
Single Cycle Processor Design

COE 233

Logic Design and Computer Organization

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 2

Presentation Outline

❖ Designing a Processor: Step-by-Step

❖ Datapath Components and Clocking

❖ Assembling an Adequate Datapath

❖ Controlling the Execution of Instructions

❖ Main, ALU, and PC Control

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 3

Designing a Processor: Step-by-Step

1. Analyze instruction set => datapath requirements

 The meaning of each instruction is given by the register transfers

 Datapath must include storage elements for ISA registers

 Datapath must support each register transfer

2. Select datapath components and clocking methodology

3. Assemble datapath meeting the requirements

4. Analyze implementation of each instruction

 Determine the setting of control signals for register transfer

5. Assemble the control logic

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 4

Review of MIPS Instruction Formats

❖ All instructions are 32-bit wide

❖ Three instruction formats: R-type, I-type, and J-type

 Op6: 6-bit opcode of the instruction

 Rs5, Rt5, Rd5: 5-bit source and destination register numbers

 sa5: 5-bit shift amount used by shift instructions

 funct6: 6-bit function field for R-type instructions

 immediate16: 16-bit immediate constant or PC-relative offset

 address26: 26-bit target address of the jump instruction

Op6 Rs5 Rt5 Rd5 funct6sa5

Op6 Rs5 Rt5 immediate16

Op6 address26

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 5

MIPS Subset of Instructions

❖ Only a subset of the MIPS instructions is considered

 ALU instructions (R-type): add, sub, and, or, xor, slt

 Immediate instructions (I-type): addi, slti, andi, ori, xori

 Load and Store (I-type): lw, sw

 Branch (I-type): beq, bne

 Jump (J-type): j

❖ This subset does not include all the integer instructions

❖ But sufficient to illustrate design of datapath and control

❖ Concepts used to implement the MIPS subset are used to

construct a broad spectrum of computers

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 6

Details of the MIPS Subset

Instruction Meaning Format

add rd, rs, rt addition op6 = 0 rs5 rt5 rd5 0 0x20

sub rd, rs, rt subtraction op6 = 0 rs5 rt5 rd5 0 0x22

and rd, rs, rt bitwise and op6 = 0 rs5 rt5 rd5 0 0x24

or rd, rs, rt bitwise or op6 = 0 rs5 rt5 rd5 0 0x25

xor rd, rs, rt exclusive or op6 = 0 rs5 rt5 rd5 0 0x26

slt rd, rs, rt set on less than op6 = 0 rs5 rt5 rd5 0 0x2a

addi rt, rs, imm16 add immediate 0x08 rs5 rt5 imm16

slti rt, rs, imm16 slt immediate 0x0a rs5 rt5 imm16

andi rt, rs, imm16 and immediate 0x0c rs5 rt5 imm16

ori rt, rs, imm16 or immediate 0x0d rs5 rt5 imm16

xori rt, imm16 xor immediate 0x0e rs5 rt5 imm16

lw rt, imm16(rs) load word 0x23 rs5 rt5 imm16

sw rt, imm16(rs) store word 0x2b rs5 rt5 imm16

beq rs, rt, offset16 branch if equal 0x04 rs5 rt5 offset16

bne rs, rt, offset16 branch not equal 0x05 rs5 rt5 offset16

j address26 jump 0x02 address26

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 7

Instruction Fetch/Execute

❖ R-type Fetch instruction: Instruction ← MEM[PC]

Fetch operands: data1 ← Reg(rs), data2 ← Reg(rt)

Execute operation: ALU_result ← func(data1, data2)

Write ALU result: Reg(rd) ← ALU_result

Next PC address: PC ← PC + 4

❖ I-type Fetch instruction: Instruction ← MEM[PC]

Fetch operands: data1 ← Reg(rs), data2 ← Extend(imm16)

Execute operation: ALU_result ← op(data1, data2)

Write ALU result: Reg(rt) ← ALU_result

Next PC address: PC ← PC + 4

❖ BEQ Fetch instruction: Instruction ← MEM[PC]

Fetch operands: data1 ← Reg(rs), data2 ← Reg(rt)

Equality: zero ← subtract(data1, data2)

Branch: if (zero) PC ← PC + 4 + 4×sign_ext(offset16)

else PC ← PC + 4

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 8

Instruction Fetch/Execute – cont’d

❖ LW Fetch instruction: Instruction ← MEM[PC]

