MIPS Arithmetic

and Logic Instructions

COE 233
Logic Design and Computer Organization
Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Instruction Categories

¢ Integer Arithmetic (our focus in this presentation)
< Arithmetic, logic, and shift instructions
» Data Transfer
<> Load and store instructions that access memory
< Data movement and conversions
*+ Jump and Branch
<> Flow-control instructions that alter the sequential sequence
** Floating Point Arithmetic
< Instructions that operate on floating-point numbers and registers
** Miscellaneous

< Instructions that transfer control to/from exception handlers

< Memory management instructions

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 2

R-Type Instruction Format

Op®

Rs®

Rt°

Rd®

sa’

funct®

*» Op: operation code (opcode)
<> Specifies the operation of the instruction

< Also specifies the format of the instruction

< Up to 2% = 64 opcodes =» Not sufficient to define all instructions

¢ funct: function code — extends the opcode

< Up to 2% = 64 functions can be defined for the same opcode

< MIPS uses opcode 0 to define many R-type instructions

*» Three Register Operands (common to many instructions)

< Rs, Rt: first and second source operands

<> Rd: destination operand

< sa: the shift amount used by shift instructions

MIPS ALU Instructions

COE 233 — Logic Design and Computer Organization

© Muhamed Mudawar — slide 3

R-Type Integer Add and Subtract

Instruction Meaning Op Rs | Rt | Rd | sa | func
add $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 | $t3 | $t1 | © | ox20
addu $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 | $t3 | $t1 | @ | ex21
sub $t1, $t2, $t3 $t1 = $t2 - $t3 0 $t2 | $t3 | $t1 | @ | Ox22
subu $t1, $t2, $t3 $t1 = $t2 - $t3 0 $t2 | $t3 | $t1 | @ | ox23

¢ add, sub: arithmetic overflow causes an exception

< In case of overflow, result is not written to destination register

¢ addu, subu: arithmetic overflow is ignored

¢ addu, subu: compute the same result as add, sub

“* Many programming languages ignore overflow

< The + operator is translated into addu

< The — operator is translated into subu

MIPS ALU Instructions

COE 233 — Logic Design and Computer Organization

© Muhamed Mudawar — slide 4

Carry versus Overflow

¢ Carry Is useful when adding (subtracting) unsigned integers

< Carry indicates that the unsigned sum is out of range

¢ Overflow is useful when adding (subtracting) signed integers

< Overflow indicates that the signed sum is out of range
% Range for 32-bit unsigned integers = 0 to (232 - 1)
“* Range for 32-bit signed integers = -231 to (23! - 1)

“ Example 1: Carry = 1, Overflow = 0 (NO overflow)

11111 1 111 1
+ 1000 0100 0000 0000 1110 0001 0100 0001
1111 1111 0000 0000 1111 0101 0010 0000

1000 0011 0000 0001 1101 0110 01190 0001

Unsigned sum is out-of-range, but the Signed sum is correct

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 5

More Examples of Carry and Overflow

“ Example 2: Carry = 0, Overflow =1

01111 1 11 1
+_0010 0100 0000 0100 1011 0001 0100 0100
0111 1111 0111 0000 0011 0101 0000 0019

1010 0011 0111 0100 1110 0110 0100 0110
Unsigned sum is correct, but the Signed sum is out-of-range

* Example 3: Carry = 1, Overflow = 1

1 111 11 1
+ 1000 0100 0000 0100 1011 0001 0100 0100
1001 1111 0111 0000 0011 0101 0000 0010

0010 0011 0111 0100 1110 0110 0100 0110
Both the Unsigned and Sighed sums are out-of-range

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 6

Using Add / Subtract Instructions

< Consider the translation of: f = (g+h)-(i+j)
*» Programmer / Compiler allocates registers to variables
% Given that: $to=Ff, $ti1=g, $t2=h, $t3=1i, and $t4=j
*» Called temporary registers: $t0=$8, $t1=%$9, ..
¢ Translation of. f = (g+h)-(i+7j)
addu $t5, $t1, $t2 # $t5 =g + h
addu $t6, $t3, $t4 # $t6 = i + j
subu $t0, $t5, $t6 # f = (g+h)-(i+j)
% Assembler translates addu $t5,%$t1,$t2 into binary code

