
Copyright 2003, Pearson Education Inc. All rights reserved.

Answers to Odd-Numbered Section 
Review Questions
for: Irvine, Kip R. Assembly Language for Intel-Based Computers, 4th Edition

Prepared by the author. Recent revision history: 

• 11/24/2002: 11.2 (notes)

• 12/3/2002: 7.5 #3

• 1/1/2003: 5.4 #1

1  Basic Concepts

1.1  Welcome to Assembly Language

1. An assembler is a program that converts source-code programs from assembly language 
into machine language. A linker combines individual files created by an assembler into a 
single executable program.

2.

3. In a one-to-many relationship, a single statement expands into multiple assembly language 
or machine instructions.

4.

5. No. Each assembly language is based on either a processor family or specific computer. 

6.

7. Device drivers are programs that translate general operating system commands into spe-
cific references to hardware details that only the manufacturer would know. 

8.

9. Applications suited to assembly language: Hardware device driver, and embedded systems 
and computer games requiring direct hardware access.

10.



2 Answers to Odd-Numbered Section Review Questions

11. Assembly language has minimal formal structure, so structure must be imposed by pro-
grammers who have varying levels of experience. This leads to difficulties maintaining 
existing code.

12.

1.2  Virtual Machine Concept

1. Computers are constructed in layers, so that each layer represents a translation layer from 
a higher-level instruction set to a lower level instruction set.

2.

3. True

4.

5. The IA-32's virtual-86 operating mode emulates the architecture of the Intel 8086/8088 
processor, used in the original IBM Personal Computer. 

6.

7. Digital logic, microarchitecture, instruction set architecture, operating system, assembly 
language, high-level language.

8.

9. Instruction-set architecture

10.

1.3  Data Representation

1. Least significant bit (bit 0).

2.

3. (a) 248 (b) 202 (c) 240

4.

5. (a) 00010001 (b) 101000000 (c) 00011110

6.

7. (a) 2 (b) 4 (c) 8

8.

9. (a) 7 (b) 9 (c) 16



Basic Concepts 3

10.

11. (a) CF57 (b) 5CAD (c) 93EB

12.

13. (a) 1110 0101 1011 0110 1010 1110 1101 0111

(b) 1011 0110 1001 0111 1100 0111 1010 0001

(c) 0010 0011 0100 1011 0110 1101 1001 0010

14.

15. (a) 58 (b) 447 (c) 16534

16.

17. (a) FFE6 (b) FE3C

18.

19. (a) +31915 (b) −16093

20.

21. (a) −75 (b) +42 (c) −16

22.

23. (a) 11111011 (b) 11011100 (c) 11110000

24.

25. 58h and 88d

26.

27. To handle international character sets that require more than 256 codes.

28.

29. +2255 − 1

1.4  Boolean Operations

1. (NOT X) OR Y

2.

3. T

4.



4 Answers to Odd-Numbered Section Review Questions

5. T

6.

7. Truth table:

8.

9. 2 bits, producing the following values: 00, 01, 10, 11

2  IA-32 Processor Architecture

2.1  General Concepts

1. Control Unit, Arithmetic Logic Unit, and the clock.

2.

3. Conventional memory is outside the CPU, and it responds more slowly to access requests. 
Registers are hard-wired inside the CPU. 

4.

5. Fetch memory operands, store memory operands

6.

7. Executing processor stages in parallel, making possible the overlapped execution of 
machine instructions.

8.

9. 12 cycles ( 5 + (8 – 1)

10.

11. 15 clock cycles (5 + 10)

12.

A B ¬ A ¬ B ¬ A ∧ ¬ B

F F T T T

F T T F F

T F F T F

T T F F F



IA-32 Processor Architecture 5

13. The OS executes a branch (like a GOTO) to the first machine instruction in the program.

14.

15. The OS scheduler determines how much time to allot to each task, and it switches between 
tasks.

16.

2.2  IA-32 Processor Architecture

1. Real-address mode, Protected mode, and System Managment mode

2.

3. CS, DS, SS, ES, FS, GS

4.

5. EBP

6.

7. Carry

8.

9. Sign

10.

11. 80 bits

12.

13. The Pentium

14.

15. CISC means complex instruction set. A large collection of instructions, some of which 
perform sophisticated operations that might be typical of a high-level language. 

16.

2.3  IA-32 Memory Management

1. 4 GB ( 0 to FFFFFFFFh)

2.

3. linear (absolute)



6 Answers to Odd-Numbered Section Review Questions

4.

5. 0CFF0h

6.

7. SS register

8.

9. Global descriptor table

10.

11. This is an open-ended question, of course. It is a fact that MS-DOS first had to run on the 
8086/8088 processors, which only supported Real-address mode. When later processors 
came out which supported Protected mode, my guess is that Microsoft wanted MS-DOS to 
continue to run on the older processors. Otherwise, customers with older computers would 
refuse to upgrade to new versions of MS-DOS. 

12.

2.4  Components of an IA-32 Microcomputer

1. External cache memory is high-speed (static RAM) that is connected to the CPU via a spe-
cial bus that permits data transfer at higher speeds than conventional memory. 

