Binary Arithmetic

COE 233

Digital Logic and Computer Organization

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

Binary and Hexadecimal Addition and Subtraction

Binary Multiplication and Bit Shifting

Signed Integers

* Range, Overflow, Converting Subtraction into Addition

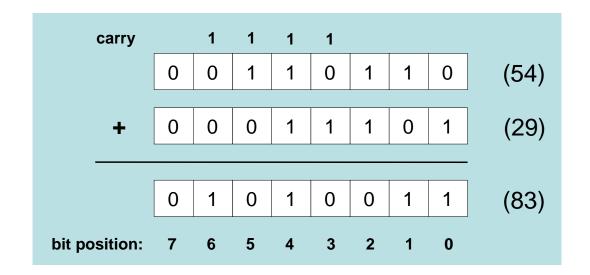
Adding Bits

- 4 1 + 1 = 2, but 2 should be represented as $(10)_2$ in binary
- * Adding two bits: the sum bit is S and the carry bit is C

❖ Adding three bits: the sum bit is S and the carry bit is C

Binary Addition

- Start with the least significant bit (rightmost bit)
- Add each pair of bits
- Include the carry in the addition, if present



Subtracting Bits

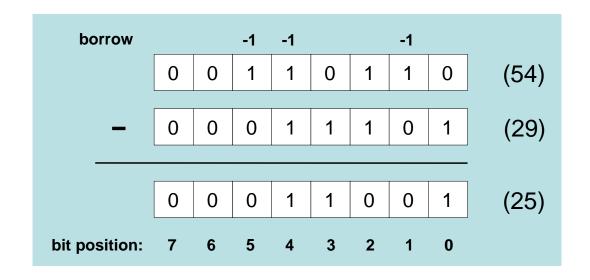
❖ Subtracting 2 bits (X – Y): we get the difference (D) and the borrow-out (B) shown as 0 or -1

❖ Subtracting two bits (X – Y) with a borrow-in = -1: we get the difference (D) and the borrow-out (B)

borrow-in -1 -1 -1 -1 -1
$$X$$
 0 0 1 1 $\frac{-Y}{BD}$ -11 -10 00 -11

Binary Subtraction

- Start with the least significant bit (rightmost bit)
- Subtract each pair of bits
- Include the borrow in the subtraction, if present



Hexadecimal Addition

- Start with the least significant hexadecimal digits
- Let Sum = summation of two hex digits
- ❖ If Sum is greater than or equal to 16

$$\Rightarrow$$
 Sum = Sum – 16 and Carry = 1

Example:

Hexadecimal Subtraction

- Start with the least significant hexadecimal digits
- ❖ Let Difference = subtraction of two hex digits
- If Difference is negative
 - ♦ Difference = 16 + Difference and Borrow = -1
- Example:

Next ...

Binary and Hexadecimal Addition and Subtraction

Binary Multiplication and Bit Shifting

Signed Integers

* Range, Overflow, Converting Subtraction into Addition

Binary Multiplication

Binary Multiplication table is simple:

$$0\times0=0\,,\quad 0\times1=0\,,\quad 1\times0=0\,,\quad 1\times1=1$$
 Multiplicand
$$1100_2 = 12$$
 Multiplier
$$\times \quad 1101_2 = 13$$
 Binary multiplication is easy
$$0\times0000_{000}_{1100}_{1100}$$

$$0\times0000_{000}_{1100}_{1100}$$
 Binary multiplication is easy
$$0\times0000_{000}_{1100}_{1100}$$

$$0\times0000_{000}_{1100}_{1100}$$
 Binary multiplication is easy
$$0\times0000_{000}_{1100}_{1100}$$

$$0\times0000_{000}_{1100}_{1100}$$

$$0\times0000_{000}_{1100}_{1100}$$
 Binary multiplication is easy
$$0\times0000_{000}_{1100}_{1100}$$

$$0\times0000_{000}_{1100}_{1100}_{1100}$$

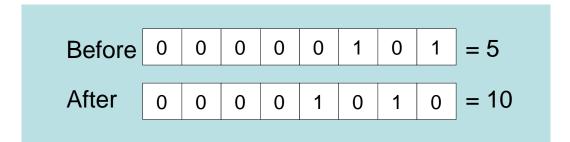
Product

$$10011100_2 = 156$$

- \bullet *n*-bit multiplicand \times *n*-bit multiplier = 2*n*-bit product
- Accomplished via shifting and addition

Shifting the Bits to the Left

What happens if the bits are shifted to the left by 1 bit position?



