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❖ A function (or a procedure) is a block of instructions that can be 

called at several different points in the program

 Allows the programmer to focus on just one task at a time

 Allows code to be reused

❖ The function that initiates the call is known as the caller

❖ The function that receives the call is known as the callee

❖ When the callee finishes execution, control is transferred back to 

the caller function.

❖ A function can receive parameters and return results

❖ The function parameters and results act as an interface between 

a function and the rest of the program

Functions
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Function Call and Return

❖ To execution a function, the caller does the following:

 Puts the parameters in a place that can be accessed by the callee

 Transfer control to the callee function

❖ To return from a function, the callee does the following:

 Puts the results in a place that can be accessed by the caller

 Return control to the caller, next to where the function call was made

❖ Registers are the fastest place to pass parameters and return 

results. The MIPS architecture uses the following:

 $a0-$a3: four argument registers in which to pass parameters

 $v0-$v1: two value registers in which to pass function results

 $ra: return address register to return back to the caller
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Function Call and Return Instructions

❖ JAL (Jump-and-Link) is used to call a function

 Save return address in $31 = PC+4 and jump to function

 Register $31 ($ra) is used by JAL as the return address

❖ JR (Jump Register) is used to return from a function

 Jump to instruction whose address is in register Rs (PC = Rs)

❖ JALR (Jump-and-Link Register)

 Save return address in Rd = PC+4, and

 Call function whose address is in register Rs (PC = Rs)

 Used to call functions whose addresses are known at runtime

Instruction Meaning Format

jal label $31 = PC+4, j Label Op=3 26-bit address

jr Rs PC = Rs Op=0 Rs 0 0 0 8

jalr Rd, Rs Rd = PC+4, PC = Rs Op=0 Rs 0 Rd 0 9



MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 6

Parameters:

$a0 = Address of v[]

$a1 = k, and 

Return address is in $ra

❖ Consider the following swap function (written in C)

❖ Translate this function to MIPS assembly language

void swap(int v[], int k)

{  int temp;

temp = v[k]

v[k] = v[k+1];

v[k+1] = temp;
}

swap:

sll $t0,$a1,2 # $t0=k*4

add $t0,$t0,$a0 # $t0=v+k*4

lw  $t1,0($t0) # $t1=v[k]

lw  $t2,4($t0) # $t2=v[k+1]

sw  $t2,0($t0) # v[k]=$t2

sw  $t1,4($t0) # v[k+1]=$t1

jr  $ra # return

Example
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Call / Return Sequence

❖ Suppose we call function swap as: swap(a,10)

 Pass address of array a and 10 as arguments

 Call the function swap saving return address in $31 = $ra

 Execute function swap

 Return control to the point of origin (return address)

swap:

sll $t0,$a1,2

add $t0,$t0,$a0

lw  $t1,0($t0)

lw  $t2,4($t0)

sw  $t2,0($t0)

sw  $t1,4($t0)

jr  $ra

la   $a0, a

li   $a1, 10

jal  swap

# return here

. . .

Caller

addr a$a0=$4

10$a1=$5

ret addr$ra=$31

. . .

. . .

Registers
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Register $31
is the return 

address register

Details of JAL and JR

Address Instructions Assembly Language

00400020 lui $1, 0x1001 la   $a0, a

00400024 ori $4, $1, 0

00400028 ori $5, $0, 10 ori  $a1,$0,10

0040002C jal 0x10000f jal swap

00400030  . . . # return here

swap:

0040003C sll $8, $5, 2 sll $t0, $a1, 2

00400040 add $8, $8, $4 add $t0, $t0, $a0

00400044 lw  $9, 0($8) lw  $t1, 0($t0)

00400048 lw  $10,4($8) lw  $t2, 4($t0)

0040004C sw  $10,0($8) sw  $t2, 0($t0)

00400050 sw  $9, 4($8) sw  $t1, 4($t0)

00400054 jr  $31 jr $ra

Pseudo-Direct

Addressing

PC = imm26<<2

0x10000f << 2

= 0x0040003C

0x00400030$31
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Second Example

❖ Function tolower converts a 

capital letter to lowercase

❖ If parameter ch is not a capital 

letter then return ch

char tolower(char ch) {

if (ch>='A' && ch<='Z')

return (ch + 'a' - 'A');

else

return ch;

}

tolower: # $a0 = parameter ch

blt   $a0, 'A', else # branch if $a0 < 'A'

bgt   $a0, 'Z', else # branch if $a0 > 'Z'

addi  $v0, $a0, 32 # 'a' – 'A' == 32

jr    $ra # return to caller

else:

move  $v0, $a0 # $v0 = ch

jr    $ra # return to caller
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Next . . .

