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Combinational Circuit

❖ A combinational circuit is a block of logic gates having:

𝑛 inputs: 𝑥1, 𝑥2, … , 𝑥𝑛

𝑚 outputs: 𝑓1, 𝑓2, … , 𝑓𝑚

❖ Each output is a function of the input variables

❖ Each output is determined from present combination of inputs

❖ Combination circuit performs operation specified by logic gates



Combinational

Circuit



𝑛 inputs 𝑚 outputs
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Half Adder

A half adder adds two bits: a and b

Two output bits:

1. Carry bit: cout = a · b

2. Sum bit: sum = a  b

a b cout sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Truth Table

ba

cout sum

Half

Adder

a b

sum

cout
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Full Adder

❖ A full adder adds 3 bits: a, b, and c

❖ Two output bits:

1. Carry bit: cout

2. Sum bit: sum

❖ Sum bit is 1 if odd input of 1’s

sum = (a  b)  c (odd function)

❖ Carry bit is 1 if the input of 1’s is 2 or 3

cout = a·b + (a  b)·c

a b c cout sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Truth Table

cFull

Adder

a b

sum

cout
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Full Adder Implementation

Half

Adder

a b

Half

Adder

c

sum

cout

A full adder can be implemented as two half-adders and an OR gate

Full Adder

cout

a b c

sum
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Binary Addition

❖ Start with the least significant bit (rightmost bit)

❖ Add each pair of bits

❖ Include the carry in the addition

0 0 0 1 1 1 0 1

0 0 1 1 0 1 1 0

+

(54)

(29)

(83)

1carry

01234bit position: 567

11 1

0 1 0 1 0 0 1 1
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Ripple Carry Adder

❖ Adds two n-bit numbers: A = {An-1, …, A0} and B = {Bn-1, …, B0} 

❖ Uses identical copies of a full adder to build a large n-bit adder

❖ Iterative design: the cell is a full adder

❖ Carry propagation: carry-out of cell i becomes carry-in to cell i +1

ciFull

Adder

Ai Bi

Si

ci+1c0Full

Adder

A0 B0

S0

c1Full

Adder

A1 B1

S1

c2Full

Adder

A2 B2

S2

...
cn-1Full

Adder

An-1 Bn-1

Sn-1

cn c3
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❖ Design Examples
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Binary Decoders

❖ Given a n-bit binary code, there are 2n possible code values

❖ The decoder has an output for each possible code value 

❖ The n-to-2n decoder has n inputs and 2n outputs

❖ Depending on the input code, only one output is set to logic 1

❖ The conversion of input to output is called decoding

n to 2n

Decoder 



n
In

p
u

ts

2
n

O
u

tp
u

ts A decoder can have less 

than 2n outputs if some 

input codes are unused
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Examples of Binary Decoders