Fetch base register: base ← Reg(rs)

Calculate address: address ← base + sign_extend(imm16)

Read memory: data ← MEM[address]

Write register Rt: Reg(rt) ← data

Next PC address: PC ← PC + 4

❖ SW Fetch instruction: Instruction ← MEM[PC]

Fetch registers: base ← Reg(rs), data ← Reg(rt)

Calculate address: address ← base + sign_extend(imm16)

Write memory: MEM[address] ← data

Next PC address: PC ← PC + 4

❖ Jump Fetch instruction: Instruction ← MEM[PC]

Target PC address: target ← { PC[31:28] , address26 , 00 }

Jump: PC ← target

concatenation

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 9

Requirements of the Instruction Set

❖Memory

 Instruction memory where instructions are stored

 Data memory where data is stored

❖ Registers

 31 × 32-bit general purpose registers, R0 is always zero

 Read source register Rs

 Read source register Rt

 Write destination register Rt or Rd

❖ Program counter PC register and Adder to increment PC

❖ Sign and Zero extender for immediate constant

❖ ALU for executing instructions

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 10

Next . . .

❖ Designing a Processor: Step-by-Step

❖ Datapath Components and Clocking

❖ Assembling an Adequate Datapath

❖ Controlling the Execution of Instructions

❖ Main, ALU, and PC Control

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 11

❖ Combinational Elements

 ALU, Adder

 Immediate extender

 Multiplexers

❖ Storage Elements

 Instruction memory

 Data memory

 PC register

 Register file

❖ Clocking methodology

 Timing of writes

Components of the Datapath

32

Address

Instruction

Instruction

Memory

32

m
u
x

0

1

select

Extend
3216

ExtOp

A
L
U

ALUOp

ALU result

zero

32

32

32

overflow

P
C

32 32

clk

Registers

RA

RB

BusA

RegWrite

BusB

RW

5

5

5

32

32

32

BusW

clk

Data

Memory

Address

Data_in

Data_out

Mem

Read

Mem

Write

32

32

32

clk

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 12

❖ Register

 Similar to the D-type Flip-Flop

❖ n-bit input and output

❖Write Enable (WE):

 Enable / disable writing of register

 Negated (0): Data_Out will not change

 Asserted (1): Data_Out will become Data_In after clock edge

❖ Edge triggered Clocking

 Register output is modified at clock edge

Register Element

Register

Data_In

Clock
Write

Enable

n bits

Data_Out

n bits

WE

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 13

❖ Register File consists of 31 × 32-bit registers

 BusA and BusB: 32-bit output busses for reading 2 registers

 BusW: 32-bit input bus for writing a register when RegWrite is 1

 Two registers read and one written in a cycle

❖ Registers are selected by:

 RA selects register to be read on BusA

 RB selects register to be read on BusB

 RW selects the register to be written

❖ Clock input

 The clock input is used ONLY during write operation

 During read, register file behaves as a combinational logic block

▪ RA or RB valid => BusA or BusB valid after access time

MIPS Register File

Register

FileRA

RB

BusA

RegWrite

BusB
RW

5

5

5

32

32

32

BusW

Clock

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 14

Details of the Register File

BusA

BusB

"0" "0"

RA

Decoder

5 RB

Decoder

5

R1

R2

R31

.

.

.
BusW

D
e
c
o
d
e
r

RW

5

Clock

RegWrite

.

.

.

R0 is not

used

32

32

32

32

32

32

32

32

32

Tri-state

buffers

WE

WE

WE

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 15

❖ Allow multiple sources to drive a single bus

❖ Two Inputs:

 Data_in

 Enable (to enable output)

❖ One Output: Data_out

 If (Enable) Data_out = Data_in

else Data_out = High Impedance state (output is disconnected)