❖ Functions

❖ Function Call and Return

❖ The Stack Segment

❖ Preserving Registers

❖ Examples: Bubble Sort and Recursion
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The Stack Segment

❖ Every program has 3 segments 

when loaded into memory:

 Text segment: stores machine 

instructions

 Data segment: area used for static 

and dynamic variables

 Stack segment: area that can be 

allocated and freed by functions

❖ The program uses only logical 

(virtual) addresses

❖ The actual (physical) addresses 

are managed by the OS

Stack Segment

Heap Area

Static Area

0x00000000
Reserved

0x10000000

Text Segment

0x7fffffff

0x00400000

0x10040000

Stack Grows
Downwards
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The Stack Segment (cont'd)

❖ The stack segment is used by functions for:

 Passing parameters that cannot fit in registers

 Allocating space for local variables

 Saving registers across function calls

 Implement recursive functions

❖ The stack segment is implemented via software:

 The Stack Pointer $sp = $29 (points to the top of stack)

 The Frame Pointer $fp = $30 (points to a stack frame)

❖ The stack pointer $sp is initialized to the base address of the 

stack segment, just before a program starts execution

❖ The MARS tool initializes register $sp to 0x7fffeffc
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Stack Frame

❖ Stack frame is an area of the stack containing …

 Saved arguments, registers, local arrays and variables (if any)

❖ Called also the activation frame

❖ Frames are pushed and popped by adjusting …

 Stack pointer $sp = $29 (and sometimes frame pointer $fp = $30)

 Decrement $sp to allocate stack frame, and increment to free

Frame f()

Stack

↓

stack grows 

downwards

$fp

$sp
Frame f()

Stack

allocate stack 

frame

Frame g()
$fp

$sp

f
c

a
ll

s
 g

g
re

tu
rn

s
Frame f()

Stack

↑

free stack 

frame

$fp

$sp

Args for 

nested calls

Saved 

registers

Local

stack

variables

$sp
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Leaf Function

❖ A leaf function does its work without calling any function

❖ Example of leaf functions are: swap and tolower

❖ A leaf function can freely modify some registers:

 Argument registers: $a0 - $a3

 Result registers: $v0 - $v1

 Temporary registers: $t0 - $t9

 These registers can be modified without saving their old values

❖ A leaf function does not need a stack frame if …

 Its variables can fit in temporary registers

❖ A leaf function allocates a stack frame only if …

 It requires additional space for its local variables
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Non-Leaf Function

❖ A non-leaf function is a function that calls other functions

❖ A non-leaf function must allocate a stack frame

❖ Stack frame size is computed by the programmer (compiler)

❖ To allocate a stack frame of N bytes …

 Decrement $sp by N bytes: $sp = $sp – N

 N must be multiple of 4 bytes to have registers aligned in memory

 In our examples, only register $sp will be used ($fp is not needed)

❖ Must save register $ra before making a function call

 Must save $s0-$s7 if their values are going to be modified

 Other registers can also be preserved (if needed)

 Additional space for local variables can be allocated (if needed)
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Steps for Function Call and Return

❖ To make a function call …

 Make sure that register $ra is saved before making a function call

 Pass arguments in registers $a0 thru $a3

 Pass additional arguments on the stack (if needed)

 Use the JAL instruction to make a function call (JAL modifies $ra)

❖ To return from a function …

 Place the function results in $v0 and $v1 (if any)

 Restore all registers that were saved upon function entry

▪ Load the register values that were saved on the stack (if any)

 Free the stack frame: $sp = $sp + N (stack frame = N bytes)

 Jump to the return address: jr $ra (return to caller)
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Preserving Registers

❖ The MIPS software specifies which registers must be preserved 

across a function call, and which ones are not

Must be Preserved Not preserved

Return address: $ra Argument registers: $a0 to $a3

Stack pointer: $sp Value registers: $v0 and $v1

Saved registers: $s0 to $s7 and $fp Temporary registers: $t0 to $t9

Stack above the stack pointer Stack below the stack pointer

❖ Caller saves register $ra before making a function call

❖ A callee function must preserve $sp, $s0 to $s7, and $fp.

❖ If needed, the caller can save argument registers $a0 to $a3. 

However, the callee function is free to modify them.
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Example on Preserving Register

❖ A function f calls g twice as shown below. We don't know what g

does, or which registers are used in g.

❖ We only know that function g receives two integer arguments 

and returns one integer result. Translate f:

int f(int a, int b) {

int d = g(b, g(a, b));

return a + d;

}
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Translating Function f

int f(int a, int b) {

int d = g(b, g(a, b)); return a + d;

}

f: addiu $sp, $sp, -12 # allocate frame = 12 bytes

sw $ra, 0($sp) # save $ra

sw $a0, 4($sp) # save a (caller-saved)

sw $a1, 8($sp) # save b (caller-saved)

jal g # call g(a,b)

lw $a0, 8($sp) # $a0 = b

move $a1, $v0 # $a1 = result of g(a,b)

jal g # call g(b, g(a,b))

lw $a0, 4($sp) # $a0 = a

addu $v0, $a0, $v0 # $v0 = a + d

lw $ra, 0($sp) # restore $ra

addiu $sp, $sp, 12 # free stack frame

jr $ra # return to caller
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Next . . .

