
Integer Multiplication

and Division

COE 233

Logic Design and Computer Organization

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar – slide 2

❖ Paper and Pencil Example:

Multiplicand 11002 = 12

Multiplier × 11012 = 13

1100

0000

1100

1100

Product 100111002 = 156

❖ n-bit multiplicand × n-bit multiplier = (2n)-bit product

❖ Accomplished via shifting and addition

❖ Consumes more time and more chip area than addition

Unsigned Integer Multiplication

Binary multiplication is easy

0 × multiplicand = 0

1 × multiplicand = multiplicand

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar – slide 3

Signed Integer Multiplication

❖ First attempt:

 Convert multiplier and multiplicand into positive numbers

▪ If negative then obtain the 2's complement and remember the sign

 Perform unsigned multiplication

 Compute the sign of the product

 If product sign < 0 then obtain the 2's complement of the product

 Drawback: additional steps to compute the 2's complement

❖ Better version:

 Use the same multiplication hardware

 Extend the sign of the multiplicand in the partial products

 If multiplier is negative, the last step should be a subtract

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar – slide 4

Signed Multiplication (Paper & Pencil)

❖ Case 1: Positive Multiplier

Multiplicand 11002 = -4

Multiplier × 01012 = +5

11111100

111100

Product 111011002 = -20

❖ Case 2: Negative Multiplier

Multiplicand 11002 = -4

Multiplier × 11012 = -3

11111100

111100

00100 (2's complement of 1100)

Product 000011002 = +12

Sign-extension

Sign-extension

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar – slide 5

= 19 Quotient

Divisor 10112 110110012 = 217 Dividend

-1011

10

101

1010

10100

-1011

1001

10011

-1011

10002 = 8 Remainder

Unsigned Division (Paper & Pencil)

Dividend =

Quotient × Divisor

+ Remainder

217 = 19 × 11 + 8

100112

Check how big a

number can be

subtracted, creating a

bit of the quotient on

each attempt

Binary division is done

via shifting and

subtraction

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar – slide 6

Signed Integer Division

❖ Simplest way is to remember the signs

❖ Convert the dividend and divisor to positive

 Obtain the 2's complement if they are negative

❖ Do the unsigned division

❖ Compute the signs of the quotient and remainder

 Quotient sign = Dividend sign XOR Divisor sign

 Remainder sign = Dividend sign

❖ Negate the quotient and remainder if their sign is negative

 Obtain the 2's complement to convert them to negative

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar – slide 7

Signed Integer Division Examples

1. Positive Dividend and Positive Divisor

 Example: +17 / +3 Quotient = +5 Remainder = +2

2. Positive Dividend and Negative Divisor

 Example: +17 / –3 Quotient = –5 Remainder = +2

3. Negative Dividend and Positive Divisor

 Example: –17 / +3 Quotient = –5 Remainder = –2

4. Negative Dividend and Negative Divisor

 Example: –17 / –3 Quotient = +5 Remainder = –2

The following equation must always hold:

Dividend = Quotient × Divisor + Remainder

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar – slide 8

Integer Multiplication in MIPS

❖ Multiply instructions

 mult Rs, Rt Signed multiplication

 multu Rs, Rt Unsigned multiplication

❖ 32-bit multiplication produces a 64-bit Product

❖ Separate pair of 32-bit registers

 HI = high-order 32-bit of product

 LO = low-order 32-bit of product

❖ MIPS also has a special mul instruction

 mul Rd, Rs, Rt Rd = Rs × Rt

 Copy LO into destination register Rd

 Useful when the product is small (32 bits) and HI is not needed

Multiply

Divide

$0

HI LO

$1

.

.

$31

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar – slide 9

Integer Division in MIPS

❖ Divide instructions

 div Rs, Rt Signed division

 divu Rs, Rt Unsigned division

❖ Division produces quotient and remainder

❖ Separate pair of 32-bit registers

 HI = 32-bit remainder

 LO = 32-bit quotient

 If divisor is 0 then result is unpredictable

❖ Moving data from HI, LO to MIPS registers

 mfhi Rd (Rd = HI)

 mflo Rd (Rd = LO)

Multiply

Divide

$0

HI LO

$1

.