❖ Tri-state buffers can be

used to build multiplexors

Tri-State Buffers

Data_in Data_out

Enable

Data_0

Data_1

Output

Select

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 16

Building a Multifunction ALU

0

1

2

3

0

1

2

3

Logic Unit

2

AND = 00

OR = 01

XOR = 10

NOR = 11

L
o
g
ic

a
l

O
p
e
ra

ti
o

n

Shifter

2
SLL = 00

SRL = 00

SRA = 01

ROR = 11

S
h
if
t/
R

o
ta

te

O
p
e
ra

ti
o

n

A 32

32
B

A
d
d
e
r

c0

32

32

ADD = 0

SUB = 1

A
ri

th
m

e
ti
c

O
p
e
ra

ti
o

n

Shift = 00

SLT = 01

Arith = 10

Logic = 11

ALU

Selection

32

2

Shift Amount

ALU Result

5

sign
SLT

zerooverflow

SLT: ALU does a SUB

then check the sign

and overflow

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 17

Instruction and Data Memories

❖ Instruction memory needs only provide read access

 Because datapath does not write instructions

 Behaves as combinational logic for read

 Address selects Instruction after access time

❖ Data Memory is used for load and store

 MemRead: enables output on Data_out

▪ Address selects the word to put on Data_out

 MemWrite: enables writing of Data_in

▪ Address selects the memory word to be written

▪ The Clock synchronizes the write operation

❖ Separate instruction and data memories

 Later, we will replace them with caches

MemWriteMemRead

Data

Memory

Address

Data_in

Data_out
32

32

32

Clock

32
Address Instruction

Instruction

Memory

32

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 18

Next . . .

❖ Designing a Processor: Step-by-Step

❖ Datapath Components and Clocking

❖ Assembling an Adequate Datapath

❖ Controlling the Execution of Instructions

❖ Main, ALU, and PC Control

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 19

❖We can now assemble the datapath from its components

❖ For instruction fetching, we need …

 Program Counter (PC) register

 Instruction Memory

 Adder for incrementing PC

Instruction Fetching Datapath

The least significant 2 bits of

the PC are ‘00’ since PC is

a multiple of 4

Datapath does not

handle branch or

jump instructions

P
C

32

Address

Instruction

Instruction

Memory

32

32
32

4
A
d
d

next PC

clk

Improved datapath

increments upper 30

bits of PC by 1

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30

Improved

Datapath

next PC

clk

0
0

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 20

Datapath for R-type Instructions

❖ Control signals

 ALUOp is the ALU operation as defined in the funct field for R-type

 RegWr is used to enable the writing of the ALU result

Op6 Rs5 Rt5 Rd5 funct6sa5

ALUOp

RegWr

A
L
U

32

32

ALU result

32

Rs and Rt fields select two

registers to read. Rd field

selects register to write

BusA & BusB provide data input to ALU.

ALU result is connected to BusW

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30

Registers

RA

RB

BusA

BusB

RW
BusW

5Rs

5Rt

5Rd

clk

Same clock updates PC and Rd register

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 21

Datapath for I-type ALU Instructions

❖ Control signals

 ALUOp is derived from the Op field for I-type instructions

 RegWr is used to enable the writing of the ALU result

 ExtOp is used to control the extension of the 16-bit immediate

Op6 Rs5 Rt5 immediate16

ALUOp

RegWr

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30

5

Registers

RA

RB

BusA

BusB

RW
BusW

5Rs

5Rt

ExtOp

32

32

ALU result

32

32

A
L
U

Extender
Imm16

Second ALU input comes from the extended

immediate. RB and BusB are not used

Same clock edge

updates PC and

Rt
Rt selects register to

write, not Rd

clk

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 22

Combining R-type & I-type Datapaths

❖ Control signals

 ALUOp is derived from either the Op or the funct field

 RegWr enables the writing of the ALU result

 ExtOp controls the extension of the 16-bit immediate

 RegDst selects the register destination as either Rt or Rd

 ALUSrc selects the 2nd ALU source as BusB or extended immediate

A mux selects RW

as either Rt or Rd

Another mux

selects 2nd ALU

input as either data

on BusB or the

extended immediate

ALUOp

RegWr

ExtOp

A
L
U

ALU result

32

32

Registers

RA

RB

BusA

BusB

RW

5

32

BusW

32

Address

Instruction

Instruction

Memory

32

30
P

C
0
0

+1

30
Rs

5

Rd

Extender
Imm16

Rt

32

RegDst ALUSrc

0

1

clk

0

1

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 23

Controlling ALU Instructions

For R-type ALU

instructions, RegDst is ‘1’

to select Rd on RW and

ALUSrc is ‘0’ to select

BusB as second ALU

input. The active part of

datapath is shown in

green

For I-type ALU

instructions, RegDst is ‘0’

