MIPS Functions and the
Runtime Stack

COE 233
Logic Design and Computer Organization
Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

“* Functions

“* Function Call and Return
*» The Stack Segment

“* Preserving Registers

“» Examples: Bubble Sort and Recursion

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 2

Functions

“* A function (or a procedure) is a block of instructions that can be
called at several different points in the program

< Allows the programmer to focus on just one task at a time

<> Allows code to be reused

¢ The function that initiates the call is known as the caller
¢ The function that receives the call is known as the callee

** When the callee finishes execution, control is transferred back to
the caller function.

¢ A function can receive parameters and return results

“* The function parameters and results act as an interface between
a function and the rest of the program

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 3

Function Call and Return

*» To execution a function, the caller does the following:
< Puts the parameters in a place that can be accessed by the callee
< Transfer control to the callee function
¢ To return from a function, the callee does the following:
< Puts the results in a place that can be accessed by the caller
< Return control to the caller, next to where the function call was made
** Registers are the fastest place to pass parameters and return
results. The MIPS architecture uses the following:
< $a0-%$a3: four argument registers in which to pass parameters
< $vO-%$v1: two value registers in which to pass function results

< $ra: return address register to return back to the caller

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 4

Function Call and Return Instructions

“ JAL (Jump-and-Link) is used to call a function
< Save return address in $31 = PC+4 and jump to function
< Register $31 ($ra) is used by JAL as the return address

* JR (Jump Register) is used to return from a function
< Jump to instruction whose address is in register Rs (PC = Rs)
“* JALR (Jump-and-Link Register)
< Save return address in Rd = PC+4, and

< Call function whose address is in register Rs (PC = Rs)
< Used to call functions whose addresses are known at runtime

Instruction Meaning Format
jal label $31 = PC+4, j Label Op=3 26-bit address
jr Rs PC = Rs Op=0 Rs %) (%) %)
jalr Rd, Rs Rd = PC+4, PC = Rs Op=0 Rs (%] Rd (%]

MIPS Functions and the Runtime Stack

COE 233 — Logic Design and Computer Organization

© Muhamed Mudawar — slide 5

Example

* Consider the following swap function (written in C)

¢ Translate this function to MIPS assembly language

{

void swap(int v[], int k)

int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

Parameters:

$a0 = Address of v[]
$al =k, and

Return address is in $ra

swap:
sll $to,%al,?2
add $to,$t0,$a0
lw $ti1,0(%$t0)
lw $t2,4(%$t0)
sw $t2,0(%$t0)
sw $t1,4($t0)
jr $%$ra

$to=k*4

$to=v+k*4
$ti=v[k]

$t2=v[k+1]
v[k]=9$t2

v[k+1]=$t1
return

MIPS Functions and the Runtime Stack

COE 233 — Logic Design and Computer Organization

© Muhamed Mudawar — slide 6

Call / Return Sequence

*» Suppose we call function swap as: swap(a,10)
<> Pass address of array a and 10 as arguments
< Call the function swap saving return address in $31 = $ra
< Execute function swap

<> Return control to the point of origin (return address)

_ ' swap:
Registers s11 $t0,%al,2
R Caller / add $te,$te,$a0
$a0=$4| addr a |[! la $a@, a 1w $t1,0(%$t0)
$a1=$5 10 1i $a1, 10 1w $t2,4($t0)
" jal swap | sw $t2,0($te)
return here | sw $t1,4($te)
$ra=$31 | ret addr || - . . < ——jr $ra

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 7

Address

00400020
00400024
00400028
0040002C

——— —
’—— -—

~

-~ -
N e e = =

-
N e =

00400040
00400044
00400048
0040004C
00400050
00400054

Instructions

Details of JAL and JR

Assembly Language

lui $1, 0x1001 1la $a@, a
ori $4, $1, 0

ori $5, $0, 10 ori $al,%$0,10
jal ©x10000f jal swap

—
—
—
—

_.-""# return here

——
—
=
——
=
——
—
-
=
——
—
——
—
——
—-—

2 sll $to, $al, 2

add $8,.$8, $4 add $to, $te, $ao
$9, 0($8) 1w $t1, o($te)
$10,4($8) 1w $t2, 4($t0)
$10,0($8) . sw $t2, 0($te)
$9, 4($8) ‘sw $tl1, 4($te)

