath

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 20

Pipelined Control

IF = Instruction Fetch ID = Instruction Decode EX = Execute MEM = Memory Access

Branch Target Address

1
1
1
1
1
1 ! !
Jump Target = PC[31:28] I Inm26 ! ! Pipe"ne control Signals LS
< L&
- . . ' m
Next PC Add
ext PC Address O ’ & just like data o
Z . =
: =
@ £ Zero ! ALU Result Lon
£ ' I m
- : : ;
Instruction Rs BusA L> < | 2ElE :
AEE Memory RA A Memory :
O Registers > L e Address 0 ©
LS Address Rt U T
: o RB 1 Data_out =
5 Instruction < BusB | m 0
)Y .) Data_in
RW . BusW A
0 N 2 ol
PCSrc L Pf—l Pf—l &
clk
| 1 hd | I
Fle Zero !
Control EXtOp 1
X 2 Op N
BEQ, BNE J L < =
wl > L

Main & ALU
Control

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 21

Pipelined Control - Cont'd

¢ ID stage generates all the control signals

“* Pipeline the control signals as the instruction moves

< Extend the pipeline registers to include the control signals

¢ Each stage uses some of the control signals

< Instruction Decode and Register Read
= Control signals are generated

= RegDst and ExtOp are used in this stage, J (Jump) is used by PC control
< Execution Stage => ALUSrc, ALUOp, BEQ, BNE

= ALU generates zero signal for PC control logic (Branch Control)
< Memory Stage => MemRd, MemWr, and WBdata

< Write Back Stage => RegWr control signal is used in the last stage

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 22

Control Sighals Summary

Execute PC
Stage Control
R-Type | 1=Rd X 0=Reg func 0 0 0 1 0 = next PC
ADDI 0=Rt 1=sign 1=Imm ADD 0 0 0 1 0 = next PC
SLTI 0=Rt 1=sign 1=Imm SLT 0 0 0 1 0 = next PC
ANDI O=Rt O=zero 1=Imm AND 0 0 0 1 0 = next PC
ORI 0=Rt O=zero 1=Imm OR 0 0 0 1 0 =next PC
LW O0=Rt 1=sign 1=Imm ADD 1 0 1 1 0 = next PC
SW X 1=sign 1=Imm ADD 0 1 X 0 0 = next PC
BEQ X X 0=Reg SUB 0 0 X 0 Oor2=BTA
BNE X X 0=Reg SUB 0 0 X 0 Oor2=BTA
J X X X X 0 0 X 0 1 = jump target

PCSrc =0 or 2 (BTA) for BEQ and BNE, depending on the zero flag

Pipelined Processor Design

COE 233 — Logic Design and Computer Organization

© Muhamed Mudawar — slide 23

Next . ..

¢ Serial versus Pipelined Execution

** Pipelined Datapath and Control

** Pipeline Hazards

*» Data Hazards and Forwarding

*» Load Delay, Hazard Detection, and Stall

s+ Control Hazards

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 24

Pipeline Hazards

*» Hazards: situations that would cause incorrect execution

< If next instruction were launched during its designated clock cycle

1. Structural hazards

<> Caused by resource contention

< Using same resource by two instructions during the same cycle

2. Data hazards
<> An instruction may compute a result needed by next instruction

<> Data hazards are caused by data dependencies between instructions

3. Control hazards
< Caused by instructions that change control flow (branches/jumps)

< Delays in changing the flow of control

*» Hazards complicate pipeline control and limit performance

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 25

Structural Hazards

s Problem

< Attempt to use the same hardware resource by two different

Instructions during the same clock cycle

“ Example Structural Hazard
N _ Two instructions are
<> Writing back ALU result in stage 4 attempting to write the
: : . : reqister file during
< Conflict with writing load data in stage 5 same cycle
|
w Iw $16, 8($s5) IF | ID | EX |[MEM|WB | __- -7
% ori $t4,$s3,7 IF | ID | EX | WB
s |
,& sub $15, $s2, $s3 IF | ID | EX | WB
S osw $s2,10($s3) IF | ID | EX |MEM