Inputs Outputs

a2 a1 a0 d0 d1 d2 d3 d4 d5 d6 d7

0  0  0 1 0 0 0 0 0 0 0

0  0  1 0 1 0 0 0 0 0 0

0  1  0 0 0 1 0 0 0 0 0

0  1  1 0 0 0 1 0 0 0 0

1  0  0 0 0 0 0 1 0 0 0

1  0  1 0 0 0 0 0 1 0 0

1  1  0 0 0 0 0 0 0 1 0

1  1  1 0 0 0 0 0 0 0 1

Inputs Outputs

a1 a0 d0 d1 d2 d3

0  0 1 0 0 0

0  1 0 1 0 0

1  0 0 0 1 0

1  1 0 0 0 1

Truth

Tables

2-to-4

Decoder2
 I
n

p
u

ts

4
 O

u
tp

u
ts

a1

a0

d0

d1

d2

d3

0

1

2

3

1

0

3-to-8

Decoder

8
 O

u
tp

u
ts

3
 I
n

p
u

ts a2

a1

a0

d0

d1

d2

d3

d4

d5

d6

d7

0

1

2

3

4

5

6

7

1

0

2
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Decoder Implementation

Each decoder output is a minterm

𝑑0 = 𝑎1
′𝑎0

′

𝑑1 = 𝑎1
′𝑎0

𝑎1

𝑎0

𝑑2 = 𝑎1𝑎0
′

𝑑3 = 𝑎1𝑎0

𝑎2

𝑎1

𝑑1 = 𝑎2
′ 𝑎1

′𝑎0

𝑎0
𝑑0 = 𝑎2

′ 𝑎1
′𝑎0

′

𝑑2 = 𝑎2
′ 𝑎1𝑎0

′

𝑑3 = 𝑎2
′ 𝑎1𝑎0

𝑑4 = 𝑎2𝑎1
′𝑎0

′

𝑑5 = 𝑎2𝑎1
′𝑎0

𝑑6 = 𝑎2𝑎1𝑎0
′

𝑑7 = 𝑎2𝑎1𝑎0

3-to-8 Decoder

2-to-4

Decoder

Inputs Outputs

a1 a0 d0 d1 d2 d3

0  0 1 0 0 0

0  1 0 1 0 0

1  0 0 0 1 0

1  1 0 0 0 1
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Using Decoders to Implement Functions
❖ A decoder generates all the minterms

❖ A Boolean function can be expressed as a sum of minterms

❖ Any function can be implemented using a decoder + OR gate

Note: the function must not be minimized

❖ Example: Full Adder sum = ∑(1, 2, 4, 7), cout = ∑(3, 5, 6, 7)

Inputs Outputs

a b c cout sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

3-to-8

Decoder

a

b

c

d0

d1

d2

d3

d4

d5

d6

d7

2

1

0

sum

cout
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Using Decoders to Implement Functions

❖ Good if many output functions of the same input variables

❖ If number of minterms is large ➔Wider OR gate is needed

❖ Use NOR gate if number of maxterms is less than minterms

❖ Example: f = ∑(2, 5, 6), g = ∏(3, 6)➔ g' = ∑(3, 6), h = ∑(0, 5)

Inputs Outputs

a b c f g h

0 0 0 0 1 1

0 0 1 0 1 0

0 1 0 1 1 0

0 1 1 0 0 0

1 0 0 0 1 0

1 0 1 1 1 1

1 1 0 1 0 0

1 1 1 0 1 0

3-to-8

Decoder

a

b

c

d0

d1

d2

d3

d4

d5

d6

d7

2

1

0

f

g

h
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BCD to 7-Segment Decoder

❖ Seven-Segment Display:

 Made of Seven segments: light-emitting diodes (LED)

 Found in electronic devices: such as clocks, calculators, etc.

❖ BCD to 7-Segment Decoder

 Called also a decoder, but not a binary decoder

 Accepts as input a BCD decimal digit (0 to 9)

 Generates output to the seven LED segments to display the BCD digit

 Each segment can be turned on or off separately

BCD to

7-Segment

Decoder

I3

I2

I1

I0

a
b
c
d
e
f
g
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BCD to 7-Segment Decoder 

Specification:

 Input: 4-bit BCD (I3, I2, I1, I0)

 Output: 7-bit (a, b, c, d, e, f, g)

 Display should be OFF for Non-BCD 

input codes.

Implementation can use:

 A binary decoder

 Additional gates

BCD input

I3  I2  I1  I0

7-Segment Output

a b c d e f g

0  0  0  0 1 1 1 1 1 1 0

0  0  0  1 0 1 1 0 0 0 0

0  0  1  0 1 1 0 1 1 0 1

0  0  1  1 1 1 1 1 0 0 1

0  1 0  0 0 1 1 0 0 1 1

0  1  0  1 1 0 1 1 0 1 1

0 1  1  0 1 0 1 1 1 1 1

0  1  1  1 1 1 1 0 0 0 0

1  0  0  0 1 1 1 1 1 1 1

1  0  0  1 1 1 1 1 0 1 1

1010 to 1111 0 0 0 0 0 0 0

Truth Table
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𝐼3(𝐼2 + 𝐼1)

