Combinational Circuit

COE 233

Digital Logic and Computer Organization

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

Half-Adder, Full-Adder, and Ripple-Carry Adder

Decoders, Implementing Functions with Decoders

Multiplexers

Design Examples

Combinational Circuit

✤ A combinational circuit is a block of logic gates having:

n inputs: x_1, x_2, \dots, x_n

m outputs: f_1, f_2, \dots, f_m

- Each output is a function of the input variables
- Each output is determined from present combination of inputs
- Combination circuit performs operation specified by logic gates

Half Adder

A half adder adds two bits: a and b			Truth Table				
				cout	sum		
Two output bits:		0	0	0	0		
1 Corrubite cout o b	0	1	0	1			
1. Carry bit: cout = $a \cdot b$				0	1		
2. Sum bit: sum = a ⊕ b		1	1	1	0		
$cout \leftarrow \begin{array}{c} a & b \\ \downarrow & \downarrow \\ Half \\ Adder \\ \downarrow \\ sum \end{array}$	a b T T T T T T S UM						

Full Adder

- ✤ A full adder adds 3 bits: a, b, and c
- b а Two output bits: CO 1. Carry bit: cout 2. Sum bit: sum

$$ut \leftarrow \begin{bmatrix} \downarrow & \downarrow \\ Full \\ Adder \\ \downarrow \\ sum \end{bmatrix} \leftarrow c$$

а	b	С	cout	sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Sum bit is 1 if **odd input** of 1's

 $sum = (a \oplus b) \oplus c \text{ (odd function)}$

Carry bit is 1 if the input of 1's is 2 or 3

 $cout = a \cdot b + (a \oplus b) \cdot c$

Full Adder Implementation

A full adder can be implemented as two half-adders and an OR gate

Binary Addition

Start with the least significant bit (rightmost bit)

- ✤ Add each pair of bits
- Include the carry in the addition

Ripple Carry Adder

- Adds two *n*-bit numbers: $A = \{A_{n-1}, ..., A_0\}$ and $B = \{B_{n-1}, ..., B_0\}$
- Uses identical copies of a full adder to build a large n-bit adder
- Iterative design: the cell is a full adder
- Carry propagation: carry-out of cell i becomes carry-in to cell i+1

✤ Half-Adder, Full-Adder, and Ripple-Carry Adder

Decoders, Implementing Functions with Decoders

Multiplexers

Design Examples

Binary Decoders

- Given a *n*-bit binary code, there are 2^n possible code values
- The decoder has an output for each possible code value
- The *n*-to- 2^n decoder has *n* inputs and 2^n outputs
- Depending on the input code, only one output is set to logic 1
- The conversion of input to output is called decoding

A decoder can have less than 2ⁿ outputs if some input codes are unused

Examples of Binary Decoders

Decoder Implementation

Using Decoders to Implement Functions

- ✤ A decoder generates all the minterms
- ✤ A Boolean function can be expressed as a sum of minterms
- Any function can be implemented using a decoder + OR gate Note: the function must not be minimized
- **♦ Example:** Full Adder sum = $\Sigma(1, 2, 4, 7)$, cout = $\Sigma(3, 5, 6, 7)$

Using Decoders to Implement Functions

- Good if many output functions of the same input variables
- ✤ If number of minterms is large → Wider OR gate is needed
- Use NOR gate if number of maxterms is less than minterms
- **♦ Example:** $f = \Sigma(2, 5, 6), g = \prod(3, 6) \rightarrow g' = \Sigma(3, 6), h = \Sigma(0, 5)$

BCD to 7-Segment Decoder

- Seven-Segment Display:
 - ♦ Made of Seven segments: light-emitting diodes (LED)
 - ♦ Found in electronic devices: such as clocks, calculators, etc.

UH23455789

- ✤ BCD to 7-Segment Decoder
 - ♦ Called also a decoder, but not a binary decoder
 - ♦ Accepts as input a BCD decimal digit (0 to 9)
 - ♦ Generates output to the seven LED segments to display the BCD digit
 - ♦ Each segment can be turned on or off separately

а

 $\begin{array}{c} I_{3} \rightarrow \\ I_{2} \rightarrow \\ I_{1} \rightarrow \\ I_{0} \rightarrow \end{array} \begin{array}{c} \mathsf{BCD to} \\ \mathsf{C} \\ \mathsf{C}$

BCD to 7-Segment Decoder

Specification:

- \diamond Input: 4-bit BCD (I_3 , I_2 , I_1 , I_0)
- \diamond Output: 7-bit (*a*, *b*, *c*, *d*, *e*, *f*, *g*)
- Display should be OFF for Non-BCD input codes.

