Integer Multiplication

and Division

COE 233
Logic Design and Computer Organization
Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Unsigned Integer Multiplication

“ Paper and Pencil Example:

Multiplicand 1100, = 12
Multiplier X 1101, = 13
1100
0000 Binary rnl.JItipIication IS easy
1100 Oxmult?plfcand—o N
1 x multiplicand = multiplicand
1100
Product 10011100, = 156

“* n-bit multiplicand x n-bit multiplier = (2n)-bit product
“ Accomplished via shifting and addition

“ Consumes more time and more chip area than addition

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar — slide 2

Signed Integer Multiplication

¢ First attempt:
< Convert multiplier and multiplicand into positive numbers
» |If negative then obtain the 2's complement and remember the sign
< Perform unsigned multiplication
< Compute the sign of the product
< If product sign < 0 then obtain the 2's complement of the product

<> Drawback: additional steps to compute the 2's complement
*» Better version:

< Use the same multiplication hardware

< Extend the sign of the multiplicand in the partial products

< If multiplier is negative, the last step should be a subtract

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar — slide 3

Signed Multiplication (Paper & Pencil)

s Case 1: Positive Multiplier

Multiplicand 1100, = -4
Multiplier X 0101, = +5
. : {—*11111100
Sign-extension

—1111100
Product 11101100, = -20

*» Case 2: Negative Multiplier

Multiplicand 1100, = -4
Multiplier X 1101, = -3
. : {—> 11111100
Sign-extension
—1111100
00100 (2's complement of 1100)

Product 00001100, = +12

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar — slide 4

Unsigned Division (Paper & Pencil)

10011, = 19 Quotient
Divisor 1011,) 11011001, = 217 Dividend

~1011i
10@ e Check how big a
RN number can be
101+ subtracted, creating a
1010 bit of the quotient on
10100 : each attempt
Dividend = -1011 :
Quotient x Divisor 1001 | Binary division is done
+ Remainder 10011’ via shn‘tmg_ and
subtraction
217=19x 11 + 8 -1011

1000, = 8 Remainder

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar — slide 5

Signed Integer Division

“ Simplest way is to remember the signs
¢ Convert the dividend and divisor to positive
< Obtain the 2's complement if they are negative
¢ Do the unsigned division
“ Compute the signs of the quotient and remainder

< Quotient sign = Dividend sign XOR Divisor sign

< Remainder sign = Dividend sign

“* Negate the quotient and remainder if their sign is negative

< Obtain the 2's complement to convert them to negative

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar — slide 6

Signed Integer Division Examples

1. Positive Dividend and Positive Divisor

< Example: +17 / +3 Quotient=+5 Remainder = +2
2. Positive Dividend and Negative Divisor

< Example: +17 /-3 Quotient=-5 Remainder = +2
3. Negative Dividend and Positive Divisor

< Example: =17/ +3 Quotient=-5 Remainder = -2
4. Negative Dividend and Negative Divisor

< Example: =17 /-3 Quotient =+5 Remainder = -2

The following equation must always hold:

Dividend = Quotient x Divisor + Remainder

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar — slide 7

Integer Multiplication in MIPS

¢ Multiply instructions

< mult Rs, Rt Signed multiplication
< multu Rs, Rt Unsigned multiplication
¢ 32-bit multiplication produces a 64-bit Product _
¢ Separate pair of 32-bit registers $_1
< HI = high-order 32-bit of product $;;1
< LO =low-order 32-bit of product Mu||tip|y
< MIPS also has a special mul instruction Divide
<~ mul Rd, Rs, Rt Rd = Rs x Rt HII_I_L‘O

<> Copy LO into destination register Rd

< Useful when the product is small (32 bits) and HI is not needed

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar — slide 8

Integer Division in MIPS

¢ Divide Iinstructions

< div Rs, Rt Signed division

< divu Rs, Rt Unsigned division
¢ Division produces guotient and remainder
s Separate pair of 32-bit registers

< HI = 32-bit remainder

< LO = 32-bit quotient

< If divisor is 0 then result is unpredictable
“* Moving data from HI, LO to MIPS registers

< mfhi Rd (Rd = HI)

< mflo Rd (Rd =LO)

Integer Multiplication and Division COE 233 Logic Design and Computer Organization