Implementing a BCD to 7-Segment Decoder

I3  I2  I1  I0 a b c d e f g

0  0  0  0 1 1 1 1 1 1 0

0  0  0  1 0 1 1 0 0 0 0

0  0  1  0 1 1 0 1 1 0 1

0  0  1  1 1 1 1 1 0 0 1

0  1 0  0 0 1 1 0 0 1 1

0  1  0  1 1 0 1 1 0 1 1

0 1  1  0 1 0 1 1 1 1 1

0  1  1  1 1 1 1 0 0 0 0

1  0  0  0 1 1 1 1 1 1 1

1  0  0  1 1 1 1 1 0 1 1

1010 – 1111 0 0 0 0 0 0 0

Truth Table
a

b

c

d

f

e

g

Input > 9
NOR gate is used for 0's

I2

I1

I0

I3 4-to-10

Binary

Decoder

0

1

2

3

4

5

6

7

8

9
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❖ Decoders, Implementing Functions with Decoders

❖ Multiplexers
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Multiplexers

❖ Selecting data is an essential function in digital systems

❖ Functional blocks that perform selecting are called multiplexers

❖ A Multiplexer (or Mux) is a combinational circuit that has:

 Multiple data inputs (typically 2n) to select from

 An n-bit select input S used for control

 One output Y

❖ The n-bit select input directs one of the data inputs to the output

M
u
x

d0

d1

d2
.
.
.

Y

2
n

In
p

u
ts

n

S

d2n–1
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❖ 2-to-1 Multiplexer

if (S == 0) Y = d0 ;

else Y = d1;

Logic expression:

𝑌 = 𝑑0 𝑆
′ + 𝑑1 𝑆

❖ 4-to-1 Multiplexer

if (S1S0 == 00) Y = d0 ;

else if (S1S0 == 01) Y = d1;

else if (S1S0 == 10) Y = d2;

else Y = d3;

Logic expression:

𝑌 = 𝑑0 𝑆1
′𝑆0

′ + 𝑑1 𝑆1
′𝑆0 + 𝑑2 𝑆1𝑆0

′ + 𝑑3 𝑆1𝑆2

M
u
x

S1S0

d0

d1

d2

d3

0

1

2

3

𝑌

Examples of Multiplexers

Inputs Output

S d0 d1 Y

0 0 X 0 = d0

0 1 X 1 = d0

1 X 0 0 = d1

1 X 1 1 = d1

Inputs Output

S1 S0 d0 d1 d2 d3 Y

0 0 0 X X X 0 = d0

0 0 1 X X X 1 = d0

0 1 X 0 X X 0 = d1

0 1 X 1 X X 1 = d1

1 0 X X 0 X 0 = d2

1 0 X X 1 X 1 = d2

1 1 X X X 0 0 = d3

1 1 X X X 1 1 = d3

M
u
x

d0

d1

Y

S

0

1
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Enabling
AND Gates

Enabling
AND Gates

Implementing Multiplexers

Y

d0

d1

S

d1

Yd2

S0

d0

d3

S1

M
u
x

d0

d1

S

0

1

𝑌 = 𝑑0 𝑆
′ + 𝑑1 𝑆

M
u
x

S1S0

d0

d1

d2

d3

0

1

2

3

𝑌 = 𝑑0 𝑆1
′𝑆0

′ + 𝑑1 𝑆1
′𝑆0

+ 𝑑2 𝑆1𝑆0
′ + 𝑑3 𝑆1𝑆0
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Building Larger Multiplexers

Larger multiplexers can be built hierarchically using smaller ones

Building 4-to-1

Mux using three

2-to-1 Muxes

Building 8-to-1 Mux

using two 4-to-1 Muxes

and a 2-to-1 Mux

Y

M
u

xd0

d1

S0

M
u

xd2

d3

S0

M
u

x

S1

0

1

0

1

0

1

8
-t

o
-1

 M
u
x

Y

S2S1S0

d0

d1

d2

d3

d4

d5

d6

d7

0

1

2

3

4

5

6

7

YM
u

x

S2

0

1

M
u
x

d4

d5

S1S0

d6

d7

0

1

2

3
M

u
x

d0

d1

S1S0

d2

d3

0

1

2

3
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Multiplexers with Vector Input and Output