2.

3. The 8259 is the interrupt controller chip, sometimes called PIC, that schedules hardware 
interrupts and interrupts the CPU.

4.

5. A beam of electrons illuminates phosphorus dots on the screen called pixels. Starting at 
the top of the screen, the gun fires electrons from the left side to the right in a horizontal 
row, briefly turns off, and returns to the left side of the screen to begin a new row. Hori-
zontal retrace refers to the time period when the gun is off between rows. When the last 
row is drawn, the gun turns off (called the vertical retrace) and moves to the upper left cor-
ner of the screen to start all over.

6.

7. Static RAM

8.

9. Upstream and downstream

10.



Assembly Language Fundamentals 7

2.5  Input-Output System

1. The application program level

2.

3. New devices are invented all the time, with capabilities that were often not anticipated 
when the BIOS was written. 

4.

5. The operating system, BIOS, and hardware levels.

6.

7. No. The same BIOS would work for both operating systems. Many computer owners 
install two or three operating systems on the same computer. They would certainly not 
want to change the system BIOS every time they rebooted the computer!

3  Assembly Language Fundamentals

3.1  Basic Elements of Assembly Language

1. h,q,o,d,b,r,t,y

2.

3. No (they have the same precedence)

4.

5. Real number constant: +3.5E-02

6.

7. directives

8.

9. True

10.

11. False

12.

13. label, mnemonic, operand(s), comment

14.



8 Answers to Odd-Numbered Section Review Questions

15. True

16.

17. Because the addresses coded in the instructions would have to be updated whenever new 
variables were inserted before existing ones.

3.2  Example: Adding Three Integers

1. The INCLUDE directive copies necessary definitions and setup information from the 
Irvine32.inc text file. The data from this file is inserted into the data stream read by the 
assembler.

2.

3. code, data, and stack.

4.

5. The exit statement

6.

7. The ENDP directive

8.

9. PROTO declares the name of a procedure that is called by the current program.

3.3  Assembling, Linking, and Running Programs

1. Object (.OBJ) and listing (.LST) files.

2.

3. True

4.

5. Executable (.EXE) and map (.MAP).

6.

7. The /Zi option

8.

9. There are two many to mention here, but you can view their names by opening 
Kernel32.lib using the TextPad editor supplied on the book’s CD-ROM. The file will dis-
play in hexadecimal. Scroll down to offset 1840h, and look at the various function names 
listed from that point on.



Assembly Language Fundamentals 9

10.

3.4  Defining Data

1. var1 SWORD ?

2.

3. var3 SBYTE ?

4.

5. SDWORD

6.

7. wArray WORD 10,20,30

8.

9. dArray DWORD 50 DUP(?)

10.

11. bArray BYTE 20 DUP(0)

12.

3.5  Symbolic Constants

1. BACKSPACE = 08h

2.

3. ArraySize = ($ – myArray)

4.

5. PROCEDURE TEXTEQU <PROC>

6.

7. SetupESI TEXTEQU <mov esi,OFFSET myArray>



10 Answers to Odd-Numbered Section Review Questions

4  Data Transfers, Addressing, and Arithmetic

4.1  Data Transfer Instructions

1. Register, immediate, and memory

2.

3. False

4.

5. A 32-bit register or memory operand

6.

7. (a) not valid (b) valid (c) not valid (d) not valid (e) not valid (f) not valid (g) valid 
(h) not valid

8.

9. (a) 1000h (b) 3000h (c) FFF0h (d) 4000h

10.

4.2  Addition and Subtraction

1. inc val2

2.

3. Code:

mov ax,val4
sub val2,ax

4.

5. Both flags will be set.

6.

7. Code example:

mov ax,val2
neg ax
add ax,bx
sub ax,val4

8.

9. Yes



Data Transfers, Addressing, and Arithmetic 11

10.

11. No

12.

4.3  Data-Related Operators and Directives

1. False

2.

3. True

4.

5. True

6.

7. (a) 1 (b) 4 (c) 4 (d) 2 (e) 4 (f) 8 (g) 5

8.

9. mov al, BYTE PTR myWords+1

10.

11. Data directive:

myWordsD LABEL DWORD
myWords WORD 3 DUP(?),2000h
.data
mov eax,myWordsD

12.

4.4  Indirect Addressing

1. False

2.

3. False

4.

5. True - (the PTR operator is required)

6.

7. (a) 10h (b) 40h (c) 003Bh (d) 3 (e) 3 (f) 2



12 Answers to Odd-Numbered Section Review Questions

8.

4.5  JMP and LOOP Instructions

1. True

2.

3. 4,294,967,296 times

4.

5. True

6.

7. ECX

8.

9. This is a trick! The program does not stop, because the first LOOP instruction decrements 
ECX to zero. The second LOOP instruction decrements ECX to FFFFFFFFh, causing the 
outer loop to repeat.

10.

5  Procedures

5.1  Introduction

(no review questions)

5.2  Linking to an External Library

1. False - (it contains object code)

2.

3. Code example:

call MyProc

4.

5. Kernel32.lib

6.