Op $t1 $t2 $t5 sa addu
000000 | 01001 | 01010 | 01101 | 90000 | 100001

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 7

Logic Bitwise Instructions

Instruction Meaning Op Rs | Rt | Rd | sa | func
and $t1, $t2, $t3 $t1 = $t2 & $t3 0 $t2 | $t3 | $t1 | @ | ox24
or $ti1, $t2, $t3 $t1 = $t2 | $t3 0 $t2 | $t3 | $t1 | @ | Ox25
xor $t1, $t2, $t3 $t1 = $t2 ~ $t3 0 $t2 | $t3 | $t1 | @ | Ox26
nor $t1, $t2, $t3 $t1 = ~($t2|$t3) 0 $t2 | $t3 | $t1 | @ | ox27

X|y|xandy X|Yy| Xory X |y | Xxory X |y | Xnory

00 0 00 0 00 0 00 1

01 0 01 1 01 1 01 0

110 0 110 1 110 1 110 0

11 1 111 1 11 0 11 0

NOT instruction is not needed, because

not $t1, $t2 is equivalentto: nor $t1, $t2, $t2

MIPS ALU Instructions

COE 233 — Logic Design and Computer Organization

© Muhamed Mudawar — slide 8

Logic Bitwise Instructions

s AND instruction is used to clear bits: x and @6 = 0

*** OR instruction is used to set hits: x or 1 = 1

¢ XOR instruction is used to toggle bits: x xor 1 =» not x

“» Examples:

Given: $t1 = Oxabcdl1234 and $t2 = oxffffo0000

and $to, $t1, $t2 # $t0
or $to, $ti1, $t2 # $to
xor $to, $ti1, $t2 # $t0

nor $t0, $t1, $t2 # $t0

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization

Oxabcd0ooo
Oxffff1234
Ox54321234

Ox0000edchb

© Muhamed Mudawar — slide 9

I-Type Instruction Format

¢ Constants are used quite frequently in programs

¢ |-Type: Instructions with Immediate Operands

Op®

Rs®

Rt°

immediatel6

+» 16-bit Immmediate constant is stored inside the instruction

< Rs is the source register number

< Rt is now the destination register number (for R-type it was Rd)

“» Examples of I-Type ALU Instructions:

< Add immediate: addi $t1, $t2, 5

<- OR immediate:

MIPS ALU Instructions

ori

$t1, $t2, 5 # $t1

$t1 = $t2 + 5

$t2 | 5

COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 10

I-Type ALU Instructions

Instruction Meaning Op Rs | Rt Immediate
addi $t1, $t2, 25 $t1 = $t2 + 25 ox8 | $t2 | $t1 25
addiu $t1, $t2, 25 $t1 = $t2 + 25 Ox9 | $t2 | $t1 25
andi $t1, $t2, 25 $t1 = $t2 & 25 oxc | $t2 | $t1 25
ori $t1, $t2, 25 $t1 = $t2 | 25 oxd | $t2 | $t1 25
xori $t1, $t2, 25 $t1 = $t2 ~ 25 Oxe | $t2 | $t1 25
lui $t1, 25 $t1 = 25 << 16 oxf 0 | $t1 25

> addi: overflow causes an arithmetic exception

< In case of overflow, result is not written to destination register
> addiu: same operation as addi but overflow is ignored

** Immediate constant for addi and addiu is signed

<> No need for subi or subiu instructions =» Use negative immediate

* Immediate constant for andi, ori, xori is unsigned

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 11

Examples of I-Type ALU Instructions

% Given that registers $t0, $t1, $t2 are used for A, B, C

Expression Equivalent MIPS Instruction
A =B + 5; addiu $to, $ti1, 5
C =B - 1; addiu $t2, $ti1i, -1 °
A = B & Oxf; andi $to, $tl1, oxf
C = B | oxf; ori $t2, $t1, oxf
C = 5; addiu $t2, $zero, 5
A = B; addiu $to, $ti, o
Op=addiu | Rs = $t1 | Rt = $t2 | -1 = ©b1111111111111111 <