Multiplication

By 2

What happens if the bits are shifted to the left by 2 bit positions?

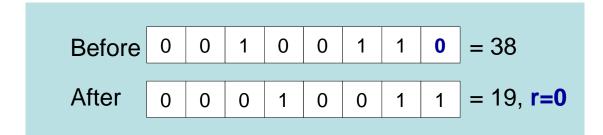
Multiplication

By 4

- \clubsuit Shifting the Bits to the Left by *n* bit positions is multiplication by 2^n
- * As long as we have sufficient space to store the bits

Shifting the Bits to the Right

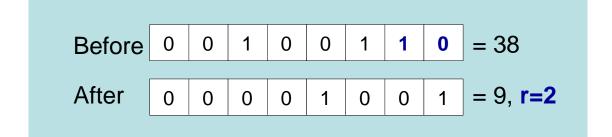
What happens if the bits are shifted to the right by 1 bit position?



Division

By 2

What happens if the bits are shifted to the right by 2 bit positions?



Division

By 4

- \clubsuit Shifting the Bits to the Right by *n* bit positions is division by 2^n
- The remainder r is the value of the bits that are shifted out

Next ...

Binary and Hexadecimal Addition and Subtraction

Binary Multiplication and Bit Shifting

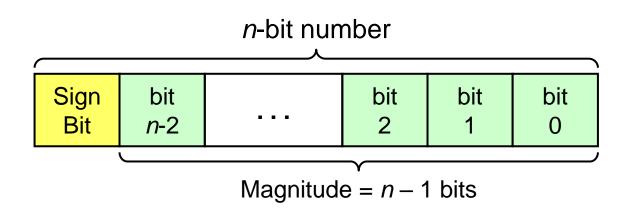
Signed Integers

* Range, Overflow, Converting Subtraction into Addition

Signed Integers

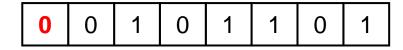
- Several ways to represent a signed integer
 - ♦ Sign-Magnitude
 - ♦ 1's complement
- Divide the range of values into two parts
 - → First part corresponds to the positive numbers (≥ 0)
 - ♦ Second part correspond to the negative numbers (< 0)</p>
- The 2's complement representation is widely used
 - ♦ Has many advantages over other representations

Sign-Magnitude Representation

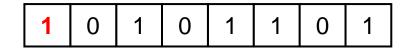


- Independent representation of the sign and magnitude
- Leftmost bit is the sign bit: 0 is positive and 1 is negative
- ❖ Using *n* bits, largest represented magnitude = $2^{n-1} 1$

Sign-magnitude 8-bit representation of +45



Sign-magnitude 8-bit representation of -45



Properties of Sign-Magnitude

Symmetric range of represented values:

For *n*-bit register, range is from $-(2^{n-1}-1)$ to $+(2^{n-1}-1)$

For example, if n = 8 bits then range is -127 to +127

- Two representations for zero: +0 and -0 NOT Good!
- Two circuits are needed for addition & subtraction NOT Good!
 - ♦ In addition to an adder, a second circuit is needed for subtraction
 - ♦ Sign and magnitude parts should be processed independently
 - ♦ Sign bit should be examined to determine addition or subtraction
 - ♦ Addition of numbers of different signs is converted into subtraction
 - ♦ Increases the cost of the add/subtract circuit

Sign-Magnitude Addition / Subtraction

Eight cases for Sign-Magnitude Addition / Subtraction

Operation	ADD	Subtract Magnitudes		
	Magnitudes	A >= B	A < B	
(+A) + (+B)	+(A+B)			
(+A) + (-B)		+(A-B)	-(B-A)	
(-A) + (+B)		-(A-B)	+(B-A)	
(-A) + (-B)	-(A+B)			
(+A) - (+B)		+(A-B)	-(B-A)	
(+A) - (-B)	+(A+B)			
(-A) - (+B)	-(A+B)			
(-A) - (-B)		-(A-B)	+(B-A)	

1's Complement Representation

- ❖ Given a binary number A
 The 1's complement of A is obtained by inverting each bit in A
- ***** Example: 1's complement of $(01101001)_2 = (10010110)_2$
- ❖ If A consists of n bits then:

$$A + (1's complement of A) = (2^n - 1) = (1...111)_2$$
 (all bits are 1's)

- * Range of values is $-(2^{n-1} 1)$ to $+(2^{n-1} 1)$ For example, if n = 8 bits, range is -127 to +127
- * Two representations for zero: +0 and -0 NOT Good! 1's complement of $(0...000)_2 = (1...111)_2 = 2^n - 1$ -0 = $(1...111)_2$ NOT Good!