—

"CCl CC2 CC3 CC4 CC5 CC6 CCT7 CC8 CC9 Time

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 26

Resolving Structural Hazards

++ Serious Hazard:

<> Hazard cannot be ignored

“» Solution 1: Delay Access to Resource

<> Must have mechanism to delay instruction access to resource

< Delay all write backs to the register file to stage 5

» ALU instructions bypass stage 4 (memory) without doing anything
¢ Solution 2: Add more hardware resources (more costly)

< Add more hardware to eliminate the structural hazard

< Redesign the reqister file to have two write ports
= First write port can be used to write back ALU results in stage 4

= Second write port can be used to write back load data in stage 5

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 27

Data Hazards

*» Dependency between instructions causes a data hazard

*» The dependent instructions are close to each other

< Pipelined execution might change the order of operand access

++» Read After Write — RAW Hazard

< Given two instructions | and J, where | comes before J
< Instruction J should read an operand after it is written by |
< Called a data dependence in compiler terminology

I: add $s1, $s2, $s3 # $s1 is written

J: sub $s4, $s1, $s3 # $s1 is read

<> Hazard occurs when J reads the operand before | writes it

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 28

Example of a RAW Data Hazard

Time (cycles) — CC1 =+ CC2 —+ CC3 —+ CC4 —— CC5—+ CC6 — CCT — CC8 —»
T valueof $s2 | 10 | 10 | 10 { 10 { 10 | 20 | 20 | 20
. =l i ‘ ‘
S sub $s2, $t1, $13 IM HiF{Reg[il >ALUHiF D ;|~ g| !
S S S R e R
S add $s4, $s2, $15 ‘H 1M -EZReg’:T ALU Hj |j| ‘HReg| | |
5 b el L e et A
Q | : b | £ [L\l | |
X or $s6,$13, $s2 i i (el -iZRégZiZ@ TomfliHreq] |
£ | | T = o1 5 n
£ and $s7, $14, $s2 ; ; ; v HHreg R Ao HITomMiHReg
g - IR
l sw $18,10($s2) = 1M -} Reg[liC>AL HIHDM

% Result of sub is needed by add, or, and, & sw instructions
% Instructions add & or will read old value of $s2 from reg file

¢ During CC5, $s2 is written at end of cycle, old value is read

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 29

Solution 1: Stalling the Pipeline

N Time (in cycles) - CC1+CC2+ CC3+ CCA -+ CC5+ CC6—+ CCT + CC8 + CCY —
L valueof $s2 | 10 { 10 { 10 { 10 | 10 | 20 | 20 | 20 | 20
Q) ' - -+ + ' | | | |

o i i i i |

S sub $s2, $t1, $13 ||v| -EZReg:i:@-EIDMﬁE-R‘&g g : : :

S At i L P i T S S

§ add$s4,$s2,$15 HIM -E:Re@fE:RédjE:R'eg:E:Regj@-E[DMIE-Reg
L | H H H ' H H H H

0 | | . stall | stall | stall m i W

S oo gso g3z 0 [imKHredialov]
v ; ; ; ; ; H H i i

¢ Three stall cycles during CC3 thru CC5 (wasting 3 cycles)

