
MIPS Arithmetic

and Logic Instructions

COE 233

Logic Design and Computer Organization

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 2

Instruction Categories

❖ Integer Arithmetic (our focus in this presentation)

 Arithmetic, logic, and shift instructions

❖ Data Transfer

 Load and store instructions that access memory

 Data movement and conversions

❖ Jump and Branch

 Flow-control instructions that alter the sequential sequence

❖ Floating Point Arithmetic

 Instructions that operate on floating-point numbers and registers

❖Miscellaneous

 Instructions that transfer control to/from exception handlers

 Memory management instructions

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 3

R-Type Instruction Format

❖ Op: operation code (opcode)

 Specifies the operation of the instruction

 Also specifies the format of the instruction

 Up to 26 = 64 opcodes ➔ Not sufficient to define all instructions

❖ funct: function code – extends the opcode

 Up to 26 = 64 functions can be defined for the same opcode

 MIPS uses opcode 0 to define many R-type instructions

❖ Three Register Operands (common to many instructions)

 Rs, Rt: first and second source operands

 Rd: destination operand

 sa: the shift amount used by shift instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 4

R-Type Integer Add and Subtract

Instruction Meaning Op Rs Rt Rd sa func

add $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x20

addu $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x21

sub $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x22

subu $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x23

❖ add, sub: arithmetic overflow causes an exception

 In case of overflow, result is not written to destination register

❖ addu, subu: arithmetic overflow is ignored

❖ addu, subu: compute the same result as add, sub

❖Many programming languages ignore overflow

 The + operator is translated into addu

 The – operator is translated into subu

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 5

Carry versus Overflow

❖ Carry is useful when adding (subtracting) unsigned integers

 Carry indicates that the unsigned sum is out of range

❖ Overflow is useful when adding (subtracting) signed integers

 Overflow indicates that the signed sum is out of range

❖ Range for 32-bit unsigned integers = 0 to (232 – 1)

❖ Range for 32-bit signed integers = -231 to (231 – 1)

11111 1 1 11 1
1000 0100 0000 0000 1110 0001 0100 0001
1111 1111 0000 0000 1111 0101 0010 0000

1000 0011 0000 0001 1101 0110 0110 0001

+

❖ Example 1: Carry = 1, Overflow = 0 (NO overflow)

Unsigned sum is out-of-range, but the Signed sum is correct

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 6

More Examples of Carry and Overflow

❖ Example 2: Carry = 0, Overflow = 1

01111 1 11 1
0010 0100 0000 0100 1011 0001 0100 0100
0111 1111 0111 0000 0011 0101 0000 0010

1010 0011 0111 0100 1110 0110 0100 0110

+

Unsigned sum is correct, but the Signed sum is out-of-range

❖ Example 3: Carry = 1, Overflow = 1

1 11 1 11 1
1000 0100 0000 0100 1011 0001 0100 0100
1001 1111 0111 0000 0011 0101 0000 0010

0010 0011 0111 0100 1110 0110 0100 0110

+

Both the Unsigned and Signed sums are out-of-range

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 7

Using Add / Subtract Instructions

❖ Consider the translation of: f = (g+h)–(i+j)

❖ Programmer / Compiler allocates registers to variables

❖ Given that: $t0=f, $t1=g, $t2=h, $t3=i, and $t4=j

❖ Called temporary registers: $t0=$8, $t1=$9, …

❖ Translation of: f = (g+h)–(i+j)

addu $t5, $t1, $t2 # $t5 = g + h

addu $t6, $t3, $t4 # $t6 = i + j

subu $t0, $t5, $t6 # f = (g+h)–(i+j)