The inputs and output of a multiplexer can be n-bit vectors

2-to-1 Multiplexer with n bits

Inputs and output are n-bit vectors

Using n copies of a 2-to-1 Mux

4-to-1 Multiplexer with n bits

Inputs and output are n-bit vectors

Using n copies of a 4-to-1 Mux

M
u
x

S

A [n–1:0]
n

B [n–1:0]
n

Y [n–1:0]
n

0

1
nM

u
x

A [n–1:0]
n

B [n–1:0]
n

C [n–1:0]
n

D [n–1:0]
n

Y [n–1:0]

0

1

2

3

S1S0
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2-by-2 Crossbar Switch

❖ A 2×2 crossbar switch is a combinational circuit that has:

Two n-bit Inputs: A and B

Two n-bit outputs: X and Y

1-bit select input S

❖ Implement the 2×2 crossbar switch using multiplexers

❖ Solution: Two n-bit multiplexers are used

if (S == 0) { X = A; Y = B; }

else { X = B; Y = A; }

2×2

Crossbar

Switch

n
A[n-1:0]

n
B[n-1:0]

X [n-1:0]
n

Y [n-1:0]
n

S

S

A[n–1:0]
n

B[n–1:0]
n

M
u
x0

1

M
u

x0

1

X [n-1:0]
n

Y [n-1:0]
n



Combinational Circuits COE 233 – Digital Logic and Computer Organization © Muhamed Mudawar – slide 26

Addition and Subtraction with Same Adder

❖ Same adder can be used to compute: (A + B) and (A – B)

❖ Two operations: OP = 0 (ADD), OP = 1 (SUBTRACT)

❖ Subtraction (A – B) is computed as: A + (2's complement of B)

2's complement of B = (1's complement of B) + 1

n-bit Adder

n

A [n-1:0]

S [n-1:0]

n

n

n

B [n-1:0]

c0

OP

cn

n-bit input 
vectors

n-bit output 
vector

n XOR
gates

OP = 0 (ADD)

B XOR 0 = B

S = A + B + 0 = A + B

OP = 1 (SUBTRACT)

B XOR 1 = 1's complement of B

S = A + (1's complement of B) + 1

S = A + (2's complement of B)

S = A – B
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Arithmetic and Logic Unit (ALU)

❖ Can perform many functions

❖Most common ALU functions

Arithmetic functions: ADD, SUB (Subtract)

Logic functions: AND, OR, XOR, etc.

❖We will design a simple ALU with 8 functions

❖ The function F is coded with 3 bits as follows:

Function ALU Result Function ALU Result

F = 000 (ADD) R = A + B F = 100 (AND) R = A & B

F = 001 (ADD + 1) R = A + B + 1 F = 101 (OR) R = A | B

F = 010 (SUB – 1) R = A – B – 1 F = 110 (NOR) R = ~(A | B)

F = 011 (SUB) R = A – B F = 111 (XOR) R = (A ^ B)

ALUF[2:0]
3

n

A[n-1:0]
n

B[n-1:0]

R [n-1:0]

n
V C

ALU Symbol
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Designing a Simple ALU

n

B[n-1:0]

n-bit Adder

n n

c0

n

n XOR
gates

𝐹0

n n

n

n AND
gates

n n

n XOR
gates

n

n OR
gates

n n

𝑆1 = 𝐹1

n

F[2:0] = 3-bit Function code

cn-1

cn

A[n-1:0]

Result = R[n-1:0]
V C

V = Overflow
C = Carry output

mux

3210

0
1

n

mux
10

n

𝐹2

𝐹1

𝑆

𝑆0 = 𝐹0