to select Rt on RW and

ALUSrc is ‘1’ to select

Extended immediate as

second ALU input. The

active part of datapath is

shown in green

A
L
U

ALUOp

ALU result

32

32

Registers

RA

RB

BusA

RegWr = 1

BusB

RW

5

32

BusW

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30
Rs

5

Rd

Extender

ExtOp

Imm16

Rt

0

1

0

1

RegDst = 1
ALUSrc = 0

clk

clk

A
L
U

ALUOp

ALU result

32

32

Registers

RA

RB

BusA

RegWr = 1

BusB

RW

5

32

BusW

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30
Rs

5

Rd

Extender

ExtOp

Imm16

Rt

32

0

1

0

1

RegDst = 0
ALUSrc = 1

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 24

Details of the Extender

❖ Two types of extensions

 Zero-extension for unsigned constants

 Sign-extension for signed constants

❖ Control signal ExtOp indicates type of extension

❖ Extender Implementation: wiring and one AND gate

ExtOp = 0  Upper16 = 0

ExtOp = 1 

Upper16 = sign bit

..

.

ExtOp

Upper

16 bits

Lower

16 bits

..

.

Imm16

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 25

❖ Additional Control signals

 MemRd for load instructions

 MemWr for store instructions

 WBdata selects data on BusW as ALU result or Memory Data_out

BusB is connected to Data_in of Data

Memory for store instructions

Adding Data Memory to Datapath

❖ A data memory is added for load and store instructions

A 3rd mux selects data on BusW as either

ALU result or memory data_out

Data

Memory

Address

Data_in

Data_out

32

32A
L
U

ALUOp

32

Registers

RA

RB

BusA

Reg

Wr

BusB

RW

5

BusW

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30

Rs

5

Rd

E

ExtOp

Imm16

Rt

0

1

RegDst

ALUSrc

0

1

32

MemRd MemWr

32

ALU result

32

0

1

WBdata

ALU calculates data memory address

clk

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 26

Controlling the Execution of Load

ALUOp

= ADD

RegWr

= 1

ExtOp = 1

32

Data

Memory

Address

Data_in

Data_out

32A
L
U

Registers

RA

RB

BusA

BusB

RW

5

BusW

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30

Rs

5

Rd

E
Imm16

Rt

0

1

0

1

32

ALU result

32

0

1

32

32

ALUOp = ‘ADD’ to calculate data memory

address as Reg(Rs) + sign-extend(Imm16)