❖ Assembler translates addu $t5,$t1,$t2 into binary code

000000

Op

01001

$t1

01010

$t2

01101

$t5

00000

sa

100001

addu

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 8

Logic Bitwise Instructions

Instruction Meaning Op Rs Rt Rd sa func

and $t1, $t2, $t3 $t1 = $t2 & $t3 0 $t2 $t3 $t1 0 0x24

or $t1, $t2, $t3 $t1 = $t2 | $t3 0 $t2 $t3 $t1 0 0x25

xor $t1, $t2, $t3 $t1 = $t2 ^ $t3 0 $t2 $t3 $t1 0 0x26

nor $t1, $t2, $t3 $t1 = ~($t2|$t3) 0 $t2 $t3 $t1 0 0x27

x

0

0

1

1

y

0

1

0

1

x and y

0

0

0

1

x

0

0

1

1

y

0

1

0

1

x or y

0

1

1

1

x

0

0

1

1

y

0

1

0

1

x xor y

0

1

1

0

x

0

0

1

1

y

0

1

0

1

x nor y

1

0

0

0

NOT instruction is not needed, because

not $t1, $t2 is equivalent to: nor $t1, $t2, $t2

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 9

Logic Bitwise Instructions

❖ AND instruction is used to clear bits: x and 0 ➔ 0

❖ OR instruction is used to set bits: x or 1 ➔ 1

❖ XOR instruction is used to toggle bits: x xor 1 ➔ not x

❖ Examples:

Given: $t1 = 0xabcd1234 and $t2 = 0xffff0000

and $t0, $t1, $t2 # $t0 = 0xabcd0000

or $t0, $t1, $t2 # $t0 = 0xffff1234

xor $t0, $t1, $t2 # $t0 = 0x54321234

nor $t0, $t1, $t2 # $t0 = 0x0000edcb

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 10

I-Type Instruction Format

❖ Constants are used quite frequently in programs

❖ I-Type: Instructions with Immediate Operands

❖ 16-bit immediate constant is stored inside the instruction

Rs is the source register number

Rt is now the destination register number (for R-type it was Rd)

❖ Examples of I-Type ALU Instructions:

Add immediate: addi $t1, $t2, 5 # $t1 = $t2 + 5

OR immediate: ori $t1, $t2, 5 # $t1 = $t2 | 5

Op6 Rs5 Rt5 immediate16

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 11

I-Type ALU Instructions

Instruction Meaning Op Rs Rt Immediate

addi $t1, $t2, 25 $t1 = $t2 + 25 0x8 $t2 $t1 25

addiu $t1, $t2, 25 $t1 = $t2 + 25 0x9 $t2 $t1 25

andi $t1, $t2, 25 $t1 = $t2 & 25 0xc $t2 $t1 25

ori $t1, $t2, 25 $t1 = $t2 | 25 0xd $t2 $t1 25

xori $t1, $t2, 25 $t1 = $t2 ^ 25 0xe $t2 $t1 25

lui $t1, 25 $t1 = 25 << 16 0xf 0 $t1 25

❖ addi: overflow causes an arithmetic exception

 In case of overflow, result is not written to destination register

❖ addiu: same operation as addi but overflow is ignored

❖ Immediate constant for addi and addiu is signed

 No need for subi or subiu instructions ➔ Use negative immediate

❖ Immediate constant for andi, ori, xori is unsigned

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 12

❖ Given that registers $t0, $t1, $t2 are used for A, B, C

Examples of I-Type ALU Instructions

Expression Equivalent MIPS Instruction

A = B + 5;

C = B – 1;

A = B & 0xf;

C = B | 0xf;

C = 5;

A = B;

addiu $t0, $t1, 5

addiu $t2, $t1, -1

andi $t0, $t1, 0xf

ori $t2, $t1, 0xf

addiu $t2, $zero, 5

addiu $t0, $t1, 0

No need for subiu, because addiu has signed immediate

Register $zero has always the value 0

Rt = $t2Op = addiu Rs = $t1 -1 = 0b1111111111111111

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 13

❖ I-Type instructions can have only 16-bit constants

❖What if we want to load a 32-bit constant into a register?