< The 3 stall cycles delay the execution of add and the fetching of or

< The 3 stall cycles insert 3 bubbles (No operations) into the ALU

¢ The add instruction remains in the second stage until CC6

+¢» The or instruction is not fetched until CC6

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 30

Solution 2: Forwarding ALU Result

*» The ALU result is forwarded (fed back) to the ALU input

<> No bubbles are inserted into the pipeline and no cycles are wasted

¢ ALU result is forwarded from ALU, MEM, and WB stages

Time (cycles) —CCl +CC2+CC3+CC4—+CCH+CC6—+CCT—+CCB——
T valueof $s2 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20
! A=l —
-§ sub $s2, $t1, $13 IM -i:Reg:i:@ J-D J-HReg
S : D F Z h i
.g add $s4, $s2, $t5 - IM -i:Reg_E ALU - &M E-Reg
5 L Sl ey
Q ! ! B T : T'._.IT !
L%: or $s6, $13, $s2 - IM -E:Reg L AL DM E-Reg
€ | | - ~ - ' - H
gw and $s7, $s6, $s2 = IM HifRegl\l! ALU-E-[DMIE-Reg
S N L i1 Bl
= L N | Tt Iy
l sw $18, 10($s2) | | M 1M -E:Reg:i:@-i-DM

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 31

Implementing Forwarding

s Two multiplexers added at the inputs of A & B registers

< Data from ALU stage, MEM stage, and WB stage Is fed back

* Two signals: ForwardA and ForwardB to control forwarding

ForwardA

Imm16 @ 32 I -
I _ 32 ALU result
0
] Rs Q@ I
c RA T BUsA ; o Address _
Sl I rt 3] 3 Data 0
S *IRB % BusB I — Memory 2
= =) 0 32 S
0l g “ 1 al32 Data_out 1
— RW = BusW 2 _— Data_in
— 2 \3 . I
o) & I = & 5
0 »| © »| O »| ©
J o @ T '|
Rd T T T
clk
ForwardB

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 32

Forwarding Control Signals

Signal Explanation

ForwardA =0 | First ALU operand comes from register file = Value of (RS)

ForwardA =1 | Forward result of previous instruction to A (from ALU stage)

ForwardA = 2 | Forward result of 2"d previous instruction to A (from MEM stage)

ForwardA = 3 | Forward result of 3™ previous instruction to A (from WB stage)

ForwardB = 0 | Second ALU operand comes from register file = Value of (Rt)

ForwardB =1 | Forward result of previous instruction to B (from ALU stage)

ForwardB =2 | Forward result of 2" previous instruction to B (from MEM stage)

ForwardB = 3 | Forward result of 3 previous instruction to B (from WB stage)

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 33

Forwarding Example

Instruction sequence: When sub instruction in ID stage
1w $t4, 4($t0) ori will be in the ALU stage
ori $t7, $t1, 2 1w will be in the MEM stage

sub $t3, $t4, $t7 ForwardA = 2 (from MEM stage)

sub $t3,%t4,%t7 ori $t7,%$t1,2 lw $t4,4(%t0)

-

Ex)—
I - 32 ALU result
N T iI=h
c T BusA Address _
2 E 6 Data
S 2 Bus Memory 8
= > 0 32 S
@ 8:) “ d Data_out J
- RW ~ ~ BusW P Data_in
= I s = T
B 22 f s = m
0 »| © »| © NES
J o x T '|
T L T

clk

ForwardB =1 (from ALU stage)

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 34

RAW Hazard Detection

“* Current instruction is being decoded in the Decode stage

“* Previous instruction is in the Execute stage

“ Second previous instruction is in the Memory stage

“* Third previous instruction is in the Write Back stage

If

Else if
Else if
Else

If

Else if
Else if
Else

Pipelined Processor Design

((Rs !'= 0) and (Rs
((Rs != 0) and (Rs
((Rs !'= 0) and (Rs
ForwardA = ©

((Rt '= @) and (Rt
((Rt != @) and (Rt
((Rt != @) and (Rt
ForwardB = 0

Rd2)
Rd3)
Rd4)

Rd2)
Rd3)
Rd4)

and
and
and

and
and
and

(EX.Reglhr))
(MEM.Reglhr))
(WB.Reglhr))

(EX.Reglhr))
(MEM.Reghr))
(WB.Reghr))