7. %1



Procedures 13

5.3  The Book’s Link Library

1. RandomRange procedure

2.

3. Code example:

mov eax,700
call Delay

4.

5. Gotoxy procedure

6.

7. PROTO statements (procedure prototypes) and constant definitions. (There are also text 
macros, but they are not mentioned in this chapter.)

8.

9. EDX contains the offset of an array of bytes, and ECX contains the maximum number of 
characters to read.

10.

11. Code example:

.data
str1 BYTE "Enter identification number: ",0
idStr BYTE 15 DUP(?)
.code

mov edx,OFFSET str1
call WriteString
mov edx,OFFSET idStr
mov ecx,(SIZEOF idStr) - 1
call ReadString

5.4  Stack Operations

1. SS and ESP

2.

3. LIFO stands for "last in, first out". The last value pushed into the stack is the first value 
popped out from the stack.

4.

5. True



14 Answers to Odd-Numbered Section Review Questions

6.

7. True

8.

9. PUSHAD

10.

11. POPFD

12.

5.5  Defining and Using Procedures

1. True

2.

3. Execution would contine beyond the end of the procedure, possibly into the beginning of 
another procedure. This type of programming bug is often difficult to detect!

4.

5. False - (it pushes the offset of the instruction following the call)

6.

7. True

8.

9. True

10.

11. True - (it also receives a count of the number of array elements)

12.

13. False

14.

15. The following statements would have to be modified:

add eax,[esi] becomes --> add ax,[esi]

add esi,4 becomes --> add esi,2



Conditional Processing 15

5.6  Program Design Using procedures

1. functional decomposition, or top-down design

2.

3. A stub program contains all of its important procedures, but the procedures are either 
empty or nearly empty. 

4.

5. The following statements would have to be modified:

mov [esi],eax becomes --> mov [esi],ax

add esi,4 becomes --> add esi,2

6.

6  Conditional Processing

6.1  Introduction

(no review questions)

6.2  Boolean and Comparison Instructions

1. (a) 00001011 (b) 01001000 (c) 01101111 (d) 10100011

2.

3. (a) CF=0, ZF=0, SF=0

(b) CF=0, ZF=0, SF=0

(c) CF=1, ZF=0, SF=1

4.

5. or ax,0FF00h 

6.

7. test eax,1 ; (low bit set if eax is odd)

8.



16 Answers to Odd-Numbered Section Review Questions

6.3  Conditional Loops

1. JA, JNBE, JAE, JNB, JB, JNAE, JBE, JNA

2.

3. JECXZ

4.

5. No (JB uses unsigned operands, whereas JL uses signed operands.)

6.

7. JL

8.

9. Yes

10.

11. Code:

cmp dx,cx
jbe L1

12.

13. Code:

and al,11111100b
jz L3
jmp L4

6.4  Conditional Loop Instructions

1. False

2.

3. True

4.

5. If a matching value were not found, ESI would end up pointing beyond the end of the 
array. This could cause data to be corrupted if ESI were dereferenced and used to modify 
memory.

6.5  Conditional Structures

(We will assume that all values are unsigned in this section).



Conditional Processing 17

1. Code example:
cmp bx,cx
jna next
mov X,1

next:

2.

3. Code example:

cmp val1,cx
jna L1
cmp cx,dx
jna L1
mov X,1
jmp next

L1: mov X,2
next:

4.

5. Code example:

cmp bx,cx ; bx > cx?
jna L1 ; no: try condition after OR
cmp bx,dx ; yes: is bx > dx?
jna L1 ; no: try condition after OR
jmp L2 ; yes: set X to 1

;-----------------OR(dx > ax) ------------------------
L1: cmp dx,ax ; dx > ax?

jna L3 ; no: set X to 2
L2: mov X,1 ; yes:set X to 1

jmp next ; and quit
L3: mov X,2 ; set X to 2
next:

6.6  Application: Finite-State Machines

1. A directed graph (also known as a diagraph).

2.

3. Each edge is a transition from one state to another, caused by some input.

4.

5. An infinite number of digits.

6.



18 Answers to Odd-Numbered Section Review Questions

7. No. The proposed FSM would permit a signed integer to consist of only a plus (+) or 
minus (–) sign. The FSM in Section 6.6.2 would not permit that.

8.

6.7  Using the .IF Directive (Optional)

(no review questions)

7  Integer Arithmetic

7.1  Introduction

(no review questions)

7.2  Shift and Rotate Instructions

1. ROL

2.

3. SAR

4.

5. Code example:

shr al,1 ; shift AL into Carry flag
jnc next ; Carry flag set?
or al,80h ; yes: set highest bit

next: ; no: do nothing

6.

7. shl eax,4

8.

9. ror dl,4 (or: rol dl,4)

10.

11. (a) 6Ah (b) EAh (c) FDh (d) A9h

12.

13. Code example:

shr ax,1 ; shift AX into Carry flag
rcr bx,1 ; shift Carry flag into BX



Integer Arithmetic 19

; Using SHRD:
shrd bx,ax,1

14.

