
CPU Performance

COE 233

Logic Design and Computer Organization

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 2

Presentation Outline

❖ Response Time and Throughput

❖ CPU Performance Equation

❖ Single-Cycle versus Multi-Cycle CPU Performance

❖MIPS Performance Metric

❖ Amdahl’s Law

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 3

Response Time and Throughput

❖ Response Time

 Time between start and completion of a task, as observed by end user

 Response Time = CPU Time + Waiting Time (I/O, OS scheduling, etc.)

❖ Throughput

 Number of tasks the machine can run in a given period of time

❖ Decreasing execution time improves throughput

 Example: using a faster version of a processor

 Less time to run a task  more tasks can be executed

❖ Increasing throughput can also improve response time

 Example: increasing number of processors in a multiprocessor

 More tasks can be executed in parallel

 Execution time of individual sequential tasks is not changed

 But less waiting time in scheduling queue reduces response time

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 4

❖ For some program running on machine X

❖ X is n times faster than Y

Higher Performance = Less Execution Time

Execution timeX

1
PerformanceX =

PerformanceY

PerformanceX

Execution timeX

Execution timeY
= n=

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 5

❖ Real Elapsed Time

 Counts everything:

▪ Waiting time, Input/output, disk access, OS scheduling, … etc.

 Useful number, but often not good for comparison purposes

❖ Our Focus: CPU Execution Time

 Time spent while executing the program instructions

 Doesn't count the waiting time for I/O or OS scheduling

 Can be measured in seconds, or

 Can be related to number of CPU clock cycles

What do we mean by Execution Time?

CPU Execution Time = CPU cycles × Cycle time
Clock rate

CPU cycles
=

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 6

❖ Clock Cycle = Clock period

 Duration between two consecutive rising edges of the clock signal

❖ Clock rate = Clock frequency = 1 / Clock Cycle

 1 Hz = 1 cycle/sec 1 KHz = 103 cycles/sec

 1 MHz = 106 cycles/sec 1 GHz = 109 cycles/sec

 2 GHz clock has a cycle time = 1/(2×109) = 0.5 nanosecond (ns)

What is the Clock Cycle?

Clock

Data transfer &

Computation

Update state

Clock Cycle

Clock Cycle 1 Clock Cycle 2 Clock Cycle 3

❖ Operation of digital hardware is governed by a clock

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 7

Improving Performance

❖ To improve performance, we need to

 Reduce the number of clock cycles required by a program, or

 Reduce the clock cycle time (increase the clock rate)

❖ Example:

 A program runs in 10 seconds on computer X with 2 GHz clock

 What is the number of CPU cycles on computer X ?

 We want to design computer Y to run same program in 6 seconds

 But computer Y requires 10% more cycles to execute program

 What is the clock rate for computer Y ?

❖ Solution:

 CPU cycles on computer X = 10 sec × 2 × 109 cycles/s = 20 × 109 cycles

 CPU cycles on computer Y = 1.1 × 20 × 109 = 22 × 109 cycles

 Clock rate for computer Y = 22 × 109 cycles / 6 sec = 3.67 GHz

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 8

❖ Instructions take different number of cycles to execute

 Multiplication takes more time than addition

 Floating point operations take longer than integer ones

 Accessing memory takes more time than accessing registers

❖ CPI is an average number of clock cycles per instruction

❖ Important point

Changing the cycle time often changes the number of cycles

required for various instructions

Clock Cycles per Instruction (CPI)

1

I1

cycles

I2 I3 I6I4 I5 I7

2 3 4 5 6 7 8 9 10 11 12 13 14

CPI = 14/7 = 2.0

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 9

❖ To execute, a given program will require …

 Some number of machine instructions

 Some number of clock cycles

 Some number of seconds

❖We can relate CPU clock cycles to instruction count

❖ Performance Equation: (related to instruction count)

Performance Equation

CPU cycles = Instruction Count × CPI

CPU Execution Time = Instruction Count × CPI × Cycle time

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 10

Understanding Performance Equation

I-Count CPI Cycle

Program X

Compiler X X

ISA X X

Organization X X

Technology X

Execution Time = Instruction Count × CPI × Cycle time

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 11

❖ Suppose we have two implementations of the same ISA

❖ For a given program

 Machine A has a clock cycle time of 250 ps and a CPI of 2.0

 Machine B has a clock cycle time of 500 ps and a CPI of 1.2

 Which machine is faster for this program, and by how much?