COE 233 — Logic Design and Computer Organization

ForwardA
ForwardA
ForwardA

ForwardB
ForwardB
ForwardB

© Muhamed Mudawar — slide 35

Hazard Detecting and Forwarding Logic

ExtOp
@ 32 L
I _ 32 ALU result
— [0
c RA T BUsA l ; o Address _
o S
= [} 3 Data 0
o RB + @©
S @ BusB l i Memory ©
s (@) 0 32 Q
@ S:J I || 1 = 32 Data_out 1
= RW " Busw > ™1 pata_in
| 7'y \3 [| o~ I
q 432 A ™ <
0 o > T
W 7 7
F T T
clk
| | -
ForwardB ForwardA
RegDst <
RS — Hazard «
Detect & |_
Rt = <
ExtOp Forward |¢
— | ALUSIC MemRd
o RegWr ALUOp RegWr MemWr RegWr
p] f WBdata
Main " | T
& ALU »| >3 >
7w g =
func =\ " Control _ = ‘rm:l |
» Ll Ll ;

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 36

Next . ..

¢ Serial versus Pipelined Execution

** Pipelined Datapath and Control

** Pipeline Hazards

*» Data Hazards and Forwarding

*»+ Load Delay, Hazard Detection, and Stall

s+ Control Hazards

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 37

Load Delay

* Unfortunately, not all data hazards can be forwarded

<> Load has a delay that cannot be eliminated by forwarding

¢ In the example shown below ...

< The LW instruction does not read data until end of CC4
< Cannot forward data to ADD at end of CC3 - NOT possible

+—— Time (cycles) —+ CC1+ CC2 + CC3 +- CC4—+ CC5+ CC6+ CCT + CC8 ——

5 lw $s2, 20($11) IF -E:Reg:i ALU-E D Reg However, load can

;E)’ : = = % %r\:% ' | forward data to 2" next

c add $s4, $s2,$t5 4 IF HiMReg[J>AL L B\l\/r HReg| | and later instructions

o | : : : : : | .

[. | H = T - T |

> | | : : : : : |

2 or $16,$13, $s2 i [UF iFReoH™ vl e
1 N =

l and $t7, $s2, $t4 | ; ; H IF -[:Reg_ﬁ ALUHIH DM H Reg

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 38

Detecting RAW Hazard after Load

¢ Detecting a RAW hazard after a Load instruction:

<> The load instruction will be in the EX stage

<> Instruction that depends on the load data is in the decode stage

» Condition for stalling the pipeline
if ((EX.MemRd == 1) // Detect Load in EX stage

and (ForwardA==1 or ForwardB==1)) Stall // RAW Hazard

*» Insert a bubble into the EX stage after a load instruction

<> Bubble is a no-op that wastes one clock cycle

< Delays the dependent instruction after load by one cycle

= Because of RAW hazard

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 39

Stall the Pipeline for one Cycle

% ADD instruction depends on LW =» stall at CC3

<> Allow Load instruction in ALU stage to proceed
< Freeze PC and Instruction registers (NO instruction is fetched)

<> Introduce a bubble into the ALU stage (bubble is a NO-OP)
% Load can forward data to next instruction after delaying it

A‘— Time (cycles) —— CC1 +—CC2 + CC3 + CC4+ CCH+ CC6+ CC7+CC8B—

w $s2, 20($s1) IM-E:Reg:EE-[DM*E Reg|

c i

) I . |

o | M T Ti | | |

O add $s4, $s2, $15 i H 1M Hil stall ig@“@ai odoble @

£ i i I 1 i ii

< ' : : : i .