7.3  Shift and Rotate Applications

1. This problem requires us to start with the high-order byte and work our way down to the 
lowest byte:
byteArray BYTE 81h,20h,33h
.code
shr byteArray+2,1
rcr byteArray+1,1
rcr byteArray,1

2.

3. The multiplier (24) can be factored into 16 * 8:

mov ebx,eax ; save a copy of eax
shl eax,4 ; multiply by 16
shl ebx,3 ; multiply by 8
add eax,ebx ; add the products

4.

5. Change the instruction at label L1 to: shr eax,1

6.

7.4  Multiplication and Division Instructions

1. The product is stored in registers that are twice the size of the multiplier and multiplicand. 
If you multiply 0FFh by 0FFh, for example, the product (FE01h) easily fits within 16 bits.

2.

3. With IMUL, the Carry and Overflow flags are set when the upper half of the product is not 
a sign extension of the lower half of the product.

4.

5. AX

6.

7. Code example:

mov ax,dividendLow
cwd ; sign-extend dividend



20 Answers to Odd-Numbered Section Review Questions

mov bx,divisor

idiv bx

8.

9. AX = 0306h

10.

11. The DIV will cause a divide overflow, so the values of AX and DX cannot be determined.

12.

13. Code example:

mov ax,-276

cwd ; sign-extend AX into DX

mov bx,10

idiv bx

mov val1,ax ; quotient

14.

15. Implement the signed expression: val1 = (val2 / val3) * (val1 + val2). 

mov eax,val2

cdq ; extend EAX into EDX

idiv val3 ; EAX = quotient

mov ebx,val1

add ebx,val2

imul ebx

mov val1,eax ; lower 32 bits of product

(You can substitute any 32-bit general-purpose register for EBX in this example.)

7.5  Extended Addition and Subtraction

1. The ADC instruction adds both a source operand and the Carry flag to a destination oper-
and.

2.

3. EAX = C0000000h, EDX = 00000010h

4.

5. DX = 0016h

6.



Advanced Procedures 21

8  Advanced Procedures

8.1  Introduction

(no review questions)

8.2  Local Variables

1. (a) automatically restricts access to statements within a single procedure; (b) local vari-
ables make efficient use of memory; (c) you can use the same variable name in multiple 
procedures. 

2.

3. False; you can define many more than three.

4.

5. Declaration: LOCAL pArray:PTR DWORD

6.

7. Declaration: LOCAL pwArray:PTR WORD

8.

9. Declaration: LOCAL myArray[20]:DWORD

8.3  Stack Parameters

1. True

2.

3. False

4.

5. False

6.

7. True

8.

9. True - when the immediate value is dereferenced, it will probably point to an invalid mem-
ory location.

10.



22 Answers to Odd-Numbered Section Review Questions

11. Declaration:

MultArray PROC ptr1:PTR DWORD, 

ptr2:PTR DWORD,

 count:DWORD ; (may be byte, word, or dword)

12.

13. It uses input-output parameters.

14.

15. The following code is shown in the listing file, when the assembler’s /Sg option is used. It 
shows that count, the second argument, was pushed on the stack first before the offset of 
myArray:

INVOKE SumArray, ADDR myArray, count

push   +00000000Ah

push   OFFSET myArray

 call   SumArray

(For more information about the assembler’s command-line options, see Appendix D.)

8.4  Stack Frames

1. True

2.

3. True - (each stack position in Protected mode uses 4 bytes)

4.

5. One code segment, and one data segment. All code and data are near, which means they 
can be reached using only 16-bit offsets.

6.

7. The C option preserves the case of identifiers and prepends a leading underscore to exter-
nal names. The PASCAL option converts all identifiers to upper case.

8.



Advanced Procedures 23

9. Stack frame diagram:

10.

11. LEA can return the offset of an indirect operand; it is particularly useful for obtaining the 
offset of a stack parameter.

12.

13. The C calling convention, because it specifies that arguments must be pushed on the stack 
in reverse order, makes it possible to create a procedure/function with a variable number 
of parameters. The last parameter pushed on the stack can be a count specifying the num-
ber of parameters already pushed on the stack. In the following diagram, for example, the 
count value is located at [EBP + 8]:

8.5  Recursion

1. False

2.

3. The following code executes after the recursive call:

ReturnFact:

mov ebx,[ebp+8]

mul ebx

L2: pop ebp

ret 4

4.

10h

20h

30h

(return addr)

[EBP + 16]

[EBP + 12]

[EBP + 8]

[EBP + 4]

<-- ESPEBP

10h

20h

30h

(return addr)

[EBP + 16]

[EBP + 12]

[EBP + 8]

[EBP + 4]

<-- ESPEBP

3

[EBP + 20]



24 Answers to Odd-Numbered Section Review Questions

5. 12! uses 156 bytes of stack space. Rationale: From Figure 8-1, we see that when n = 0, 12 
stack bytes are used (3 entries). When n = 1, 24 bytes are used. When n = 2, 36 bytes are 
used. Therefore, the amount of stack space required for n! is (n+1)*12.

6.

8.6  Creating Multimodule Programs

1. True

2.