❖ Can’t have a 32-bit constant in I-Type instructions 

 The sizes of all instructions are fixed to 32 bits

❖ Solution: use two instructions instead of one ☺

❖ Suppose we want: $t1 = 0xAC5165D9 (32-bit constant)

lui: load upper immediate

32-bit Constants

Op6 Rs5 Rt5 immediate16

lui $t1, 0xAC51

ori $t1, $t1, 0x65D9

0xAC51$t1

Upper

16 bits

0x0000

Lower

16 bits

0xAC51$t1 0x65D9

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 14

Pseudo-Instructions

❖ Introduced by the assembler as if they were real instructions

❖ Facilitate assembly language programming

Pseudo-Instruction Equivalent MIPS Instruction

move $t1, $t2

not $t1, $t2

neg $t1, $t2

li $t1, -5

li $t1, 0xabcd1234

The MARS tool has a long list of pseudo-instructions

addu $t1, $t2, $zero

nor $t1, $t2, $zero

sub $t1, $zero, $t2

lui $t1, 0xabcd

ori $t1, $t1, 0x1234

addiu $t1, $zero, -5

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 15

Shift Operations

❖ Shifting is to move the 32 bits of a number left or right

❖ sll means shift left logical (insert zero from the right)

❖ srl means shift right logical (insert zero from the left)

❖ sra means shift right arithmetic (insert sign-bit)

❖ The 5-bit shift amount field is used by these instructions

shift-in 0. . .shift-out

sll 32-bit value

. . .shift-in 0 shift-out

srl

. . .shift-in sign-bit shift-out

sra

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 16

Shift Instructions (R-type only)

❖ sll, srl, sra: shift by a constant amount

 The shift amount (sa) field specifies a number between 0 and 31

❖ sllv, srlv, srav: shift by a variable amount

 A source register specifies the variable shift amount between 0 and 31

 Only the lower 5 bits of the source register is used as the shift amount

Instruction Meaning Op Rs Rt Rd sa func

sll $t1,$t2,10 $t1 = $t2 << 10 0 0 $t2 $t1 10 0

srl $t1,$t2,10 $t1 = $t2 >>> 10 0 0 $t2 $t1 10 2

sra $t1,$t2,10 $t1 = $t2 >> 10 0 0 $t2 $t1 10 3

sllv $t1,$t2,$t3 $t1 = $t2 << $t3 0 $t3 $t2 $t1 0 4

srlv $t1,$t2,$t3 $t1 = $t2 >>>$t3 0 $t3 $t2 $t1 0 6

srav $t1,$t2,$t3 $t1 = $t2 >> $t3 0 $t3 $t2 $t1 0 7

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 17

$t1 = 0x0000abcd

$t1 = 0xcd123400

Shift Instruction Examples

❖ Given that: $t2 = 0xabcd1234 and $t3 = 16

sll $t1, $t2, 8

sra $t1, $t2, 4 $t1 = 0xfabcd123

srlv $t1, $t2, $t3

Rt = $t2Op Rs = $t3 Rd = $t1 sa srlv

01010000000 01011 01001 00000 000110

srl $t1, $t2, 4 $t1 = 0x0abcd123

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 18

Binary Multiplication

❖ Shift Left Instruction (sll) can perform multiplication

 When the multiplier is a power of 2

❖ You can factor any binary number into powers of 2

❖ Example: multiply $t0 by 36

$t0*36 = $t0*(4 + 32) = $t0*4 + $t0*32

sll $t1, $t0, 2 # $t1 = $t0 * 4

sll $t2, $t0, 5 # $t2 = $t0 * 32

addu $t3, $t1, $t2 # $t3 = $t0 * 36

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 19

Your Turn . . .