? \[Reg| i >AL -[DMM!HReg|

£]
E-IM -i:Reg ALU-E DMHMiHRe

l or $16, $s3, $s2 i I sl ﬂ g

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 40

Showing Stall Cycles

+ Stall cycles can be shown on instruction-time diagram
*» Hazard is detected in the Decode stage

+» Stall indicates that instruction is delayed

¢ Instruction fetching is also delayed after a stall

s Example:

Data forwarding is shown using green arrows

w $s1, ($15) IF | ID | EX [MEM| WB

lw $s2, 8($s1) IF |Stall| ID \Ex MEM| WB

add $v0, $s2, $13 IF |Stall| ID [“EX | - | WB
sub $vi, $s2, $v0 IF | ID [MEX WB

" CCl CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 Time

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 41

Hazard Detecting and Forwarding Logic

ExtOp
Imm16 32
Ext
32 ALU result
0
]] Rs Qo
c RA T BUSA ; Address _
9 Rt o 3 Data 0
O 3 "R @ BusB Memory £
o s o) 0 32 8
) & 1 Data_out 1
= RW BusW rsiemp :
A 2 Data_in
= = 3 3 +
—’32 A
>0 3
1 1
Rd T
RegDst
clk d
| | ”
ForwardB ForwardA
O | |
a o (P
[0) () -
% % Rs . Hazard Detect ;
2 2 Forward <
a) a Rt = <
and Stall <
S <
l | ALUSIC MemRd
® RegWr ALUOp MemRd RegWr MemWr RegWr
o _ Stall | WBdata
P Main ; v 4
—_— Control Signals
o\ &ALU »(0) e =
unc >
Control Bubble = 0 =—»{1 H = =
p = :Ig—o

Pipelined Processor Design

COE 233 — Logic Design and Computer Organization

© Muhamed Mudawar — slide 42

Code Scheduling to Avoid Stalls

s Compilers reorder code in a way to avoid load stalls

*» Consider the translation of the following statements:
A=B+C; D=E-F; // A thru F are in Memory

* Slow code: * Fast code: No Stalls
lw $10,4($s0) # &B = 4($s0) lw $TO 4($s0)

Iw # &C = 8($s0) Iw
add $12,$10$tD) # stall cycle Iw |
sw $t2,0($s0) # &A = 0($s0) / lw $t4)
w $13,16($s0) # &E = 16($s0) / add $t2,°%10,
Iw # &F = 20($50) sw $t2, 0($50)
sub $15,$t3$t4 # stall cycle sub $t5, $13,(519
sw $15,12($0) # &D = 12($0) sw $15, 12($s0)

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 43

Name Dependence: Write After Read

¢ Instruction J should write its result after it is read by I
*» Called anti-dependence by compiler writers
I: sub $t4, $t1, $t3 # $t1 is read
J: add $t1, $t2, $t3 # $t1 is written
** Results from reuse of the name $t1
*» NOT a data hazard in the 5-stage pipeline because:
< Reads are always in stage 2

< Writes are always in stage 5, and

< Instructions are processed in order

*» Anti-dependence can be eliminated by renaming

< Use a different destination register for add (eg, $t5)

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 44

Name Dependence: Write After Write

* Same destination register is written by two instructions

¢ Called output-dependence in compiler terminology

I: sub $tl, $t4, $t3 # Stl is written

J: add $tl1, $t2, $t3 # $tl is written again
** Not a data hazard in the 5-stage pipeline because:

< All writes are ordered and always take place in stage 5

*» However, can be a hazard in more complex pipelines
< If instructions are allowed to complete out of order, and
<> Instruction J completes and writes $t1 before instruction I

“ Output dependence can be eliminated by renaming $t1

*+ Read After Read is NOT a name dependence

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 45

Next . ..

¢ Serial versus Pipelined Execution

** Pipelined Datapath and Control

** Pipeline Hazards

*» Data Hazards and Forwarding

*» Load Delay, Hazard Detection, and Stall

s Control Hazards

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 46

Control Hazards

*» Jump and Branch can cause great performance loss
*» Jump instruction needs only the jump target address

¢ Branch instruction needs two things:
<> Branch Result Taken or Not Taken

<> Branch Target Address
= PC+4 If Branch is NOT taken

= PC+ 4+ 4 x immediate If Branch is Taken

* Jump and Branch targets are computed in the ID stage
< At which point a new instruction is already being fetched
<> Jump Instruction: 1-cycle delay

< Branch: 2-cycle delay for branch result (taken or not taken)