3. True

4.

9  Strings and Arrays

9.1  Introduction

(no review questions)

9.2  String Primitive Instructions

1. EAX

2.

3. (E)DI

4.

5. Repeat while ZF = 1

6.

7. 2

8.

9. one byte beyond the matching character

10.

9.3  Selected String Procedures

1. False (it stops when the null terminator of the shorter string is reached)

2.



Strings and Arrays 25

3. False

4.

5. 1 (set)

6.

7. The digit is unchanged.

8.

9. The length would be: (EDIfinal - EDIinitial) – 1

9.4  Two-Dimensional Arrays

1. Any general-purpose 32-bit registers.

2.

3. array[ebx + esi]

4.

5. Code example:

mov esi,2 ; row
mov edi,3 ; column
mov eax,[esi*16 + edi*4]

6.

7. No (the flat memory model has only one segment)

9.5  Searching and Sorting Integer Arrays

1. n – 1 times

2.

3. No: it decreases by 1 each

4.

5. (log2 128) + 1 = 8

6.

7. EDX and EDI were already compared

8.



26 Answers to Odd-Numbered Section Review Questions

10  Structures and Macros

10.1  Structures

1. Structures are essential whenever you need to pass a large amount of data between proce-
dures. One variable can be used to hold all the data.

2.

3. temp1 MyStruct <>

4.

5. temp3 MyStruct <, 20 DUP(0)>

6.

7. mov ax,array.field1

8.

9. 82

10.

11. TYPE MyStruct.field2 (or: SIZEOF Mystruct.field2)

12.

13. Code example:

.data
time SYSTEMTIME <>
.code
mov ax,time.wHour

14.

15. Code example (initializes an array of Triangle structures):

.data
ARRAY_SIZE = 5
triangles Triangle ARRAY_SIZE DUP(<>)
.code

mov  ecx,ARRAY_SIZE
mov  esi,0

L1: mov  eax,11
call RandomRange
mov triangles[esi].Vertex1.X, ax
mov  eax,11
call RandomRange



Structures and Macros 27

mov triangles[esi].Vertex1.Y, ax
add esi,TYPE Triangle
loop L1

10.2  Macros

1. False

2.

3. Macros can have parameters

4.

5. True

6.

7. To permit the use of labels in a macro that is invoked more than once by the same pro-
gram.

8.

9. Code example:

OutChar MACRO aChar
push eax
mov  al,aChar
call WriteChar
pop  eax

ENDM

10.

11. Nested macro definition:

;---------------------------------------------------
mAskInteger MACRO promptString
;
; Displays a prompt string, inputs an integer
; from the user, and returns its value in EAX.
;---------------------------------------------------

mWrite promptString
call ReadInt

ENDM
; Sample call:
mAskInteger "Enter an integer between 1 and 50: "

12.

13. Code example:



28 Answers to Odd-Numbered Section Review Questions

mWriteStr namePrompt
1 push edx
1 mov edx,OFFSET namePrompt
1 call WriteString
1 pop edx

14.

15. Code example:

;------------------------------------------------
mDumpMemx MACRO varName
;
; Displays a variable in hexadecimal, using the
; variable's attributes to determine the number
; of units and unit size.
;------------------------------------------------

push ebx
push ecx
push esi
mov  esi,OFFSET varName
mov  ecx,LENGTHOF varName
mov  ebx,TYPE varName
call DumpMem
pop  esi
pop  ecx
pop  ebx

ENDM
; Sample calls:

.data
array1 BYTE  10h,20h,30h,40h,50h
array2 WORD  10h,20h,30h,40h,50h
array3 DWORD 10h,20h,30h,40h,50h
.code
mDumpMemx array1
mDumpMemx array2
mDumpMemx array3

10.3  Conditional-Assembly Directives

1. The IFB directive is used to check for blank macro parameters.

2.

3. EXITM

4.



Structures and Macros 29

5. The IFDEF returns true if a symbol has already been defined.

6.

7. Code example:

mWriteLn MACRO text:=<" ">
mWrite text
call Crlf

ENDM

8.

9. Code example:

mCopyWord MACRO intVal
IF (TYPE intVal) EQ 2
  mov ax,intVal
ELSE
  ECHO Invalid operand size
ENDIF

ENDM

10.

11. The substitution (&) operator resolves ambiguous references to parameter names within a 
macro. 

12.

13. The expansion operator (%) expands text macros or converts constant expressions into 
their text representations.

14.

15. Code example:

mLocate -2,20
;(no code generated because xval < 0)

mLocate 10,20
1  mov bx,0
1  mov ah,2
1  mov dh,20
1  mov dl,10
1  int 10h

mLocate col,row
1  mov bx,0
1  mov ah,2
1  mov dh,row



30 Answers to Odd-Numbered Section Review Questions

1  mov dl,col

1  int 10h

10.4  Defining Repeat Blocks

1. The WHILE directive repeats a statement block based on a boolean expression.

2.

3. The FOR directive repeats a statement block by iterating over a list of symbols.

4.

5. FORC

6.