❖ Solution:

 Both computer execute same count of instructions = I

 CPU execution time (A) = I × 2.0 × 250 ps = 500 × I ps

 CPU execution time (B) = I × 1.2 × 500 ps = 600 × I ps

 Computer A is faster than B by a factor = = 1.2

Using the Performance Equation

600 × I

500 × I

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 12

Determining the CPI

❖ Different types of instructions have different CPI

Let CPIi = clocks per instruction for class i of instructions

Let Ci = instruction count for class i of instructions

❖ Designers often obtain CPI by a detailed simulation

❖ Hardware counters are also used for operational CPUs

CPU cycles = (CPIi × Ci)
i = 1

n

∑ CPI =

(CPIi × Ci)
i = 1

n

∑

i = 1

n

∑ Ci

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 13

Example on Determining the CPI

❖ Problem

A compiler designer is trying to decide between two code sequences for a

particular machine. Based on the hardware implementation, there are three

different classes of instructions: class A, class B, and class C, and they require

one, two, and three cycles per instruction, respectively.

The first code sequence has 5 instructions: 2 of A, 1 of B, and 2 of C

The second sequence has 6 instructions: 4 of A, 1 of B, and 1 of C

Compute the CPU cycles for each sequence. Which sequence is faster?

What is the CPI for each sequence?

❖ Solution

CPU cycles (1st sequence) = (2×1) + (1×2) + (2×3) = 2+2+6 = 10 cycles

CPU cycles (2nd sequence) = (4×1) + (1×2) + (1×3) = 4+2+3 = 9 cycles

Second sequence is faster, even though it executes one extra instruction

CPI (1st sequence) = 10/5 = 2 CPI (2nd sequence) = 9/6 = 1.5

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 14

Given: instruction mix of a program on a RISC processor

What is average CPI?

What is the percent of time used by each instruction class?

Classi Freqi CPIi

ALU 50% 1

Load 20% 5

Store 10% 3

Branch 20% 2

How faster would the machine be if load time is 2 cycles?

What if two ALU instructions could be executed at once?

Second Example on CPI

CPIi × Freqi

0.5×1 = 0.5

0.2×5 = 1.0

0.1×3 = 0.3

0.2×2 = 0.4

%Time

0.5/2.2 = 23%

1.0/2.2 = 45%

0.3/2.2 = 14%

0.4/2.2 = 18%

Average CPI = 0.5+1.0+0.3+0.4 = 2.2

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 15

Presentation Outline

❖ Response Time and Throughput

❖ CPU Performance Equation

❖ Single-Cycle versus Multi-Cycle CPU Performance

❖MIPS Performance Metric

❖ Amdahl’s Law

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 16

Drawback of Single Cycle Processor

❖ Single Cycle ➔ CPI = 1 for all instructions

❖Major drawback is the Long cycle time

❖ All instructions take as much time as the slowest instruction

longest delay

Instruction

FetchALU
Decode

Reg Read
ALU

Reg

Write

Load
Instruction

Fetch

Decode

Reg Read

Compute

Address

Reg

Write
Memory Read

Store
Instruction

Fetch

Decode

Reg Read

Compute

Address
Memory Write

Jump
Instruction

Fetch

Decode &

Update PC

Branch
Instruction

Fetch

Reg Read

Br Target

Compare &

Update PC

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 17

Alternative: Multicycle Implementation

❖ Break instruction execution into multiple stages

 Instruction fetch

 Instruction decode, register read, target address for jump/branch

 Execution, memory address calculation, or branch outcome

 Memory access or ALU instruction completion

 Load instruction completion

❖ One clock cycle per stage (clock cycle is reduced)

 First 2 stages are the same for all instructions

Instruction # cycles Instruction # cycles

ALU & Store 4 Branch 3

Load 5 Jump 2

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 18

Single-Cycle versus Multi-Cycle Performance

❖ Assume the following operation times for components:

 Access time for Instruction and data memories: 200 ps

 Delay in ALU and adders: 180 ps

 Delay in Decode and Register file access (read or write): 150 ps

 Ignore the other delays in PC, mux, extender, and wires

❖Which of the following would be faster and by how much?

 Single-cycle implementation for all instructions

 Multi-cycle implementation optimized for every class of instructions

▪ Load = 5 cycles, ALU = Store = 4 cycles, Branch = 3 cycles, Jump = 2 cycles

❖ Assume the following instruction mix:

 40% ALU, 20% Loads, 10% stores, 20% branches, & 10% jumps

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 19

Solution

Instruction

Class

Instruction

Memory

Register

Read

ALU

Operation

Data

Memory

Register

Write
Total

ALU 200 150 180 150 680 ps

Load 200 150 180 200 150 880 ps

Store 200 150 180 200 730 ps

Branch 200 150 180 530 ps

Jump 200 150 350 ps

❖ For fixed single-cycle implementation:

 Clock cycle =

❖ For multi-cycle implementation:

 Clock cycle =

 Average CPI =

❖ Speedup =

0.4×4 + 0.2×5 + 0.1×4+ 0.2×3 + 0.1×2 = 3.8

max (200, 150, 180) = 200 ps (maximum delay at any step)

880 ps determined by longest delay (load instruction)

(1 × 880 ps) / (3.8 × 200 ps) = 880 / 760 = 1.16

Compare and update PC

Decode and update PC

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 20

❖ MIPS: Millions Instructions Per Second

❖ Sometimes used as performance metric

 Faster machine  larger MIPS

❖ MIPS specifies instruction execution rate

❖We can also relate execution time to MIPS

MIPS Performance Metric

Instruction Count

Execution Time × 106

Clock Rate

CPI × 106
MIPS = =

Inst Count

MIPS × 106

Inst Count × CPI

Clock Rate
Execution Time = =

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 21

Drawbacks of MIPS

Three problems using MIPS as a performance metric

1. Does not take into account the capability of instructions

 Cannot use MIPS to compare computers with different instruction sets

because the instruction count will differ

2. MIPS varies between programs on the same computer

 A computer cannot have a single MIPS rating for all programs

3. MIPS can vary inversely with performance

 A higher MIPS rating does not always mean better performance

 Example in next slide shows this anomalous behavior

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 22

❖ Two different compilers are being tested on the same program

for a 4 GHz machine with three different classes of instructions:

Class A, Class B, and Class C, which require 1, 2, and 3 cycles,

respectively.

❖ The instruction count produced by the first compiler is 5 billion

Class A instructions, 1 billion Class B instructions, and 1 billion

Class C instructions.

❖ The second compiler produces 10 billion Class A instructions, 1

billion Class B instructions, and 1 billion Class C instructions.

❖Which compiler produces a higher MIPS?

❖Which compiler produces a better execution time?

MIPS example

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 23

Solution to MIPS Example

❖ First, we find the CPU cycles for both compilers

 CPU cycles (compiler 1) = (5×1 + 1×2 + 1×3)×109 = 10×109

 CPU cycles (compiler 2) = (10×1 + 1×2 + 1×3)×109 = 15×109

❖ Next, we find the execution time for both compilers

 Execution time (compiler 1) = 10×109 cycles / 4×109 Hz = 2.5 sec

 Execution time (compiler 2) = 15×109 cycles / 4×109 Hz = 3.75 sec

❖ Compiler1 generates faster program (less execution time)

❖ Now, we compute MIPS rate for both compilers

 MIPS = Instruction Count / (Execution Time × 106)

 MIPS (compiler 1) = (5+1+1) × 109 / (2.5 × 106) = 2800

 MIPS (compiler 2) = (10+1+1) × 109 / (3.75 × 106) = 3200

❖ So, code from compiler 2 has a higher MIPS rating !!!

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 24

Amdahl’s Law

❖ Amdahl's Law is a measure of Speedup

 How a program performs after improving portion of a computer

 Relative to how it performed previously

❖ Let f = Fraction of the computation time that is enhanced

❖ Let s = Speedup factor of the enhancement only

Speedupoverall = =
Execution Time new

Execution Time old

((1 – f) + f / s)

1

Fraction f of old time to be enhanced 1 – f

f / s of old time

Execution Time old

Execution Time new 1 – f

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 25

❖ Suppose a program runs in 100 seconds on a machine, with

multiply responsible for 80 seconds of this time. How much do

we have to improve the speed of multiplication if we want the

program to run 4 times faster?

❖ Solution: suppose we improve multiplication by a factor s

25 sec (4 times faster) = 80 sec / s + 20 sec

s = 80 / (25 – 20) = 80 / 5 = 16

Improve the speed of multiplication by s = 16 times

❖ How about making the program 5 times faster?

20 sec (5 times faster) = 80 sec / s + 20 sec

s = 80 / (20 – 20) = ∞ Impossible to make 5 times faster!

Example on Amdahl's Law

CPU Performance COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 26

Example 2 on Amdahl's Law

❖ Suppose that floating-point square root is responsible for 20% of

the execution time of a graphics benchmark and ALL FP

instructions are responsible for 60%

❖ One proposal is to speedup FP SQRT by a factor of 10

❖ Alternative choice: make ALL FP instructions 2X faster, which

choice is better?

❖ Answer:

 Choice 1: Improve FP SQRT by a factor of 10

 Speedup (FP SQRT) = 1/(0.8 + 0.2/10) = 1.22

 Choice 2: Improve ALL FP instructions by a factor of 2

 Speedup = 1/(0.4 + 0.6/2) = 1.43 ➔ Better

