Memory Elements and Units

COE 233

Digital Logic and Computer Organization

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

Introduction to Sequential Circuits

✤ Latches

Flip-Flops and Registers

Memory Units

Combinational versus Sequential

- Two classes of digital circuits
 - Combinational Circuits
 - ♦ Sequential Circuits
- Combinational Circuit
 - \diamond Outputs = F(Inputs)
 - ♦ Function of Inputs only
 - ♦ NO internal memory
- Sequential Circuit
 - ♦ Outputs is a function of Inputs and internal Memory
 - \diamond There is an internal memory that stores the state of the circuit
 - \diamond Time is very important: memory changes with time

Sequential Circuits

A Sequential circuit consists of:

- 1. Memory elements:
 - ♦ Latches or Flip-Flops
 - ♦ Store the Present State
- 2. Combinational Logic
 - ♦ Produces the Outputs
 - ♦ Produces the Next State
 - Next state = memory input (not stored yet)

Synchronous sequential circuits use a clock signal

- \diamond The clock signal is an input to the memory elements
- ♦ The clock determines when the memory should be updated

The Clock

- Clock is a periodic signal = Train of pulses (1's and 0's)
- The same clock cycle repeats indefinitely over time
- Positive Pulse: when the level of the clock is 1
- Negative Pulse: when the level of the clock is 0
- Rising Edge: when the clock goes from 0 to 1

Falling Edge: when the clock goes from 1 down to 0

Clock Cycle versus Clock Frequency

Clock cycle (or period) is a time duration

- ♦ Measured in seconds, milli-, micro-, nano-, or pico-seconds
- \Rightarrow 1 ms = 10⁻³ sec, 1 µs = 10⁻⁶ sec, 1 ns = 10⁻⁹ sec, 1 ps = 10⁻¹² sec
- Clock frequency = number of cycles per second (Hertz)

 \Rightarrow 1 Hz = 1 cycle/sec, 1 KHz = 10³ Hz, 1 MHz = 10⁶ Hz, 1 GHz = 10⁹ Hz

Clock frequency = 1 / Clock Cycle

 \diamond Example: Given the clock cycle = 0.5 ns = 0.5 × 10⁻⁹ sec

 \diamond Then, the clock frequency = 1/(0.5×10⁻⁹) = 2×10⁹ Hz = 2 GHz

Memory Elements

- Memory can store and maintain binary state (0's or 1's)
 - ♦ Until directed by an input signal to change state
- Main difference between memory elements
 - ♦ Number of inputs they have
 - \diamond How the inputs affect the binary state
- Two main types:
 - ♦ Latches are level-sensitive (the level of the clock)
 - ♦ Flip-Flops are edge-sensitive (sensitive to the edge of the clock)
- Flip-Flips are used in synchronous sequential circuits
- Flip-Flops are built with latches

Next . . .

Introduction to Sequential Circuits

Flip-Flops and Registers

Memory Units

SR Latch

- ✤ A latch is a memory element that can store 0 or 1
- An SR Latch can be built using two cross-coupled NOR gates
- ✤ Two inputs: S (Set) and R (Reset)
- **\bigstar** Two outputs: Q and \overline{Q}

SR Latch Operation

SR Latch Invalid Operation

S = R = 1 should never be used

If S and R change from $1 \rightarrow 0$ simultaneously then race condition (oscillation) occurs

Final Q and \overline{Q} are unknown

SR Latch with Clock Input

- ✤ An additional Clock (enable) input signal C is used
- Clock controls when the state of the latch can be changed
- ✤ When C=0, the S and R inputs have no effect on the latch

The latch will remain in the same state, regardless of S and R

When C=1, then normal SR latch operation

D Latch with Clock Input

- One data input D, S = D and $R = \overline{D}$, No undefined state
- Clock controls when the state of the latch can be changed
- When C=0, the D input has no effect on the latch

The latch will remain in the same state, regardless of *D*

• When C=1, latch is enabled, reset if D is 0 and set if D is 1

Graphic Symbols for Latches

* A bubble appears at the complemented output \overline{Q}

• Indicates that \overline{Q} is the complement of Q

Problem with Latches

- A latch is **level-sensitive** (sensitive to the level of the clock)
- ✤ As long as the clock signal is high …

Any change in the value of input D appears in the output Q

- Output Q keeps changing its value during a clock cycle
- Final value of output Q is uncertain

Due to this uncertainty, latches are NOT used as memory elements in sequential circuits

Next . . .

