
MIPS Functions and the

Runtime Stack

COE 233

Logic Design and Computer Organization

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 2

Presentation Outline

❖ Functions

❖ Function Call and Return

❖ The Stack Segment

❖ Preserving Registers

❖ Examples: Bubble Sort and Recursion

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 3

❖ A function (or a procedure) is a block of instructions that can be

called at several different points in the program

 Allows the programmer to focus on just one task at a time

 Allows code to be reused

❖ The function that initiates the call is known as the caller

❖ The function that receives the call is known as the callee

❖ When the callee finishes execution, control is transferred back to

the caller function.

❖ A function can receive parameters and return results

❖ The function parameters and results act as an interface between

a function and the rest of the program

Functions

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 4

Function Call and Return

❖ To execution a function, the caller does the following:

 Puts the parameters in a place that can be accessed by the callee

 Transfer control to the callee function

❖ To return from a function, the callee does the following:

 Puts the results in a place that can be accessed by the caller

 Return control to the caller, next to where the function call was made

❖ Registers are the fastest place to pass parameters and return

results. The MIPS architecture uses the following:

 $a0-$a3: four argument registers in which to pass parameters

 $v0-$v1: two value registers in which to pass function results

 $ra: return address register to return back to the caller

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 5

Function Call and Return Instructions

❖ JAL (Jump-and-Link) is used to call a function

 Save return address in $31 = PC+4 and jump to function

 Register $31 ($ra) is used by JAL as the return address

❖ JR (Jump Register) is used to return from a function

 Jump to instruction whose address is in register Rs (PC = Rs)

❖ JALR (Jump-and-Link Register)

 Save return address in Rd = PC+4, and

 Call function whose address is in register Rs (PC = Rs)

 Used to call functions whose addresses are known at runtime

Instruction Meaning Format

jal label $31 = PC+4, j Label Op=3 26-bit address

jr Rs PC = Rs Op=0 Rs 0 0 0 8

jalr Rd, Rs Rd = PC+4, PC = Rs Op=0 Rs 0 Rd 0 9

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 6

Parameters:

$a0 = Address of v[]

$a1 = k, and

Return address is in $ra

❖ Consider the following swap function (written in C)

❖ Translate this function to MIPS assembly language

void swap(int v[], int k)

{ int temp;

temp = v[k]

v[k] = v[k+1];

v[k+1] = temp;
}

swap:

sll $t0,$a1,2 # $t0=k*4

add $t0,$t0,$a0 # $t0=v+k*4

lw $t1,0($t0) # $t1=v[k]

lw $t2,4($t0) # $t2=v[k+1]

sw $t2,0($t0) # v[k]=$t2

sw $t1,4($t0) # v[k+1]=$t1

jr $ra # return

Example

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 7

Call / Return Sequence

❖ Suppose we call function swap as: swap(a,10)

 Pass address of array a and 10 as arguments

 Call the function swap saving return address in $31 = $ra

 Execute function swap

 Return control to the point of origin (return address)

swap:

sll $t0,$a1,2

add $t0,$t0,$a0

lw $t1,0($t0)

lw $t2,4($t0)

sw $t2,0($t0)

sw $t1,4($t0)

jr $ra

la $a0, a

li $a1, 10

jal swap

return here

. . .

Caller

addr a$a0=$4

10$a1=$5

ret addr$ra=$31

. . .

. . .

Registers

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 8

Register $31
is the return

address register

Details of JAL and JR

Address Instructions Assembly Language

00400020 lui $1, 0x1001 la $a0, a

00400024 ori $4, $1, 0

00400028 ori $5, $0, 10 ori $a1,$0,10

0040002C jal 0x10000f jal swap

00400030 . . . # return here

swap:

0040003C sll $8, $5, 2 sll $t0, $a1, 2

00400040 add $8, $8, $4 add $t0, $t0, $a0

00400044 lw $9, 0($8) lw $t1, 0($t0)

00400048 lw $10,4($8) lw $t2, 4($t0)

0040004C sw $10,0($8) sw $t2, 0($t0)

00400050 sw $9, 4($8) sw $t1, 4($t0)

00400054 jr $31 jr $ra

Pseudo-Direct

Addressing

PC = imm26<<2

0x10000f << 2

= 0x0040003C

0x00400030$31

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 9

Second Example

❖ Function tolower converts a

capital letter to lowercase

❖ If parameter ch is not a capital

letter then return ch

char tolower(char ch) {

if (ch>='A' && ch<='Z')

return (ch + 'a' - 'A');

else

return ch;

}

tolower: # $a0 = parameter ch

blt $a0, 'A', else # branch if $a0 < 'A'

bgt $a0, 'Z', else # branch if $a0 > 'Z'

addi $v0, $a0, 32 # 'a' – 'A' == 32

jr $ra # return to caller

else:

move $v0, $a0 # $v0 = ch

jr $ra # return to caller

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 10

Next . . .