7. Code example:

mRepeat MACRO ’X’,50

mov cx,50

??0000: mov ah,2

mov dl,’X’

int 21h

loop ??0000

mRepeat MACRO AL,20

mov cx,20

??0001: mov ah,2

mov dl,AL

int 21h

loop ??0001

mRepeat MACRO byteVal,countVal

mov cx,countVal

??0002: mov ah,2

mov dl,byteVal

int 21h

loop ??0002

8.



32-Bit Windows Programming 31

11  32-Bit Windows Programming

11.1  Win32 Console Programming

1. /SUBSYSTEM:CONSOLE

2.

3. False

4.

5. True

6.

7. GetStdHandle

8.

9. Example from the ReadConsole.asm program in Section 11.1.3.1:

INVOKE ReadConsole, stdInHandle, ADDR buffer,
BufSize - 2, ADDR bytesRead, 0

10.

11. Example from the Console1.asm program in Section 11.1.4.3:

INVOKE WriteConsole,
consoleHandle, ; console output handle
ADDR message, ; string pointer
messageSize, ; string length
ADDR bytesWritten, ; returns num bytes written
0 ; not used

12.

13. Calling CreateFile to create a new file:

INVOKE CreateFile,
ADDR filename,
GENERIC_WRITE,
DO_NOT_SHARE,
NULL,
CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL,
0

14.

15. Calling WriteFile:



32 Answers to Odd-Numbered Section Review Questions

INVOKE WriteFile, ; write text to file
fileHandle, ; file handle
ADDR buffer, ; buffer pointer
bufSize, ; number of bytes to write
ADDR bytesWritten, ; number of bytes written
0 ; overlapped execution flag

16.

17. SetConsoleTitle

18.

19. SetConsoleCursorInfo

20.

21. WriteConsoleOutputAttribute

22.

11.2  Writing a Graphical Windows Application

Note: most of these questions can be answered by looking in GraphWin.inc, the include file sup-
plied with MASM in the INCLUDE subdirectory. 

1. A POINT structure contains two fields, ptX and ptY, that describe the X and Y coordinates 
(in pixels) of a point on the screen.

2.

3. lpfnWndProc is a pointer to a function in an application program that receives and pro-
cesses event messages triggered by the user.

4.

5. hInstance holds a handle to the current program instance. Each programming running 
under MS-Windows is automatically assigned a handle by the operating system when the 
program is loaded into memory.

6.

7. Calling MessageBox:

INVOKE MessageBox, hMainWnd, ADDR GreetText,
ADDR GreetTitle, MB_OK

8.

9. Icon constants (choose any two):

MB_ICONHAND, MB_ICONQUESTION, MB_ICONEXCLAMATION, MB_ICONASTERISK



32-Bit Windows Programming 33

10.

11. The WinProc procedure receives and processes all event messages relating to a window. 
It decodes each message, and if the message is recognized, carries out application-oriented 
(or application-specific) tasks relating to the message.

12.

13. The ErrorHandler procedure, which is optional, is called if the system reports an error dur-
ing the registration and creation of the program’s main window. 

14.

15. The message box appears before the main window closes.

11.3  IA-32 Memory Management

1. (a) Multitasking permits multiple programs (or tasks) to run at the same time. The proces-
sor divides up its time between all of the running programs.

(b) Segmentation provides a way to isolate memory segments from each other. This per-
mits multiple programs to run simultaneously without interfering with each other.

2.

3. True

4.

5. False

6.

7. A linear address is a 32-bit integer ranging between 0 and FFFFFFFFh, which refers to a 
memory location. The linear address may also be the physical address of the target data, if 
a feature called paging is disabled.

8.

9. The linear address is automatically a 32-bit physical memory address.

10.

11. The LDTR register

12.

13. One

14.



34 Answers to Odd-Numbered Section Review Questions

15. Choose any four from the following list: Base address, privilege level, segment type, seg-
ment present flag, granularity flag, segment limit.

16.

17. The Table field of a linear address (see Figure 11-4).

18.

12  High-Level Language Interface

12.1  Introduction

1. The naming convention used by a language refers to the rules or characteristics regarding 
the naming of variables and procedures.

2.

3. No, because the procedure name will not be found by the linker.

4.

5. C and C++ are case-sensitive, so they will only execute calls to procedures that are named 
in the same fashion. 

6.

12.2  Inline Assembly Code

1. Inline assembly code is assembly language source code that is inserted directly into high-
level language programs. The inline qualifier in C++, on the other hand, asks the C++ 
compiler to insert the body of a function directly into the program’s compiled code, to 
avoid the extra execution time it would take to call and return from the function. (Note: 
answsering this question requires some knowledge of the C++ language, that is not found 
in the current book.)

2.

3. Examples of comments (select any two):

mov esi,buf ; initialize index register
mov esi,buf // initialize index register
mov esi,buf /* initialize index register */

4.

5. Yes



High-Level Language Interface 35

6.

7. No

8.

9. Use the LEA instruction.

10.

11. The SIZE operator returns the product of TYPE (4) * LENGTH.

12.3  Linking to C++ Programs

1. X will be pushed last.

2.