Introduction to Sequential Circuits

✤ Latches

Flip-Flops and Registers

Memory Units

Flip-Flops

- ✤ A Flip-Flop is a better memory element for sequential circuits
- Solves the problem of latches in synchronous sequential circuits
- ✤ A latch is sensitive to the level of the clock
- However, a flip-flop is sensitive to the edge of the clock
- A flip-flop is called an **edge-triggered** memory element
- It changes it output value at the edge of the clock

Edge-Triggered D Flip-Flop

- Built using two latches in a master-slave configuration
- ✤ A master latch (D-type) receives external inputs
- ✤ A slave latch (SR-type) receives inputs from the master latch
- Only one latch is enabled at any given time

When **Clk=0**, the master is enabled and the D input is latched (slave disabled)

When **Clk=1**, the slave is enabled to generate the outputs (master is disabled)

D Flip-Flop Timing Diagram

- The diagram shows the timing of a positive-edge D Flip-Flop
- The master latch changes its output Qm when the clock C is 0
- The rising edge of the clock triggers the D Flip-Flop

Negative Edge-Triggered D Flip-Flop

- Similar to positive edge-triggered flip-flop
- The first inverter at the Master C input is removed
- Only one latch is enabled at any given time

When **Clk=1**, the master is enabled and the D input is latched (slave disabled) When **Clk=0**, the slave is enabled to generate the outputs (master is disabled)

Graphic Symbols for Flip-Flops

✤ A Flip-Flop has a similar symbol to a Latch

- The difference is the arrowhead at the clock input
- The arrowhead indicates sensitivity to the edge of the clock
- ✤ A circle at the Clk input indicates negative edge-triggered FF

Register

- ✤ A register is a circuit capable of storing data
- \clubsuit An *n*-bit register consists of *n* Flip-Flops and stores *n* bits of data
- Common clock: data is loaded in parallel at the same clock edge
- Common reset: All Flip-Flops are reset in parallel

4-bit

Register Enable

 Question: How to control the loading of data into a register?
 Solution: Introduce an Enable control signal If the register is enabled, load the data into the register
 Otherwise, do not change the value of the register

Question: How to implement register enable?

Implementing Register Enable

Solution: Add a mux (multiplexer) at the *D* input of the register

 $\bigstar D_i = Enable \cdot I_i + \overline{Enable} \cdot Q_i$

• If *Enable* is 1 then $D_i = I_i$ If *Enable* is 0 then $D_i = Q_i$

Next . . .

Introduction to Sequential Circuits

✤ Latches

Flip-Flops and Registers

Memory Units

Memory Units

- ✤ A memory unit is a device that can store binary information
- ✤ It is a large group of cells, each capable of storing one bit
- Two types of memory units: Volatile and Non-Volatile
- Random-Access Memory (RAM) is volatile
- ROM, Flash, and FPGA are non-volatile

Random-Access Memory

- Large array of storage cells, capable of storing many 0's and 1's
- Random Access: bits can be accessed randomly
- Memory is addressable
 Memory address consists of *k* bits
 Can address 2^k words in memory
 Each word consists of *n* bits
 - Memory capacity = $2^k \times n$ bits
 - ❖ Two control functions: Read and Write Read: Data_out ← Memory [Address] Write: Memory [Address] ← Data_in

Memory Capacity

Each memory location is a group of *n* bits, which is read/written
 Byte = 8-bit data
 Half-word = 16-bit data = 2 bytes

Word = 32-bit data = 4 bytes

- The memory capacity is specified in bytes
 - 1 KB (Kilo Byte) = 2^{10} = 1024 bytes (more than thousand = 10^3)
 - 1 MB (Mega Byte) = 2^{20} Bytes (more than million = 10^{6})
 - 1 GB (Giga Byte) = 2^{30} Bytes (more than billion = 10^9)
 - 1 TB (Tera Byte) = 2^{40} Bytes (more than trillion = 10^{12})
- The memory locations can be accessed (addressed) randomly

Memory Address and Content

Example of a RAM	Memory a	address	16-bit data
Address = 10 bits	Binary	Decimal	Memory content
2 ¹⁰ addresses		0	1011010101011101
From 0 to 1023	000000000	0	1011010101011101
Data = 16 bits	000000001	1	1010101110001001
Memory capacity =	000000010	2	0000110101000110
$2^{10} \times 16$ bits =		:	
16 Kbits = 2 KBytes		•	
Memory can be	1111111101	1021	1001110100010100
addressed randomly	1111111110	1022	0000110100011110
Memory can be read and written	1111111111	1023	1101111000100101