1w
1w
SW
SW

jr

MIPS Functions and the Runtime Stack

$31

jr $ra

COE 233 — Logic Design and Computer Organization

Pseudo-Direct
Addressing

PC = imm26<<2
0x10000f << 2
= Ox0040003C

0x00400030

Register $31
IS the return
address register

© Muhamed Mudawar — slide 8

Second Example

char tolower(char ch) {
if (ch>="A" && ch<="'Z")
return (ch + 'a' - 'A');

¢ Function tolower converts a
capital letter to lowercase

< If parameter ch is not a capital else

return ch;
letter then return ch

}
tolower: # $a0 = parameter ch
blt $a0, 'A', else # branch if $a0@ < 'A’
bgt $a0, 'Z', else # branch if $a0 > 'Z’
addi $vo, $a0, 32 # 'a' - 'A' == 32
jr $ra # return to caller
else:
move $vO, $a0 # $vO = ch
jr $ra # return to caller

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 9

Next . ..

¢ Functions

¢ Function Call and Return
* The Stack Segment

*» Preserving Registers

“» Examples: Bubble Sort and Recursion

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 10

The Stack Segment

“ Every program has 3 segments OX7FFFFfff
when loaded into memory: S’;zc: g:g:s Stack Segment
WNw

< Text segment: stores machine
Instructions

<> Data segment: area used for static
and dynamic variables

Heap Area
<> Stack segment: area that can be

_ 0x10040000
allocated and freed by functions et e
. _ 0x10000000
¢ The program uses only logical
(virtual) addresses Text Segment
0Xx00400000

¢ The actual (physical) addresses

are managed by the OS ©Xx00000000 -

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 11

The Stack Segment (cont ' d)

¢ The stack segment is used by functions for:
< Passing parameters that cannot fit in registers
< Allocating space for local variables
<> Saving registers across function calls
< Implement recursive functions
“* The stack segment is implemented via software:
<> The Stack Pointer $sp = $29 (points to the top of stack)

<> The Frame Pointer $fp = $30 (points to a stack frame)

% The stack pointer $sp is initialized to the base address of the
stack segment, just before a program starts execution

“* The MARS tool initializes register $sp to Ox7fffeffc

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 12

Stack Frame

*» Stack frame is an area of the stack containing ...

< Saved arguments, registers, local arrays and variables (if any)

+» Called also the activation frame

*» Frames are pushed and popped by adjusting ...

< Stack pointer $sp = $29 (and sometimes frame pointer $fp = $30)

<~ Decrement $sp to allocate stack frame, and increment to free

Stack
$fp—
Frame f()
$sp—
l

stack grows
downwards

MIPS Functions and the Runtime Stack

fcallsg

Stack

Frame f()

$fp >

$sp ~

Frame g()

allocate stack
frame

g returns

Stack

$fp —

$sp >

Frame f()

!

free stack
frame

COE 233 — Logic Design and Computer Organization

$sp >

Local
stack
variables

Saved
registers

Args for
nested calls

© Muhamed Mudawar — slide 13

Leaf Function

*» A leaf function does its work without calling any function
“» Example of |leaf functions are: swap and tolower

*» A leaf function can freely modify some registers:

< Argument registers: $a0 - $a3

< Result reqgisters: $v0 - $vi

<> Temporary registers: $t0 - $t9

< These registers can be modified without saving their old values
“* A leaf function does not need a stack frame if ...

< Its variables can fit in temporary registers

“ A leaf function allocates a stack frame only if ...