3. If name decoration is in effect, an external function name generated by the C++ compiler 
will not be the same as the name of the called procedure written in assembly language. 
Understandably, the assembler does not have any knowledge of the name decoration rules 
used by C++ compilers.

4.

5. INT = 2, enum = 1, float = 4, double = 8.

6.

7. What SHLD instruction? Actually, there was a line in the LongRandom code originally, 
that read:

shld edx,eax,16

So using that instruction as the basis for the question, we can say that the equivalent state-
ments would be:

mov ecx,16

L1: shl eax,1

rcl edx,1

Loop L1

The current version of this procedure uses the follwoign statement to rotate out the lowest 
digit of EAX, which prevents a recurring pattern when generating sequences of small ran-
dom numbers:

ror eax,8

8.



36 Answers to Odd-Numbered Section Review Questions

13  16-Bit MS-DOS Programming

13.1  MS-DOS and the IBM-PC

1. 9FFFFh

2.

3. 00400h

4.

5. Suppose a program was named myProg.exe. The following would redirect its output to the 
default printer:

myProg > prn

6.

7. An interrupt service routine (also called an interrupt handler) is an operating system pro-
cedure that (1) provides basic services to application programs, and (2) handles hardware 
events. For more details, see Section 16.4.

8.

9. See the 4 steps in Section 13.1.4.1.

10.

11. 10h

12.

13.2  MS-DOS Function Calls (INT 21h)

1. AH

2.

3. Functions 2 and 6 both write a single character.

4.

5. Function 40h

6.

7. Function 3Fh

8.



16-Bit MS-DOS Programming 37

9. Functions 2Bh (set system date) and 2Dh (set system time).

10.

13.3  Standard MS-DOS File I/O Services

1. Device Handles: 0 = Keyboard (standard input), 1 = Console (standard output), 2 = Error 
output, 3 = Auxiliary device (asynchronous), 4 = Printer

2.

3. Parameters for function 716Ch

AX = 716Ch

BX = access mode (0 = read, 1 = write, 2 = read/write)

CX = attributes (0 = normal, 1 = read only, 2 = hidden, 

 3 = system, 8 = volume ID, 20h = archive)

DX = action (1 = open, 2 = truncate, 10h = create)

DS:SI = segment/offset of filename

DI = alias hint (optional)

4.

5. Reading a binary array from a file is best done with INT 21h Function 3Fh. The following 
parameters are required

AH = 3Fh

BX = open file handle

CX = maximum bytes to read

DS:DX = address of input buffer

6.

7. The only difference is the value in BX. When reading from the keyboard, BX is set to the 
keyboard handle (0). When reading from a file, BX is set to the handle of the open file.

8.

9. Code example (BX already contains the file handle):

mov ah,42h ; move file pointer

mov al,0 ; method: offset from beginning

mov cx,0 ; offsetHi

mov dx,50 ; offsetLo

int 21h



38 Answers to Odd-Numbered Section Review Questions

14  Disk Fundamentals

14.1  Disk Storage Systems

1. True

2.

3. Cylinder

4.

5. 512

6.

7. The read/write heads must jump over other cylinders, wasting time and increasing the 
probablility that errors will occur.

8.

9. The average amount of time required to move the read/write heads between tracks.

10.

11. Up to three primary partitions if only one extended partition exists, or up to four primary 
partitions if there are no extended partitions.

12.

13. The disk partition table, and a program that locates a single partition’s boot sector and runs 
another program that loads the operating system.

14.

15. System

14.2  File Systems

1. True

2.

3. False - all systems, including NTFS, require at least one cluster to store a file

4.

5. False

6.



Disk Fundamentals 39

7. FAT32 and NTFS

8.

9. NTFS

10.

11. NTFS

12.

13. Boot record, file allocation table, root directory, and the data area. 

14.

15. Two 8 KB clusters would be required, for a total of 16,384 bytes. The number of wasted 
bytes would be (16,384 – 8,200), or 8,184 bytes. 

16.

14.3  Disk Directory

1. True

2.

3. False - (it contains the starting cluster number)

4.

5. 32

6.

7. The status bytes and their descriptions are listed in Table 14-5.

8.

9. The first byte of the entry is 4xh, where x indicates the number of long filename entries to 
be used for the file.

10.

11. Actually, there are three new fields: Last access date, create date, and create time

12.



40 Answers to Odd-Numbered Section Review Questions

14.4  Reading and Writing Disk Sectors (7305h)

1. True

2.

3. Parameters:

AX: 7305h
DS:BX: Segment/offset of a DISKIO structure variable
CX: 0FFFFh
DL: Drive number (0 = default, 1 = A, 2 = B, 3 = C, etc.)
SI: Read/write flag

4.

5. The Carry flag is set if function 7305h cannot read the requested sector, and the program 
displays an error message. (Remember that you cannot test this program under Windows 
NT, 2000, or XP.)

14.5  System-Level File Functions

1. Function 7303h

2.

3. Function 39h (create subdirectory) and Function 3Bh (set current directory).

4.