.

$31

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar – slide 10

Integer Multiply and Divide Instructions

Instruction Meaning Format

mult Rs, Rt HI, LO = Rs ×s Rt Op = 0 Rs Rt 0 0 0x18

multu Rs, Rt HI, LO = Rs ×u Rt Op = 0 Rs Rt 0 0 0x19

mul Rd, Rs, Rt Rd = Rs ×s Rt 0x1c Rs Rt Rd 0 2

div Rs, Rt HI, LO = Rs /s Rt Op = 0 Rs Rt 0 0 0x1a

divu Rs, Rt HI, LO = Rs /u Rt Op = 0 Rs Rt 0 0 0x1b

mfhi Rd Rd = HI Op = 0 0 0 Rd 0 0x10

mflo Rd Rd = LO Op = 0 0 0 Rd 0 0x12

mthi Rs HI = Rs Op = 0 Rs 0 0 0 0x11

mtlo Rs LO = Rs Op = 0 Rs 0 0 0 0x13

×s = Signed multiplication, ×u = Unsigned multiplication

/s = Signed division, /u = Unsigned division

NO arithmetic exception can occur

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar – slide 11

String to Integer Conversion

❖ Consider the conversion of string "91052" into an integer

❖ How to convert the string into an integer?

❖ Initialize: sum = 0

❖ Load each character of the string into a register

 Check if the character is in the range: '0' to '9'

 Convert the character into a digit in the range: 0 to 9

 Compute: sum = sum * 10 + digit

 Repeat until end of string or a non-digit character is encountered

❖ To convert "91052", initialize sum to 0 then …

 sum = 9, then 91, then 910, then 9105, then 91052

'9' '1' '0' '5' '2'

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar – slide 12

String to Integer Conversion Function
#---

str2int: Convert a string of digits into unsigned integer

Input: $a0 = address of null terminated string

Output: $v0 = unsigned integer value

#---

str2int:

li $v0, 0 # Initialize: $v0 = sum = 0

li $t0, 10 # Initialize: $t0 = 10

L1: lb $t1, 0($a0) # load $t1 = str[i]

blt $t1, '0', done # exit loop if ($t1 < '0')

bgt $t1, '9', done # exit loop if ($t1 > '9')

addiu $t1, $t1, -48 # Convert character to digit

mul $v0, $v0, $t0 # $v0 = sum * 10

addu $v0, $v0, $t1 # $v0 = sum * 10 + digit

addiu $a0, $a0, 1 # $a0 = address of next char

j L1 # loop back

done: jr $ra # return to caller

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar – slide 13

Integer to String Conversion

❖ Convert an unsigned 32-bit integer into a string

❖ How to obtain the decimal digits of the number?

 Divide the number by 10, Remainder = decimal digit (0 to 9)

 Convert decimal digit into its ASCII representation ('0' to '9')

 Repeat the division until the quotient becomes zero

 Digits are computed backwards from least to most significant

❖ Example: convert 2037 to a string

 Divide 2037/10 quotient = 203 remainder = 7 char = '7'

 Divide 203/10 quotient = 20 remainder = 3 char = '3'

 Divide 20/10 quotient = 2 remainder = 0 char = '0'

 Divide 2/10 quotient = 0 remainder = 2 char = '2'

Integer Multiplication and Division COE 233 Logic Design and Computer Organization © Muhamed Mudawar – slide 14

Integer to String Conversion Function
#--

int2str: Converts an unsigned integer into a string

Input: $a0 = value, $a1 = buffer address (12 bytes)

Output: $v0 = address of converted string in buffer

#--

int2str:

li $t0, 10 # $t0 = divisor = 10

addiu $v0, $a1, 11 # start at end of buffer

sb $zero, 0($v0) # store a NULL character

L2: divu $a0, $t0 # LO = value/10, HI = value%10

mflo $a0 # $a0 = value/10

mfhi $t1 # $t1 = value%10

addiu $t1, $t1, 48 # convert digit into ASCII

addiu $v0, $v0, -1 # point to previous byte

sb $t1, 0($v0) # store character in memory

bnez $a0, L2 # loop if value is not 0

jr $ra # return to caller