Implementation can use:

- ♦ A binary decoder
- ♦ Additional gates

0 823456789

Truth Table

BCD input			7-Segment Output								
I_3	I_2	I_1	I ₀		а	b	С	d	е	f	g
0	0	0	0		1	1	1	1	1	1	0
0	0	0	1		0	1	1	0	0	0	0
0	0	1	0		1	1	0	1	1	0	1
0	0	1	1		1	1	1	1	0	0	1
0	1	0	0		0	1	1	0	0	1	1
0	1	0	1		1	0	1	1	0	1	1
0	1	1	0		1	0	1	1	1	1	1
0	1	1	1		1	1	1	0	0	0	0
1	0	0	0		1	1	1	1	1	1	1
1	0	0	1		1	1	1	1	0	1	1
101	0 t	o 1	111		0	0	0	0	0	0	0

Implementing a BCD to 7-Segment Decoder

Combinational Circuits

COE 233 – Digital Logic and Computer Organization

Half-Adder, Full-Adder, and Ripple-Carry Adder

Decoders, Implementing Functions with Decoders

Multiplexers

Design Examples

Multiplexers

- Selecting data is an essential function in digital systems
- Functional blocks that perform selecting are called multiplexers
- ✤ A Multiplexer (or Mux) is a combinational circuit that has:
 - \diamond Multiple data inputs (typically 2^{*n*}) to select from
 - ♦ An *n*-bit select input S used for control
 - \diamond One output *Y*

The n-bit select input directs one of the data inputs to the output

Examples of Multiplexers

- * 2-to-1 Multiplexer if $(S == 0) Y = d_0;$ else $Y = d_1;$ Logic expression: $Y = d_0 S' + d_1 S$
- ★ 4-to-1 Multiplexer
 if $(S_1S_0 == 00) Y = d_0;$ else if $(S_1S_0 == 01) Y = d_1;$ else if $(S_1S_0 == 10) Y = d_2;$ else $Y = d_3;$

Logic expression:

$$Y = d_0 S_1' S_0' + d_1 S_1' S_0 + d_2 S_1 S_0' + d_3 S_1 S_2$$

l	nput	Output	
S	d_0	d_1	Y
0	0	Х	$0 = d_0$
0	1	Х	$1 = d_0$
1	Х	0	$0 = d_1$
1	Х	1	1 = d ₁

		Output				
S_1	S ₀	d_0	d_1	d_2	d_3	Y
0	0	0	Х	Х	Х	$0 = d_0$
0	0	1	Х	Х	Х	$1 = d_0$
0	1	Х	0	Х	Х	$0 = d_1$
0	1	Х	1	Х	Х	$1 = d_1$
1	0	Х	Х	0	Х	$0 = d_2$
1	0	Х	Х	1	Х	$1 = d_2$
1	1	Х	Х	Х	0	$0 = d_{3}$
1	1	Х	Х	Х	1	$1 = d_{3}$

Implementing Multiplexers

Building Larger Multiplexers

Larger multiplexers can be built hierarchically using smaller ones

Multiplexers with Vector Input and Output

The inputs and output of a multiplexer can be *n*-bit vectors

2-to-1 Multiplexer with *n* bits Inputs and output are *n*-bit vectors Using *n* copies of a 2-to-1 Mux 4-to-1 Multiplexer with *n* bits Inputs and output are *n*-bit vectors Using *n* copies of a 4-to-1 Mux

Half-Adder, Full-Adder, and Ripple-Carry Adder

Decoders, Implementing Functions with Decoders

Multiplexers

Design Examples

2-by-2 Crossbar Switch

✤ A 2×2 crossbar switch is a combinational circuit that has:

Two *n*-bit Inputs: A and B

Two *n*-bit outputs: X and Y

1-bit select input S

if (S == 0) { X = A; Y = B; }
else { X = B; Y = A; }

Implement the 2×2 crossbar switch using multiplexers

Solution: Two *n*-bit multiplexers are used

Addition and Subtraction with Same Adder

- Same adder can be used to compute: (A + B) and (A B)
- Two operations: OP = 0 (ADD), OP = 1 (SUBTRACT)
- ✤ Subtraction (A B) is computed as: A + (2's complement of B)

2's complement of B = (1's complement of B) + 1

OP = 0 (ADD)

$$B XOR 0 = B$$

$$S = A + B + 0 = A + B$$

OP = 1 (SUBTRACT)

B XOR 1 = 1's complement of B

S = A + (1's complement of B) + 1

S = A + (2's complement of B)

$$S = A - B$$

Arithmetic and Logic Unit (ALU)

- Can perform many functions
- Most common ALU functions

Arithmetic functions: ADD, SUB (Subtract)

Logic functions: AND, OR, XOR, etc.

- We will design a simple ALU with 8 functions
- The function F is coded with 3 bits as follows:

Function	ALU Result	Function	ALU Result
F = 000 (ADD)	R = A + B	F = 100 (AND)	R = A & B
F = 001 (ADD + 1)	R = A + B + 1	F = 101 (OR)	R = A B
F = 010 (SUB - 1)	R=A-B-1	F = 110 (NOR)	R = ~(A B)
F = 011 (SUB)	R=A-B	F = 111 (XOR)	R = (A ^ B)

ALU Symbol

Designing a Simple ALU