❖ Functions

❖ Function Call and Return

❖ The Stack Segment

❖ Preserving Registers

❖ Examples: Bubble Sort and Recursion

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 11

The Stack Segment

❖ Every program has 3 segments

when loaded into memory:

 Text segment: stores machine

instructions

 Data segment: area used for static

and dynamic variables

 Stack segment: area that can be

allocated and freed by functions

❖ The program uses only logical

(virtual) addresses

❖ The actual (physical) addresses

are managed by the OS

Stack Segment

Heap Area

Static Area

0x00000000
Reserved

0x10000000

Text Segment

0x7fffffff

0x00400000

0x10040000

Stack Grows
Downwards

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 12

The Stack Segment (cont'd)

❖ The stack segment is used by functions for:

 Passing parameters that cannot fit in registers

 Allocating space for local variables

 Saving registers across function calls

 Implement recursive functions

❖ The stack segment is implemented via software:

 The Stack Pointer $sp = $29 (points to the top of stack)

 The Frame Pointer $fp = $30 (points to a stack frame)

❖ The stack pointer $sp is initialized to the base address of the

stack segment, just before a program starts execution

❖ The MARS tool initializes register $sp to 0x7fffeffc

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 13

Stack Frame

❖ Stack frame is an area of the stack containing …

 Saved arguments, registers, local arrays and variables (if any)

❖ Called also the activation frame

❖ Frames are pushed and popped by adjusting …

 Stack pointer $sp = $29 (and sometimes frame pointer $fp = $30)

 Decrement $sp to allocate stack frame, and increment to free

Frame f()

Stack

↓

stack grows

downwards

$fp

$sp
Frame f()

Stack

allocate stack

frame

Frame g()
$fp

$sp

f
c

a
ll

s
 g

g
re

tu
rn

s
Frame f()

Stack

↑

free stack

frame

$fp

$sp

Args for

nested calls

Saved

registers

Local

stack

variables

$sp

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 14

Leaf Function

❖ A leaf function does its work without calling any function

❖ Example of leaf functions are: swap and tolower

❖ A leaf function can freely modify some registers:

 Argument registers: $a0 - $a3

 Result registers: $v0 - $v1

 Temporary registers: $t0 - $t9

 These registers can be modified without saving their old values

❖ A leaf function does not need a stack frame if …

 Its variables can fit in temporary registers

❖ A leaf function allocates a stack frame only if …

 It requires additional space for its local variables

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 15

Non-Leaf Function

❖ A non-leaf function is a function that calls other functions

❖ A non-leaf function must allocate a stack frame

❖ Stack frame size is computed by the programmer (compiler)

❖ To allocate a stack frame of N bytes …

 Decrement $sp by N bytes: $sp = $sp – N

 N must be multiple of 4 bytes to have registers aligned in memory

 In our examples, only register $sp will be used ($fp is not needed)

❖ Must save register $ra before making a function call

 Must save $s0-$s7 if their values are going to be modified

 Other registers can also be preserved (if needed)

 Additional space for local variables can be allocated (if needed)

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 16

Steps for Function Call and Return

❖ To make a function call …

 Make sure that register $ra is saved before making a function call

 Pass arguments in registers $a0 thru $a3

 Pass additional arguments on the stack (if needed)

 Use the JAL instruction to make a function call (JAL modifies $ra)

❖ To return from a function …

 Place the function results in $v0 and $v1 (if any)

 Restore all registers that were saved upon function entry

▪ Load the register values that were saved on the stack (if any)

 Free the stack frame: $sp = $sp + N (stack frame = N bytes)

 Jump to the return address: jr $ra (return to caller)

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 17

Preserving Registers

❖ The MIPS software specifies which registers must be preserved

across a function call, and which ones are not

Must be Preserved Not preserved

Return address: $ra Argument registers: $a0 to $a3

Stack pointer: $sp Value registers: $v0 and $v1

Saved registers: $s0 to $s7 and $fp Temporary registers: $t0 to $t9

Stack above the stack pointer Stack below the stack pointer

❖ Caller saves register $ra before making a function call

❖ A callee function must preserve $sp, $s0 to $s7, and $fp.

❖ If needed, the caller can save argument registers $a0 to $a3.

However, the callee function is free to modify them.

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 18

Example on Preserving Register

❖ A function f calls g twice as shown below. We don't know what g

does, or which registers are used in g.

❖ We only know that function g receives two integer arguments

and returns one integer result. Translate f:

int f(int a, int b) {

int d = g(b, g(a, b));

return a + d;

}

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 19

Translating Function f

int f(int a, int b) {

int d = g(b, g(a, b)); return a + d;

}

f: addiu $sp, $sp, -12 # allocate frame = 12 bytes

sw $ra, 0($sp) # save $ra

sw $a0, 4($sp) # save a (caller-saved)

sw $a1, 8($sp) # save b (caller-saved)

jal g # call g(a,b)

lw $a0, 8($sp) # $a0 = b

move $a1, $v0 # $a1 = result of g(a,b)

jal g # call g(b, g(a,b))

lw $a0, 4($sp) # $a0 = a

addu $v0, $a0, $v0 # $v0 = a + d

lw $ra, 0($sp) # restore $ra

addiu $sp, $sp, 12 # free stack frame

jr $ra # return to caller

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 20

Next . . .