ALUSrc = ‘1’ selects extended

immediate as second ALU input

MemRd = ‘1’ to read

data memory

RegDst = ‘0’ selects Rt

as destination register

RegWr = ‘1’ to enable

writing of register file

WBdata = ‘1’ places the data read

from memory on BusW

ExtOp = 1 to sign-extend

Immmediate16 to 32 bits

Clock edge updates PC

and Register Rt

RegDst

= 0

ALUSrc

= 1 WBdata

= 1

MemRd

= 1

MemWr

= 0

clk

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 27

Controlling the Execution of Store
ALUOp

= ADD

RegWr

= 0

ExtOp = 1

32

Data

Memory

Address

Data_in

Data_out

32A
L
U

Registers

RA

RB

BusA

BusB

RW

5

BusW

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30

Rs

5

Rd

E
Imm16

Rt

0

1

0

1

32

ALU result

32

0

1

32

32

ALUOp = ‘ADD’ to calculate data memory

address as Reg(Rs) + sign-extend(Imm16)
ALUSrc = ‘1’ selects extended

immediate as second ALU input

MemWr = ‘1’ to write

data memory

RegDst = ‘X’ because no

register is written

RegWr = ‘0’ to disable

writing of register file

WBdata = ‘X’ because don’t care

what data is put on BusW

ExtOp = 1 to sign-extend

Immmediate16 to 32 bits

Clock edge updates PC

and Data Memory

RegDst

= X

ALUSrc

= 1 WBdata

= X

MemRd

= 0

MemWr

= 1

clk

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 28

Op

Branch Target Address

ALU

Op
Reg

Wr

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

E

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU result

clk

P
C

0
0

Data

Memory

Address

Data_in

Data_out

Registers

RA

RB

BusA

BusB

RW
BusW

+1

Mem

Rd

Mem

Wr

WB

data

1

0

Imm16

Next PC Address

0

1

1

0

ALU

Src

Reg

Dst

New adder for computing branch

target address

Adding Jump and Branch to Datapath

Zero

PCSrc

2

1

0

+

❖ Additional Control Signals

 PCSrc for PC control: 1 for a jump and 2 for a taken branch

 Zero flag for branch control: whether branch is taken or not

Adding a mux at the PC input

ExtOp

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 29

Op

= J

Branch Target Address

ALU

Op

= X

Reg

Wr

= 0

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

E

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU result

clk

P
C

0
0

Registers

RA

RB

BusA

BusB

RW
BusW

+1

Mem

Rd

= 0

Mem

Wr

= 0

WB

data

= X

1

0

Imm16

Next PC Address

0

1

1

0

ALU

Src

= X

Reg

Dst

= X

Controlling the Execution of a Jump

Zero = X

PCSrc

= 1

2

1

0

+

Data

Memory

Address

Data_in

Data_out

ExtOp = X

MemRd = MemWr = RegWr = 0, Don't care about other control signals

Clock edge updates PC register only

If (Opcode == J) then

PCSrc = 1 (Jump Target)

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 30

Op

BEQ

Branch Target Address

ALU

Op

= SUB

Reg

Wr

= 0

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

E

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU result

clk

P
C

0
0

Registers

RA

RB

BusA

BusB

RW
BusW

+1

Mem

Rd

= 0

Mem

Wr

= 0

WB

data

= X

1

0

Imm16

Next PC Address

0

1

1

0

ALU

Src

= 0

Reg

Dst

= X

Controlling the Execution of a Branch

Zero = 1

PCSrc

= 2

2

1

0

+

Data

Memory

Address

Data_in

Data_out

ExtOp = 1

ALUSrc = 0, ALUOp = SUB, ExtOp = 1, MemRd = MemWr = RegWr = 0

Clock edge updates PC register only

If (Opcode == BEQ && Zero == 1)

then PCSrc = 2 (Branch Target)

else PCSrc = 0 (Next PC)

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 31

Next . . .

❖ Designing a Processor: Step-by-Step

❖ Datapath Components and Clocking

❖ Assembling an Adequate Datapath

❖ Controlling the Execution of Instructions

❖ Main, ALU, and PC Control

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 32

Main, ALU, and PC Control

Main Control Input

6-bit opcode field

Main Control Output

Main control signals

Datapath
32

Address

Instruction

Instruction

Memory

ALU Control Input

 6-bit opcode field

 6-bit function field

ALU Control Output

 ALUOp signal for ALU

ALU

Control

Op6

R
e
g
D

s
t

R
e
g
W

r

E
x
tO

p

A
L

U
S

rc

M
e

m
R

d

M
e

m
W

r

W
B

d
a
ta

Main

Control

P
C

0

1

2

PC

Control

PC Control Input

 6-bit opcode

 ALU zero flag

PC Control Output

 PCSrc signal

Op6

ALUOp
funct6

Zero

PCSrc

Zero

A
L
U

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 33

Single-Cycle Datapath + Control

Main

Control

Op

Branch Target Address

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

Ext

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU result

clk

P
C

0
0

Data

Memory

Address

Data_in

Data_out

Registers

RA

RB

BusA

BusB

RW
BusW

+1

1

0

Imm16

Next PC Address

0

1

1

0

+

0

1

2

ExtOp

RegDst RegWr
WBdataMemRd

MemWr

ALUSrcExtOp

Zero

ALU

Ctrl

ALUop
func

PC

Ctrl

PCSrc

Zero

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 34

Signal Effect when ‘0’ Effect when ‘1’

RegDst Destination register = Rt Destination register = Rd

RegWr No register is written
Destination register (Rt or Rd) is

written with the data on BusW

ExtOp 16-bit immediate is zero-extended 16-bit immediate is sign-extended

ALUSrc
Second ALU operand is the value of

register Rt that appears on BusB

Second ALU operand is the value of

the extended 16-bit immediate

MemRd Data memory is NOT read
Data memory is read

Data_out ← Memory[address]