No need for subiu, because addiu has signed immediate

Register $zero has always the value 0

MIPS ALU Instructions

COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 12

** |-Type instructions can have only 16-bit constants

32-bit Constants

Op®

Rs®

Rt°

immediatel6

** What if we want to load a 32-bit constant into a register?

% Can’t have a 32-bit constant in I-Type instructions ®

< The sizes of all instructions are fixed to 32 bits

» Solution: use two instructions instead of one ©

“* Suppose we want: $t1 = 0xAC5165D9 (32-bit constant)

lui: load upper immediate

lui $t1, OxAC51

ori $t1, $t1, oxe5D9

MIPS ALU Instructions

Upper Lower
16 bits 16 bits
OxAC51 Ox0000
OxAC51 Ox65D9

COE 233 — Logic Design and Computer Organization

© Muhamed Mudawar — slide 13

Pseudo-Instructions

¢ Introduced by the assembler as if they were real instructions

*» Facilitate assembly language programming

Pseudo-Instruction Equivalent MIPS Instruction
move $tl1l, $t2 addu $t1, $t2, $zero
not $t1, $t2 nhor $tl1, $t2, $zero
neg $tl1, $t2 sub $t1, $zero, $t2
1i $t1, -5 addiu $t1, $zero, -5

lui $tl1, oxabcd

11 t1l, Oxabcdl234
ptl, ori $tl1, $t1, ox1234

The MARS tool has a long list of pseudo-instructions

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 14

Shift Operations

» Shifting Is to move the 32 bits of a number left or right

4

L)

L)

4

L)

» s11 means shift left logical (insert zero from the right)

L)

4

L)

* sr1l means shift right logical (insert zero from the left)

L)

4

L)

»* sra means shift right arithmetic (insert sign-bit)

L)

* The 5-bit shift amount field is used by these instructions

sll < 32-bit value >
shift-out <« «1T 1T 1« s <+ <+~ <+~ <+<— shift-in 0
srl
shift-in0 —1T> 17177171 s - 17111 shift-out
sra
shift-in sign-bit T T T L - 171> T shift-out

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 15

Shift Instructions (R-type only)

Instruction Meaning Op Rs | Rt | Rd | sa | func
sll $t1,$t2,10 $t1 = $t2 << 10) @ | $t2 | $t1 | 10 0
srl $t1,$t2,10 $t1 = $t2 >>> 10 0 @ | $t2 | $t1 | 10 2
sra $t1,$t2,10 $t1 = $t2 >> 10 0 @ | $t2 | $t1 | 10 3
sllv $t1,$t2,$t3 $t1 = $t2 << $t3 0 $t3 | $t2 | $t1 | o 4
srlv $t1,$t2,$t3 $t1 = $t2 >>>$t3 0 $t3 | $t2 | $t1 | o 6
srav $t1,$t2,$t3 $t1 = $t2 >> $t3 0 $t3 | $t2 | $t1 | o 7

“sll, srl, sra: shift by a constant amount
< The shift amount (sa) field specifies a number between 0 and 31
sllv, srlv, srav: shift by avariable amount

<> A source register specifies the variable shift amount between 0 and 31

<> Only the lower 5 bits of the source register is used as the shift amount

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 16

Shift Instruction Examples

¢ Given that: $t2 = 6xabcd1234 and $t3 = 16

sll $t1, $t2, 8 $t1 = Oxcd123400
srl $t1, $t2, 4 $t1l = ox0abcdl23
sra $t1, $t2, 4 $t1 = Oxfabcdl23
srlv $t1, $t2, $t3 $t1 = Ox000vabcd
@ Op Rs = $t3 Rt = $t2 Rd = $t1 sa srlv

000000 01011 01010 01001 00000 | 000110

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 17

Binary Multiplication

 Shift Left Instruction (s11) can perform multiplication

< When the multiplier is a power of 2
“ You can factor any binary number into powers of 2
s Example: multiply $t0 by 36

$t0*36 = $t0*(4 + 32) = $to*4 + $to*32

sll $t1, $to, 2 # $t1 = $to * 4
sll $t2, $to, 5 # $t2 = $t0 * 32
addu $t3, $t1, $t2 # $t3 = $t0 * 36

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 18

Your Turn. ..