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 47

1-Cycle Jump Delay

% Control logic detects a Jump instruction in the 2"d Stage

* Next instruction is fetched anyway

«» Convert Next instruction into bubble (Jump is always taken)

J L1 H— |-

Next instruction

Ll: Target instruction

Pipelined Processor Design

cc2 cc3

ccl

cch ccb cc’

Bubble |:| Bubble |:||:|

1=

1

Reg

COE 233 — Logic Design and Computer Organization © Muhamed Mudawar — slide 48

2-Cycle Branch Delay

% Control logic detects a Branch instruction in the 2" Stage
% ALU computes the Branch outcome in the 3" Stage
* Nextl and Next2 instructions will be fetched anyway

+» Convert Nextl and Next2 into bubbles if branch is taken

ccl cc2 cc3 ccl cch ccb cc’
Beq $tl1,%t2,L1 H— |F —:Reg::a
Branch M T M
Ll: target instruction Target | = |F Reg :@_ DM
Addr | L |

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 49

If Branch is NOT Taken . . .

¢ Branches can be predicted to be NOT taken

¢ If branch outcome i1s NOT taken then
<> Nextl and Next2 instructions can be executed
<> Do not convert Nextl & Next2 into bubbles

<> No wasted cycles

ccl cc2 cc3 cc4 cch ccb cc’/

Beq $tl1,$t2,L1 |:|— IF /[| Reg :@ NOT Taken
Nextl — IF [Reg :I:@—I—lD_MJ-I— Reg
Next2 - IF —k Reg :I:@—Iml— Reg

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 50

Pipelined Jump and Branch

Branch Target Address

Jump Target = PC[31:28] Il Imm26

———) <
Next PC Address ln_:)
ForwardA |
32 | =
) E
Instruction Rs o | l_’ 0
= =p| 1
Memory RA [T BUsA i x
Rt . < | 3
1 @) Address c »RB K% BusB—l | |
o) g (@) 0
2 Instruction 0 o @
= o =l 1 a
1 = RW N BusW = 2
) Y < 7'y »\3
PCSrC Bubble = NOP ‘ra
)
Jum R
g _ P Kill
o Kills next o
I . . @ ForwardB
-‘Dﬂ Instruction -‘Dﬁ
Rs = d I G Rd2, Rd3, Rd4
l Rt = Forward & Sta | — Reg\Wr, MemRd
i Kill2 stal
IR
Op

v Taken branch kills two
S

Main
& ALU
Control

Control Signal

0 9 Control Signals
Bubble = 0 =1 -

¥ BEQ, BNE

MEM

BEQ, BNE

Zero

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 51

PC Control for Pipelined Jump and Branch

if ((BEQ && Zero) || (BNE && !Zero))

{ Imp=0; Br=1; Killl=1; Kill2=1; }
else if (3J)

{ Jmp=1; Br=0; Killl=1; Kill2=0; }
else

{ Jmp=0; Br=0; Killl=0; Kill2=0; } 6?]

Br = ((BEQ - Zero) + (BNE - Zero)) ¢
Jmp =J . Br t[j
Kill1 J + Br v v v
Kill2 Br Kill2 Killl 13r Jmpj)

PCSrc

BEQ BNE J

Zero I

Y

{ Br,Jmp } // 0,1, or2 PCSrc

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 52

Jump and Branch Impact on CPI

*» Base CPI = 1 without counting jump and branch

* Unconditional Jump = 5%, Conditional branch = 20%

“ 90% of conditional branches are taken

* Jump Kkills next instruction, Taken Branch kills next two

** What is the effect of jump and branch on the CPI?

Solution:

“ Jump adds 1 wasted cycle for 5% of instructions = 1 x 0.05

*» Branch adds 2 wasted cycles for 20% x 90% of instructions
=2x0.2%x0.9=0.36

“* New CPI =1+ 0.05 + 0.36 = 1.41 (due to wasted cycles)

Pipelined Processor Design COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 53