MemWr Data Memory is NOT written
Data memory is written

Memory[address] ← Data_in

WBdata BusW = ALU result BusW = Data_out from Memory

Main Control Signals

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 35

Main Control Truth Table

Op RegDst RegWr ExtOp ALUSrc MemRd MemWr WBdata

R-type 1 = Rd 1 X 0 = BusB 0 0 0 = ALU

ADDI 0 = Rt 1 1 = sign 1 = Imm 0 0 0 = ALU

SLTI 0 = Rt 1 1 = sign 1 = Imm 0 0 0 = ALU

ANDI 0 = Rt 1 0 = zero 1 = Imm 0 0 0 = ALU

ORI 0 = Rt 1 0 = zero 1 = Imm 0 0 0 = ALU

XORI 0 = Rt 1 0 = zero 1 = Imm 0 0 0 = ALU

LW 0 = Rt 1 1 = sign 1 = Imm 1 0 1 = Mem

SW X 0 1 = sign 1 = Imm 0 1 X

BEQ X 0 1 = sign 0 = BusB 0 0 X

BNE X 0 1 = sign 0 = BusB 0 0 X

J X 0 X X 0 0 X

X is a don’t care (can be 0 or 1), used to minimize logic

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 36

RegDst = R-type

RegWrite = (SW + BEQ + BNE + J)

ExtOp = (ANDI + ORI + XORI)

ALUSrc = (R-type + BEQ + BNE)

MemRd = LW

MemWr = SW

WBdata = LW

Logic Equations for Main Control Signals

Op6

R
-t

y
p

e

A
D

D
I

S
L
T

I

A
N

D
I

O
R

I

X
O

R
I

L
W

S
W

B
E

Q

B
N

E

R
e

g
D

s
t

R
e

g
W

r

E
x
tO

p

A
L

U
S

rc

M
e

m
R

d

W
B

d
a

ta

M
e

m
W

r

Logic Equations

J

Decoder

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 37

ALU Control Truth Table

Op funct ALUOp 4-bit Code

R-type AND AND 11 00

R-type OR OR 11 01

R-type XOR XOR 11 10

R-type ADD ADD 10 00

R-type SUB SUB 10 10

R-type SLT SLT 01 10

ADDI X ADD 10 00

SLTI X SLT 01 10

ANDI X AND 11 00

ORI X OR 11 01

XORI X XOR 11 10

LW X ADD 10 00

SW X ADD 10 00

BEQ X SUB 10 10

BNE X SUB 10 10

J X X X

The 4-bit codes

match the ALU

implementation.

The 4-bit codes

define the binary

ALU operations.

The 4-bit codes can

be derived easily

from the opcode and

function code.

Upper 2 bits =

ALU selection

Lower 2 bits =

Logic or Arith op.

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 38

Multifunction ALU

0

1

2

3

0

1

2

3

Logic Unit

2

AND = 00

OR = 01

XOR = 10

NOR = 11

L
o
g
ic

a
l

O
p
e
ra

ti
o

n

Shifter

2
SLL = 00

SRL = 00

SRA = 01

ROR = 11

S
h
if
t/
R

o
ta

te

O
p
e
ra

ti
o

n

A 32

32
B

A
d
d
e
r

c0

32

32

ADD = 0

SUB = 1

A
ri

th
m

e
ti
c

O
p
e
ra

ti
o

n

Shift = 00

SLT = 01

Arith = 10

Logic = 11

ALU

Selection

32

2

Shift Amount

ALU Result

5

sign
SLT

zerooverflow

SLT: ALU does a SUB

then check the sign

and overflow

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 39

PC Control Truth Table

Op Zero flag PCSrc

R-type X 0 = Increment PC

J X 1 = Jump Target Address

BEQ 0 0 = Increment PC

BEQ 1 2 = Branch Target Address

BNE 0 2 = Branch Target Address

BNE 1 0 = Increment PC

Other than Jump or Branch X 0 = Increment PC

The ALU Zero flag is used by BEQ and BNE instructions

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 40

PC Control Logic

❖ The PC control logic can be described as follows:

if (Op == J) PCSrc = 1;

else if ((Op == BEQ && Zero == 1) ||

(Op == BNE && Zero == 0)) PCSrc = 2;

else PCSrc = 0;

Branch = (BEQ . Zero) + (BNE . Zero)

Branch = 1, Jump = 0 ➔ PCSrc = 2

Branch = 0, Jump = 1 ➔ PCSrc = 1

Branch = 0, Jump = 0 ➔ PCSrc = 0

Branch

Op

BEQ BNE

Decoder

J

Jump

Zero

Single Cycle Processor Design COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 41

Summary
❖ 5 steps to design a processor

 Analyze instruction set => datapath requirements

 Select datapath components & establish clocking methodology

 Assemble datapath meeting the requirements

 Analyze implementation of each instruction to determine control signals

 Assemble the control logic

❖MIPS makes Control easier

 Instructions are of the same size

 Source registers always in the same place

 Immediate constants are of same size and same location

 Operations are always on registers/immediates