2's Complement Representation

- Standard way to represent signed integers in computers
- ❖ A simple definition for 2's complement:

Given a binary number A

The 2's complement of A = (1's complement of A) + 1

 \Leftrightarrow Example: 2's complement of $(01101001)_2 =$

$$(10010110)_2 + 1 = (10010111)_2$$

❖ If A consists of n bits then

$$A + (2$$
's complement of A) = 2^n

2's complement of $A = 2^n - A$

Computing the 2's Complement

starting value	00100100 ₂ = +36
step1: Invert the bits (1's complement)	110110112
step 2: Add 1 to the value from step 1	+ 1 ₂
sum = 2's complement representation	11011100 ₂ = -36

2's complement of 110111100_2 (-36) = 00100011_2 + 1 = 00100100_2 = +36 The 2's complement of the 2's complement of *A* is equal to *A*

Another way to obtain the 2's complement:

Start at the least significant 1
Leave all the 0s to its right unchanged
Complement all the bits to its left

```
Binary Value

= 00100100 significant 1

2's Complement

= 11011100
```

Properties of the 2's Complement

- ❖ Range of represented values: -2^{n-1} to $+(2^{n-1}-1)$ For example, if n=8 bits then range is -128 to +127
- **There is only one zero** = $(0...000)_2$ (all bits are zeros)
- ❖ The 2's complement of A is the negative of A
- ❖ The sum of A + (2's complement of A) must be zero
 The final carry is ignored
- ❖ Consider the 8-bit number $A = 00101100_2 = +44$ 2's complement of $A = 11010100_2 = -44$ $00101100_2 + 11010100_2 = 1 00000000_2$ (8-bit sum is 0) ☐ Ignore final carry = 28

2's Complement Signed Decimal Value

- ❖ Positive numbers (sign-bit = 0)
 - ♦ Signed value = Unsigned value
- ❖ Negative numbers (sign-bit = 1)
 - ♦ Signed value = Unsigned value 2^n
 - \Rightarrow n = number of bits
- Negative weight for sign bit
 - → The 2's complement representation assigns a negative weight to the sign bit (most-significant bit)

1	0	1	1	0	1	0	0
-128	64	32	16	8	4	2	1

$$-128 + 32 + 16 + 4 = -76$$

8-bit	Unsigned	Signed
Binary	Value	Value
00000000	0	0
00000001	1	+1
00000010	2	+2
		• • •
01111101	125	+125
01111110	126	+126
01111111	127	+127
10000000	128	-128
10000001	129	-127
10000010	130	-126
• • •	• • •	• • •
11111101	253	-3
11111110	254	-2
11111111	255	-1

Values of Different Representations

8-bit Binary Representation	Unsigned Value	Sign Magnitude Value	1's Complement Value	2's Complement Value
0000000	0	+0	+0	0
0000001	1	+1	+1	+1
00000010	2	+2	+2	+2
01111101	125	+125	+125	+125
01111110	126	+126	+126	+126
01111111	127	+127	+127	+127
10000000	128	-0	-127	-128
10000001	129	-1	-126	-127
10000010	130	-2	-125	-126
11111101	253	-125	-2	-3
11111110	254	-126	-1	-2
11111111	255	-127	-0	-1

Next ...

Binary and Hexadecimal Addition and Subtraction

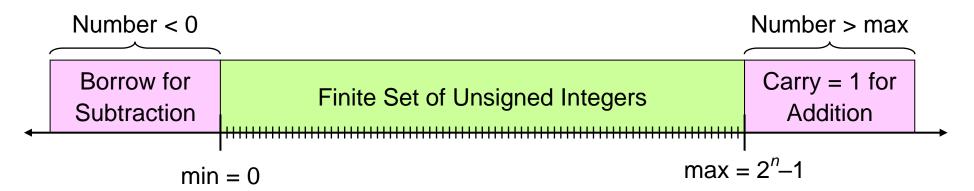
Binary Multiplication and Bit Shifting

Signed Integers

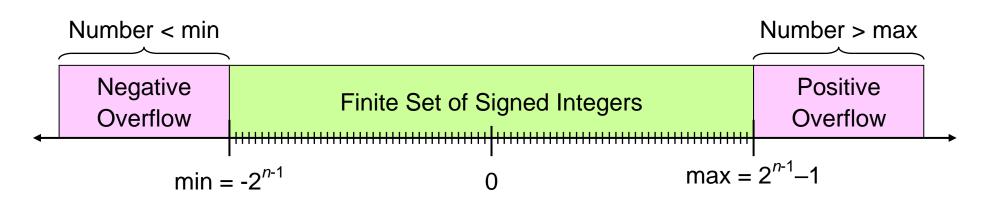
* Range, Overflow, Converting Subtraction into Addition