< It requires additional space for its local variables

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 14

Non-Leaf Function

» A non-leaf function is a function that calls other functions
* A non-leaf function must allocate a stack frame
*» Stack frame size is computed by the programmer (compiler)

¢ To allocate a stack frame of N bytes ...
< Decrement $sp by N bytes: $sp = $sp - N
<> N must be multiple of 4 bytes to have registers aligned in memory

< In our examples, only register $sp will be used ($fp is not needed)

“* Must save register $ra before making a function call
<> Must save $s0-$s7 if their values are going to be modified
< Other registers can also be preserved (if needed)

<> Additional space for local variables can be allocated (if needed)

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 15

Steps for Function Call and Return

“ To make a function call ...
<> Make sure that register $ra is saved before making a function call
<> Pass arguments in registers $a0 thru $a3
<> Pass additional arguments on the stack (if needed)

< Use the JAL instruction to make a function call (JAL modifies $ra)

“ To return from a function ...
<> Place the function results in $v@ and $v1 (if any)
< Restore all registers that were saved upon function entry
» Load the register values that were saved on the stack (if any)
< Free the stack frame: $sp = $sp + N (stack frame = N bytes)

<> Jump to the return address: jr $ra (return to caller)

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 16

Preserving Registers

*» The MIPS software specifies which registers must be preserved
across a function call, and which ones are not

Must be Preserved Not preserved
Return address: $ra Argument registers: $a0 to $a3
Stack pointer: $sp Value registers: $v0 and $v1
Saved registers: $s0 to $s7 and $fp Temporary registers: $t0 to $t9
Stack above the stack pointer Stack below the stack pointer

% Caller saves register $ra before making a function call
% A callee function must preserve $sp, $s0 to $s7, and $fp.

% If needed, the caller can save argument registers $a0 to $a3.
However, the callee function is free to modify them.

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 17

Example on Preserving Register

¢ A function f calls g twice as shown below. We don't know what g
does, or which registers are used in g.

“* We only know that function g receives two integer arguments
and returns one integer result. Translate f:

int f(int a, int b) {

int d = g(b) g(aJ b))3

return a + d;

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 18

Translating Function f

int f(int a, int b) {
int d = g(b, g(a, b)); return a + d;

}

f: addiu $sp, $sp, -12 # allocate frame = 12 bytes
SW $ra, 0($sp) # save %$ra
SwW $a0, 4(%$sp) # save a (caller-saved)
Sw $al, 8(%$sp) # save b (caller-saved)
jal g # call g(a,b)
1w $a0, 8($sp) # $a0 = b
move $al, $vo # $al = result of g(a,b)
jal g # call g(b, g(a,b))
1w $a0, 4(%$sp) # $a0 = a
addu $vO, $a0, $vO # $v0 = a + d
1w $ra, 90(%$sp) # restore $ra
addiu $sp, $sp, 12 # free stack frame

return to caller

= S

jr $ra

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 19

Next . ..

¢ Functions

¢ Function Call and Return
*» The Stack Segment

“* Preserving Registers

» Examples: Bubble Sort and Recursion

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 20

Bubble Sort (Leaf Function)

void bubbleSort (int A[], int n) {
int swapped, i, temp;
do {
n = n-1;
swapped = 0; // false
for (i=0; i<n; i++) {
if (A[i] > A[i+1]) {

temp = A[1]; // swap A[i]
A[i] = A[i+1]; // with A[i+1]
A[i+1] = temp;
swapped = 1; // true
}
} Worst case Performance O(n?)

} while (swapped);
}

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 21

Best case Performance O(n)

Translating Function Bubble Sort

bubbleSort:

do: addiu
blez
move
1i
1i
for: 1w
1w
ble
SW
SW
1i
L1: addiu
addiu
bne
bnez
L2: jr

$al,
$al,
$to,
$t1,
$t2,
$t3,
$t4,
$t3,
$t4,
$t3,
$t1,
$t2,
$to,
$t2,
$t1,
$ra

MIPS Functions and the Runtime Stack

$al, -1
L2

$ao

(%

(%
o($to)
4($t0)
$t4a, L1
o($to)
4($t0)
1

$t2, 1
$to, 4

$al, for

do

$a0 = &A, %al

#

H H H H HH HHH HH H H R

= <

n
)