$0
$1

$31
|

Multiply
Divide

I_I_l

HI LO

© Muhamed Mudawar — slide 9

Integer Multiply and Divide Instructions

Instruction Meaning Format

mult Rs, Rt HI, LO =Rs x_ Rt Op=0 Rs Rt (%) (%) ox18
multu Rs, Rt HI, LO =Rs x, Rt Op=0 Rs Rt (%) (%) ox19
mul Rd, Rs, Rt Rd = Rs x_, Rt Ox1c Rs Rt Rd (%] 2

div Rs, Rt HI, LO=Rs / Rt Op=0 | Rs Rt (%] (%] Ox1la
divu Rs, Rt HI, LO=Rs /, Rt Op=0 | Rs Rt (%] (%] ox1b
mfhi Rd Rd = HI Op=0 9 (% Rd 0 0x109
mflo Rd Rd = LO Op=0 %) %) Rd (%) ox12
mthi Rs HI = Rs Op=0 | Rs %) (%) ox11
mtlo Rs LO = Rs Op=0 | Rs (%) (%) (%) ox13

x. = Signed multiplication,

/< = Signed division,

Integer Multiplication and Division

x, = Unsigned multiplication

/, = Unsigned division

NO arithmetic exception can occur

COE 233 Logic Design and Computer Organization

© Muhamed Mudawar — slide 10

String to Integer Conversion

» Consider the conversion of string "91052" into an integer
1 9 1 | 1 | 1 e 1 | 5 1 1 2 1

*» How to convert the string into an integer?
“ Initialize: sum =0
¢ Load each character of the string into a register
< Check if the character is in the range: '@' to '9"
< Convert the character into a digit in the range: @to 9
< Compute: sum =sum * 10 + digit
< Repeat until end of string or a non-digit character is encountered
“ To convert "91052", initialize sum to 0 then ...
< sum =9, then 91, then 910, then 9105, then 91052

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar — slide 11

String to Integer Conversion Function

str2int:
Input:
Output:
str2int:
1i
1i
L1: 1b
blt
bgt
addiu
mul
addu
addiu
J

done: jr

Integer Multiplication and Division

Convert a string of digits into unsigned integer
$a0 = address of null terminated string
$vO = unsigned integer value

$vo,
$to,
$t1,
$t1,
$t1,
$t1,
$vo,
$vo,
$ao0,
L1
$ra

%) # Initialize: $vO = sum = ©
10 # Initialize: $to0 = 10
0(%a0) # load $tl1 = str[i]
'0', done # exit loop if ($t1 < '@")
'9', done # exit loop if ($t1 > '9')
$t1, -48 # Convert character to digit
$vo, $t0 # $vO = sum * 10
$vo, $t1 # $vO = sum * 10 + digit
$a0, 1 # $a0 = address of next char
loop back
return to caller

COE 233 Logic Design and Computer Organization © Muhamed Mudawar — slide 12

Integer to String Conversion

> Convert an unsigned 32-bit integer into a string

*+ How to obtain the decimal digits of the number?
< Divide the number by 10, Remainder = decimal digit (O to 9)
<> Convert decimal digit into its ASCII representation (‘0" to '9")
< Repeat the division until the quotient becomes zero

< Digits are computed backwards from least to most significant

“ Example: convert 2037 to a string
< Divide 2037/10 quotient =203 remainder=7 char="7"
< Divide 203/10 quotient=20 remainder=3 char="3'
< Divide 20/10 guotient = 2 remainder =0 char="0'
< Divide 2/10 quotient =0 remainder =2 char="2'

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar — slide 13

Integer to String Conversion Function

1+ T .
int2str: Converts an unsigned integer into a string
Input: $a0 = value, $al = buffer address (12 bytes)
Output: $v0 = address of converted string in buffer
g g s
int2str:
1i $to, 10 # $t0 = divisor = 10
addiu $vo, %$al, 11 # start at end of buffer
sb $zero, 0($v0) # store a NULL character
L2: divu $a0, $to # LO = value/10, HI = value%10
mflo $a0 # $a0 = value/10
mfhi $t1 # $t1 = value%10
addiu $ti1, $t1, 48 # convert digit into ASCII
addiu $vo, $vo, -1 # point to previous byte
sb $t1, o($voO) # store character in memory
bnez $a0, L2 # loop if value is not ©

return to caller

H

jr $ra

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar — slide 14