Range, Carry, Borrow, and Overflow

Unsigned Integers: n-bit representation



Signed Integers: 2's complement representation



Range of Unsigned Integers

For *n*-bit unsigned integers: Range is 0 to $(2^n - 1)$

There are NO negative values

Storage Size	Unsigned Range	Powers of 2
Byte = 8 bits	0 to 255	0 to (2 ⁸ – 1)
Half Word = 16 bits	0 to 65,535	0 to (2 ¹⁶ – 1)
Word = 32 bits	0 to 4,294,967,295	0 to (2 ³² – 1)
Double Word = 64 bits	0 to 18,446,744,073,709,551,615	0 to (2 ⁶⁴ – 1)

Practice: What is the range of values for unsigned 20-bit integers?

Range of Signed Integers

For *n*-bit signed integers: Range is -2^{n-1} to $(2^{n-1}-1)$

Positive range: 0 to $2^{n-1} - 1$

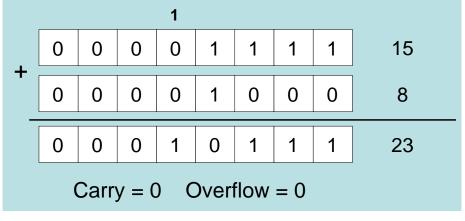
Negative range: -2^{n-1} to -1

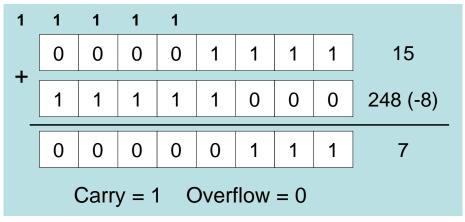
Storage Type	Signed Range	Powers of 2
Byte = 8 bits	-128 to +127	-2^7 to $(2^7 - 1)$
Half Word = 16 bits	-32,768 to +32,767	-2^{15} to $(2^{15}-1)$
Word = 32 bits	-2,147,483,648 to +2,147,483,647	-2^{31} to $(2^{31} - 1)$
Double Word = 64 bits	-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807	-2 ⁶³ to (2 ⁶³ – 1)

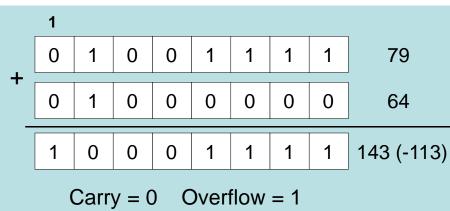
Practice: What is the range of values for signed 20-bit integers?

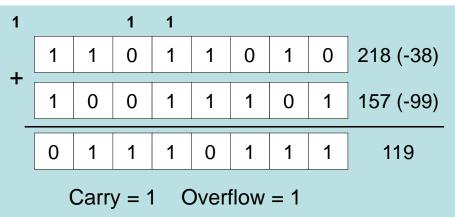
Carry and Overflow Examples

- We can have carry without overflow and vice-versa
- Four cases are possible (Examples on 8-bit numbers)









Carry versus Overflow

- Carry is important when ...
 - ♦ Adding unsigned integers
 - ♦ Indicates that the unsigned sum is out of range
 - ♦ Sum > maximum unsigned n-bit value
- ❖ Overflow is important when ...
 - ♦ Adding or subtracting signed integers
 - ♦ Indicates that the signed sum is out of range
- Overflow occurs when ...
 - ♦ Adding two positive numbers and the sum is negative
 - ♦ Adding two negative numbers and the sum is positive
- ❖ Simplest way to detect Overflow: $V = C_{n-1} \oplus C_n$
 - \diamond C_{n-1} and C_n are the carry-in and carry-out of the most-significant bit

Converting Subtraction into Addition

❖ When computing **A** – **B**, convert **B** to its 2's complement

$$A - B = A + (2's complement of B)$$

Same adder is used for both addition and subtraction

This is the biggest advantage of 2's complement

Final carry is ignored, because

A + (2's complement of B) = A +
$$(2^n - B) = (A - B) + 2^n$$

Final carry = 2^n , for *n*-bit numbers