sll $t1, $t0, 1 # $t1 = $t0 * 2

sll $t2, $t0, 3 # $t2 = $t0 * 8

sll $t3, $t0, 4 # $t3 = $t0 * 16

addu $t4, $t1, $t2 # $t4 = $t0 * 10

addu $t5, $t4, $t3 # $t5 = $t0 * 26

Multiply $t0 by 26, using shift and add instructions

Hint: 26 = 2 + 8 + 16

Multiply $t0 by 31, Hint: 31 = 32 – 1

sll $t1, $t0, 5 # $t1 = $t0 * 32

subu $t2, $t1, $t0 # $t2 = $t0 * 31

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 20

Integer Multiplication in MIPS

❖Multiply instructions

 mult Rs, Rt Signed multiplication

 multu Rs, Rt Unsigned multiplication

❖ 32-bit multiplication produces a 64-bit Product

❖ Separate pair of 32-bit registers

 HI = high-order 32-bit of product

 LO = low-order 32-bit of product

❖MIPS also has a special mul instruction

 mul Rd, Rs, Rt Rd = Rs × Rt

 Copy LO into destination register Rd

 Useful when the product is small (32 bits) and HI is not needed

Multiply

Divide

$0

HI LO

$1

.

.

$31

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 21

Integer Division in MIPS

❖ Divide instructions

 div Rs, Rt Signed division

 divu Rs, Rt Unsigned division

❖ Division produces quotient and remainder

❖ Separate pair of 32-bit registers

 HI = 32-bit remainder

 LO = 32-bit quotient

 If divisor is 0 then result is unpredictable

❖Moving data from HI, LO to MIPS registers

 mfhi Rd (Rd = HI)

 mflo Rd (Rd = LO)

Multiply

Divide

$0

HI LO

$1

.

.

$31

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 22

Integer Multiply and Divide Instructions

Instruction Meaning Format

mult Rs, Rt HI, LO = Rs ×s Rt Op = 0 Rs Rt 0 0 0x18

multu Rs, Rt HI, LO = Rs ×u Rt Op = 0 Rs Rt 0 0 0x19

mul Rd, Rs, Rt Rd = Rs ×s Rt 0x1c Rs Rt Rd 0 2

div Rs, Rt HI, LO = Rs /s Rt Op = 0 Rs Rt 0 0 0x1a

divu Rs, Rt HI, LO = Rs /u Rt Op = 0 Rs Rt 0 0 0x1b

mfhi Rd Rd = HI Op = 0 0 0 Rd 0 0x10

mflo Rd Rd = LO Op = 0 0 0 Rd 0 0x12

mthi Rs HI = Rs Op = 0 Rs 0 0 0 0x11

mtlo Rs LO = Rs Op = 0 Rs 0 0 0 0x13

×s = Signed multiplication, ×u = Unsigned multiplication

/s = Signed division, /u = Unsigned division

NO arithmetic exception can occur

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 23

Signed Integer Division

❖ Simplest way is to remember the signs

❖ Convert the dividend and divisor to positive

 Obtain the 2's complement if they are negative

❖ Do the unsigned division

❖ Compute the signs of the quotient and remainder

 Quotient sign = Dividend sign XOR Divisor sign

 Remainder sign = Dividend sign

❖ Negate the quotient and remainder if their sign is negative

 Obtain the 2's complement to convert them to negative

MIPS ALU Instructions COE 233 – Logic Design and Computer Organization © Muhamed Mudawar – slide 24

Signed Integer Division Examples

1. Positive Dividend and Positive Divisor

 Example: +17 / +3 Quotient = +5 Remainder = +2

2. Positive Dividend and Negative Divisor

 Example: +17 / –3 Quotient = –5 Remainder = +2

3. Negative Dividend and Positive Divisor

 Example: –17 / +3 Quotient = –5 Remainder = –2

4. Negative Dividend and Negative Divisor

 Example: –17 / –3 Quotient = +5 Remainder = –2

The following equation must always hold:

Dividend = Quotient × Divisor + Remainder