Memory Elements and Units

Example of a Small 4×3 Memory Array

- ✤ 2-bit Address 4 wordlines (rows), each storing 3 bits
- The decoder enables one wordline (row) at a time
- The data are read on the **bitlines** (columns)
- Each wordline in the memory array can be read and written

Read-Only Memory (ROM)

- * Address consists of k bits $\rightarrow 2^k$ memory addresses
- ✤ At each memory address, there is a word consisting of *n* bits
- The *n*-bit word appears at the data output of the ROM
- ROM does not have data inputs or a write operation

Address
$$\xrightarrow{k}$$
 ROM \xrightarrow{n} Data_out $2^k \times n$ bits

ROM memory is useful for implementing Boolean Functions

✤ Also useful for storing permanent data

Types of ROMs

- ROM may be programmed in four different ways
- 1. Mask Programming: done by circuit manufacturer (not by user)
- 2. Programmable Read-Only Memory (PROM)
 - ♦ Fuses in the PROM are blown using a high-voltage pulse
 - ♦ Can be programmed only once (irreversible)
- 3. Electrically Erasable PROM (EEPROM)

Can be erased with an electric signal

Flash memory is similar to EEPROMs but has additional circuitry to erase blocks of memory

ROM Internal Structure (32 x 8-bit)

✤ 5-bit Input → 5-to-32 binary decoder (Only one line is selected)

✤ Each line = 8 bits 8-bit Data output

Implementing a Combinational Circuit

- Implementing a Combinational Circuit with a ROM is easy
- Store the truth table of the circuit by programming the ROM

Truth Table with Five Inputs and Eight output functions

14	I 3	12	I1	10	F7	F6	F5	F4	F3	F2	F1	FØ	
0	0	0	0	0	0	0	1	1	1	0	0	0	
0	0	0	0	1	1	0	0	0	0	1	1	0	
0	0	0	1	0	0	1	0	1	1	0	0	1	
0	0	0	1	1	1	0	1	1	0	0	1	0	
	•	٠	•					•	•				
1	1	1	1	1	0	0	1	0	0	0	1	0	

Inputs are used as Address lines to the ROM

Programming a ROM

Every 1 in the truth table \rightarrow X connection is logic-1

Every **0** in the truth table \rightarrow No X connection is logic-0

Example: At address **00011** = (decimal **3**), the word **10110010** is stored

Example: Square Function

Design a square function with a minimum size ROM

✤ Input X = 3-bit number, Output Y = X²

Solution: Derive the Truth Table

$X_2 X_1 X_0$	Square	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀	
000	0	0	0	0	0	0	0	
0 0 1	1	0	0	0	0	0	1	
010	4	0	0	0	1	0	0	
0 1 1	9	0	0	1	0	0	1	
100	16	0	1	0	0	0	0	
1 0 1	25	0	1	1	0	0	1	
1 1 0	36	1	0	0	1	0	0	
1 1 1	49	1	1	0	0	0	1	

Minimum-Sized ROM Table

- ↔ Output Y_0 is identical to input X_0 → No need to store in ROM
- Similarly, Output Y_1 is always $0 \rightarrow No$ need to store in ROM
- \Rightarrow ROM table \Rightarrow Only need to store Y_5 , Y_4 , Y_3 , and Y_2 in ROM

	Y ₀	Y ₁	Y ₂	Y_3	Y ₄	Y ₅	X ₀	X_1	X ₂	
Minimal ROM		0	0	0	0	0	0	0	0	0
Size = 2 ³ × 4 bits	S	1	0	0	0	0	0	1	0	0
γ_{5}	Ň	0	0	1	0	0	0	0	1	0
$3 \times 4 \longrightarrow Y_4$	X ₂	1	0	0	1	0	0	1	1	0
$ROM \longrightarrow Y_3$	× ₁	0	0	0	0	1	0	0	0	1
$ \begin{array}{c} & & \\ & & $	\sim_0	1	0	0	1	1	0	1	0	1
$0 \longrightarrow \mathbf{Y}_{1}$		0	0	1	0	0	1	0	1	1
└───> Y ₀	L	1	0	0	0	1	1	1	1	1