❖ Functions

❖ Function Call and Return

❖ The Stack Segment

❖ Preserving Registers

❖ Examples: Bubble Sort and Recursion

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 21

Bubble Sort (Leaf Function)

void bubbleSort (int A[], int n) {

int swapped, i, temp;

do {

n = n-1;

swapped = 0; // false

for (i=0; i<n; i++) {

if (A[i] > A[i+1]) {

temp = A[i]; // swap A[i]

A[i] = A[i+1]; // with A[i+1]

A[i+1] = temp;

swapped = 1; // true

}

}

} while (swapped);

}

Worst case Performance O(n2)

Best case Performance O(n)

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 22

Translating Function Bubble Sort
bubbleSort: # $a0 = &A, $a1 = n

do: addiu $a1, $a1, -1 # n = n-1

blez $a1, L2 # branch if (n <= 0)

move $t0, $a0 # $t0 = &A

li $t1, 0 # $t1 = swapped = 0

li $t2, 0 # $t2 = i = 0

for: lw $t3, 0($t0) # $t3 = A[i]

lw $t4, 4($t0) # $t4 = A[i+1]

ble $t3, $t4, L1 # branch if (A[i] <= A[i+1])

sw $t4, 0($t0) # A[i] = $t4

sw $t3, 4($t0) # A[i+1] = $t3

li $t1, 1 # swapped = 1

L1: addiu $t2, $t2, 1 # i++

addiu $t0, $t0, 4 # $t0 = &A[i]

bne $t2, $a1, for # branch if (i != n)

bnez $t1, do # branch if (swapped)

L2: jr $ra # return to caller

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 23

Example of a Recursive Function

❖ Two recursive calls

 First call computes the sum of the first half of the array elements

 Second call computes the sum of the 2nd half of the array elements

❖ How to translate a recursive function into assembly?

int recursive_sum (int A[], int n) {

if (n == 0) return 0;

if (n == 1) return A[0];

int sum1 = recursive_sum (&A[0], n/2);

int sum2 = recursive_sum (&A[n/2], n – n/2);

return sum1 + sum2;

}

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 24

Illustrating Recursive Calls

recursive_sum:
$a0 = &A[0], $a1 = 6

recursive_sum:
$a0 = &A[0]
$a1 = 1

recursive_sum:
$a0 = &A[1]
$a1 = 2

A[1]+A[2]A[0]

recursive_sum:
$a0 = &A[3]
$a1 = 1

recursive_sum:
$a0 = &A[4]
$a1 = 2

A[4]+A[5]A[3]

recursive_sum:
$a0 = &A[4]
$a1 = 1

recursive_sum:
$a0 = &A[5]
$a1 = 1

A[5]A[4]

recursive_sum:
$a0 = &A[1]
$a1 = 1

recursive_sum:
$a0 = &A[2]
$a1 = 1

A[2]A[1]

recursive_sum:
$a0 = &A[0], $a1 = 3

recursive_sum:
$a0 = &A[3], $a1 = 3

A[3]+A[4]+A[5]A[0]+A[1]+A[2]

$v0 = A[0]+A[1]+A[2]+A[3]+A[4]+A[5]

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 25

Translating a Recursive Function

recursive_sum: # $a0 = &A, $a1 = n

bnez $a1, L1 # branch if (n != 0)

li $v0, 0

jr $ra # return 0

L1: bne $a1, 1, L2 # branch if (n != 1)

lw $v0, 0($a0) # $v0 = A[0]

jr $ra # return A[0]

L2: addiu $sp, $sp, -12 # allocate frame = 12 bytes

sw $ra, 0($sp) # save $ra

sw $s0, 4($sp) # save $s0

sw $s1, 8($sp) # save $s1

move $s0, $a0 # $s0 = &A (preserved)

move $s1, $a1 # $s1 = n (preserved)

srl $a1, $a1, 1 # $a1 = n/2

jal recursive_sum # first recursive call

MIPS Functions and the Runtime Stack COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 26

Translating a Recursive Function (cont'd)

❖ $ra, $s0, and $s1 are preserved across recursive calls

srl $t0, $s1, 1 # $t0 = n/2

sll $t1, $t0, 2 # $t1 = (n/2) * 4

addu $a0, $s0, $t1 # $a0 = &A[n/2]

subu $a1, $s1, $t0 # $a1 = n – n/2

move $s0, $v0 # $s0 = sum1 (preserved)

jal recursive_sum # second recursive call

addu $v0, $s0, $v0 # $v0 = sum1 + sum2

lw $ra, 0($sp) # restore $ra

lw $s0, 4($sp) # restore $s0

lw $s1, 8($sp) # restore $s1

addiu $sp, $sp, 12 # free stack frame

jr $ra # return to caller