❖ Functions

❖ Function Call and Return

❖ The Stack Segment

❖ Preserving Registers

❖ Examples: Bubble Sort and Recursion
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Bubble Sort (Leaf Function)

void bubbleSort (int A[], int n) {

int swapped, i, temp;

do {

n = n-1;

swapped = 0; // false

for (i=0; i<n; i++) {

if (A[i] > A[i+1]) {

temp = A[i]; // swap A[i]

A[i] = A[i+1]; // with A[i+1]

A[i+1] = temp;

swapped = 1; // true

}

}

} while (swapped);

}

Worst case Performance O(n2)

Best case Performance O(n)
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Translating Function Bubble Sort
bubbleSort: # $a0 = &A, $a1 = n

do: addiu $a1, $a1, -1 # n = n-1

blez $a1, L2 # branch if (n <= 0)

move $t0, $a0 # $t0 = &A

li $t1, 0 # $t1 = swapped = 0

li $t2, 0 # $t2 = i = 0

for: lw $t3, 0($t0) # $t3 = A[i]

lw $t4, 4($t0) # $t4 = A[i+1]

ble $t3, $t4, L1 # branch if (A[i] <= A[i+1])

sw $t4, 0($t0) # A[i] = $t4

sw $t3, 4($t0) # A[i+1] = $t3

li $t1, 1 # swapped = 1

L1: addiu $t2, $t2, 1 # i++

addiu $t0, $t0, 4 # $t0 = &A[i]

bne $t2, $a1, for # branch if (i != n)

bnez $t1, do # branch if (swapped)

L2: jr $ra # return to caller
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Example of a Recursive Function

❖ Two recursive calls

 First call computes the sum of the first half of the array elements

 Second call computes the sum of the 2nd half of the array elements

❖ How to translate a recursive function into assembly?

int recursive_sum (int A[], int n) {

if (n == 0) return 0;

if (n == 1) return A[0];

int sum1 = recursive_sum (&A[0], n/2);

int sum2 = recursive_sum (&A[n/2], n – n/2);

return sum1 + sum2;

}
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Illustrating Recursive Calls

recursive_sum:
$a0 = &A[0], $a1 = 6

recursive_sum:
$a0 = &A[0]
$a1 = 1

recursive_sum:
$a0 = &A[1]
$a1 = 2

A[1]+A[2]A[0]

recursive_sum:
$a0 = &A[3]
$a1 = 1

recursive_sum:
$a0 = &A[4]
$a1 = 2

A[4]+A[5]A[3]

recursive_sum:
$a0 = &A[4]
$a1 = 1

recursive_sum:
$a0 = &A[5]
$a1 = 1

A[5]A[4]

recursive_sum:
$a0 = &A[1]
$a1 = 1

recursive_sum:
$a0 = &A[2]
$a1 = 1

A[2]A[1]

recursive_sum:
$a0 = &A[0], $a1 = 3

recursive_sum:
$a0 = &A[3], $a1 = 3

A[3]+A[4]+A[5]A[0]+A[1]+A[2]

$v0 = A[0]+A[1]+A[2]+A[3]+A[4]+A[5]
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Translating a Recursive Function

recursive_sum: # $a0 = &A, $a1 = n

bnez $a1, L1 # branch if (n != 0)

li     $v0, 0

jr $ra # return 0

L1: bne $a1, 1, L2 # branch if (n != 1)

lw $v0, 0($a0) # $v0 = A[0]

jr $ra # return A[0]

L2: addiu $sp, $sp, -12 # allocate frame = 12 bytes

sw $ra, 0($sp) # save $ra

sw $s0, 4($sp) # save $s0

sw $s1, 8($sp) # save $s1

move   $s0, $a0 # $s0 = &A (preserved)

move   $s1, $a1 # $s1 = n  (preserved)

srl $a1, $a1, 1 # $a1 = n/2

jal recursive_sum # first recursive call
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Translating a Recursive Function (cont'd)

❖ $ra, $s0, and $s1 are preserved across recursive calls

srl $t0, $s1, 1 # $t0 = n/2

sll $t1, $t0, 2 # $t1 = (n/2) * 4

addu $a0, $s0, $t1 # $a0 = &A[n/2]

subu $a1, $s1, $t0 # $a1 = n – n/2

move   $s0, $v0 # $s0 = sum1 (preserved)

jal recursive_sum # second recursive call

addu $v0, $s0, $v0 # $v0 = sum1 + sum2

lw $ra, 0($sp) # restore $ra

lw $s0, 4($sp) # restore $s0

lw $s1, 8($sp) # restore $s1

addiu $sp, $sp, 12 # free stack frame

jr $ra # return to caller