Multiply $t0 by 26, using shift and add instructions
Hint: 26 =2+ 8 + 16

sll $t1, %$teo, 1 # $t1 = $to * 2
sll $t2, $to, 3 # $t2 = $to * 8
sll $t3, %$to, 4 # $t3 = $to * 16
addu $t4, $t1, $t2 # $t4 = $to * 10
addu $t5, $t4, $t3 # $t5 = $to * 26
Multiply $te by 31, Hint: 31 =32-1
sll $ti, $te, 5 # $t1 = $to * 32
subu $t2, $t1, $to # $t2 = $to * 31

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 19

Integer Multiplication in MIPS

¢ Multiply instructions
< mult Rs, Rt Signed multiplication
< multu Rs, Rt Unsigned multiplication

¢ 32-bit multiplication produces a 64-bit Product

$0
$1

s Separate pair of 32-bit registers

< HI = high-order 32-bit of product 331

|
< LO =low-order 32-bit of product Multiply
< MIPS also has a special mul instruction Divide
I_I_l
<~ mul Rd, Rs, Rt Rd = Rs x Rt HI LO

<> Copy LO into destination register Rd

< Useful when the product is small (32 bits) and HI is not needed

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 20

Integer Division in MIPS

¢ Divide Iinstructions

< div Rs, Rt Signed division

< divu Rs, Rt Unsigned division
¢ Division produces guotient and remainder
¢ Separate pair of 32-bit registers

< HI = 32-bit remainder

< LO = 32-bit quotient

< If divisor is 0 then result is unpredictable
“* Moving data from HI, LO to MIPS registers

< mfhi Rd (Rd = HI)

< mflo Rd (Rd =LO)

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization

$0
$1

$31
|

Multiply
Divide

I_I_l

HI LO

© Muhamed Mudawar — slide 21

Integer Multiply and Divide Instructions

Instruction Meaning Format

mult Rs, Rt HI, LO =Rs x_ Rt Op=0 Rs Rt (%) (%) ox18
multu Rs, Rt HI, LO =Rs x, Rt Op=0 Rs Rt (%) (%) ox19
mul Rd, Rs, Rt Rd = Rs x_, Rt ox1c Rs Rt Rd (%) 2

div Rs, Rt HI, LO=Rs / Rt Op=0 | Rs Rt (%] (%) Oxla
divu Rs, Rt HI, LO=Rs /, Rt Op=0 | Rs Rt 0 ® | exib
mfhi Rd Rd = HI Op=0 9 (7 Rd 0 0x10
mflo Rd Rd = LO Op=0 %) %) Rd (%) 0x12
mthi Rs HI = Rs Op=0 | Rs %) (%) ox11
mtlo Rs LO = Rs Op=0 | Rs (%) (%) (%) ox13

x. = Signed multiplication,

/< = Signed division,

MIPS ALU Instructions

x, = Unsigned multiplication

/, = Unsigned division

NO arithmetic exception can occur

COE 233 — Logic Design and Computer Organization

© Muhamed Mudawar — slide 22

Signed Integer Division

“ Simplest way is to remember the signs
¢ Convert the dividend and divisor to positive
<> Obtain the 2's complement if they are negative
¢ Do the unsigned division
“ Compute the signs of the quotient and remainder

< Quotient sign = Dividend sign XOR Divisor sign

< Remainder sign = Dividend sign

“* Negate the quotient and remainder if their sign is negative

< Obtain the 2's complement to convert them to negative

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 23

Signed Integer Division Examples

1. Positive Dividend and Positive Divisor

< Example: +17 / +3 Quotient = +5 Remainder = +2
2. Positive Dividend and Negative Divisor

< Example: +17 /-3 Quotient=-5 Remainder = +2
3. Negative Dividend and Positive Divisor

< Example: =17/ +3 Quotient=-5 Remainder = -2
4. Negative Dividend and Negative Divisor

< Example: =17 /-3 Quotient =+5 Remainder = -2

The following equation must always hold:

Dividend = Quotient x Divisor + Remainder

MIPS ALU Instructions COE 233 - Logic Design and Computer Organization © Muhamed Mudawar — slide 24