%)

branch if (A[i] <= A[i+1])

n = n-1
branch if (n <
$t0 = &A

$t1 = swapped
$t2 =i =20
$t3 = A[1i]
$t4 = A[i+1]
A[i] = $t4
A[i+l1l] = $t3
swapped = 1
i++

$t0 = &A[1i]

branch if (i != n)
branch if (swapped)

return to caller

COE 233 — Logic Design and Computer Organization

© Muhamed Mudawar — slide 22

Example of a Recursive Function

int recursive_sum (int A[], int n) {
if (n == @) return 0;
if (n == 1) return A[O];
int suml = recursive _sum (&A[O], n/2);
int sum2 = recursive_sum (&A[n/2], n - n/2);
return suml + sum2;

}

+» Two recursive calls

<> First call computes the sum of the first half of the array elements

<> Second call computes the sum of the 2"d half of the array elements

*» How to translate a recursive function into assembly?

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 23

A[O]+A[1]+A[2]

Illustrating Recursive Calls

l T$v0 = A[O]+A[1]+A[2]+A[3]+A[4]+A[5]

$a0 = &A[©

recursive_sum:

], $al = 6

N

v

recursive_sum:
$a0 = &A[0O], %$al = 3

N

A4

A[3]+A[4]+A[5]

recursive_sum:
$a0 = &A[3], %$al = 3

A[O] Tv a V¢ A[1]+A[2] A[3] ¢V a V¢ A[4]+A[5]
recursive_sum: recursive_sum: recursive_sum: recursive_sum:
$a0 = &A[0O] $a0 = &A[1] $a0 = &A[3] $a0 = &A[4]
$al = 1 $al = 2 $al = 1 $al = 2
A[1] 0N |] r A[2] A[4] 0N | | 1 A[5]

A4 v

recursive_sum:
$a0 = &A[1]

$al = 1

MIPS Functions and the Runtime Stack

recursive_sum:
$a0 = &A[2]
$al = 1

A4 A4

$al

COE 233 — Logic Design and Computer Organization

recursive_sum:
$a0 = &A[4]
1

recursive_sum:
$a0 = &A[5]
$al = 1

© Muhamed Mudawar — slide 24

Translating a Recursive Function

recursive_sum: # $a0 = &A, $%$al = n
bnez $al, L1 # branch if (n != 0)
1i $vo, 0O
jr $ra # return o

L1: bne $al, 1, L2 # branch if (n != 1)
1w $vo, 0(%$a0) # $vo = A[O]
jr $ra # return A[Q]

L2: addiu $sp, $sp, -12 # allocate frame = 12 bytes
SW $ra, 0($sp) # save %$ra
SW $s0, 4($sp) # save $s0
SW $s1, 8($sp) # save $s1
move $sO, $a0 # $s0 = &A (preserved)
move $sl1, %al # $s1 = n (preserved)
srl $al, %al, 1 # $al = n/2
jal recursive_sum # first recursive call

MIPS Functions and the Runtime Stack COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 25

Translating a Recursive Function (cont'd)

srl
sll
addu
subu
move
jal
addu
1w
1w
1w
addiu

jr

$to, $s1, 1
$t1, $to, 2
$a0, $s0, $t1
$al, $sl1, $to
$s0, $voO
recursive_sum
$vO, $s0, $vO
$ra, 0($sp)
$s0, 4($sp)
$s1, 8($sp)
$sp, $sp, 12
$ra

H
H
H
H
H
H

H H H H H H

$t0 = n/2
$t1 = (n/2) * 4
$a0 = &A[n/2]

$al = n - n/2

$s0 = suml (preserved)
second recursive call
$vO = suml + sum2
restore $ra

restore $s0

restore $s1

free stack frame
return to caller

% $ra, $s0, and $s1 are preserved across recursive calls

MIPS Functions and the Runtime Stack

COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 26