15  BIOS-Level Programming

15.1  Introduction

(no review questions)

15.2  Keyboard Input with INT 16h

1. INT 16h is best

2.

3. INT 9h reads the keyboard input port, retrieves the keyboard scan code and produces the 
corresponding ASCII code. It inserts both in the keyboard typeahead buffer.

4.

5. Function 10h



BIOS-Level Programming 41

6.

7. No

8.

9. Bit 4 (see Table 15-2)

10.

11. To check for other keyboard keys, add more CMP and JE instructions after the existing 
ones currently in the loop. Suppose we wanted to check for the ESC, F1, and Home keys:

L1: .
.
cmp ah,1 ; ESC key’s scan code?
je quit ; yes: quit
cmp ah,3Bh ; F1 function key?
je quit ; yes: quit
cmp ah,47h ; Home key?
je quit ; yes: quit
jmp L1 ; no: check buffer again

15.3  Video Programming with INT 10h

1. MS-DOS level, BIOS level, and Direct video level.

2.

3. In MS-Windows, there are two ways to switch into full-screen mode:

• Create a shortcut to the program’s EXE file. Then open the Properties dialog for the short-
cut, select the Screen properties, and select Full-screen mode.

• Open a Command window from the Start menu, then press Alt-Enter to switch to full 
screen mode. Using the CD (change directory) command, navigate to your EXE file’s 
directory, and run the program by typing its name. Alt-Enter is a toggle, so if you press it 
again, it will return the program to Window mode.

4.

5. ASCII code and attribute (2 bytes)

6.

7. Background: bits 4-7. Foreground: bits 0-3.

8.

9. Function 06h

10.



42 Answers to Odd-Numbered Section Review Questions

11. Function 01h

12.

13. AH = 2, DH = row, DL = column, and BH = video page

14.

15. AH = 6, AL = number of lines to scroll, BH = attribute of scrolled lines, CH & CL = 
upper-left window corner, and DH & DL = lower right window corner.

16.

17. Function 10h, Subfunction 03h (set AH to 10h, and AL to 03h)

18.

19. Every pixel on the screen is made of three colors: red, green, and blue. Dogs are color 
blind, so they cannot see pixels made from colors. I’ve tried displaying a picture of a cat 
on the screen, but my own dog seems not to notice.

15.4  Drawing Graphics Using INT 10h

1. Function 0Ch

2.

3. It’s very slow.

4.

5. Mode 6Ah

6.

7. a. (350,150) b. (375,225) c. (150,400)

15.5  Memory-Mapped Graphics

1. False - (each byte corresponds to 1 pixel)

2.

3. Mode 13h maps each pixel’s integer value into a table of colors called a palette. 

4.

5. Each entry in the palette consists of three separate integer values (0–63) known as RGB 
(red, green, blue). Entry 0 in the color palette controls the screen's background color.

6.



BIOS-Level Programming 43

7. (63,63,63)

8.

9. Code example:

; Set screen background color to bright green.
mov dx,3c8h ; video paletter port
mov al,0 ; index 0 (background color)
out dx,al
mov dx,3c9h ; colors go to port 3C9h
mov al,0 ; red
out dx,al
mov al,63 ; green (intensity = 63)
out dx,al
mov al,0 ; blue
out dx,al

10.

15.6  Mouse Programming

1. Function 0

2.

3. Functions 1 and 2

4.

5. Function 3

6.

7. Function 4

8.

9. Function 5

10.

11. Function 6

12.

13. Code example:

mov ax,8 ; set vertical limits
mov cx,200 ; lower limit
mov dx,400 ; upper limit
int 33h



44 Answers to Odd-Numbered Section Review Questions

Note: in the first printing of the book, the box that describes Function 8 had a few errors. 
AX must be set to 8, and INT 33h should be called after CX and DX have been set.

14.

15. Assuming that character cells are 8 pixels by 8 pixels, the X, Y coordinates values would 
be (8 * 20), (8 * 10). The cell will be at position 160, 80. 

16.

16  Expert MS-DOS Programming

16.1  Introduction

(no review questions)

16.2  Defining Segments

1. Declares the beginning of a segment.

2.

3. The ASSUME directive makes it possible for the assembler to calculate the offsets of 
labels and variables at assembly time. A directive such as:

assume DS:myData

says to the assembler, "assume that from this point on, all references to data labels (via 
DS) will be located in the segment named myData."

4.

5. PRIVATE, PUBLIC, MEMORY, STACK, COMMON, and AT

6.

7. The combine type tells the linker how to combine segments having the same name.

8.

9. A segment’s class type provides another way of combining segments, in particular, those 
with different names. Segments having the same class type are loaded together, although 
they may be listed in a different order in the program source code.

10.

11. The third segment will also begin at address 1A060h.



Expert MS-DOS Programming 45

16.3  Runtime Program Structure

1. The command processor checks to see if there is filename with extension COM in the cur-
rent directory. If a file is found, it is executed. If a matching file is not found, see Section 
16.3 for a description of the subsequent steps.

2.

3. Application programs loaded into the lowest 640K of memory. They are transient because 
when the finish executing, they are automatically unloaded from memory.

4.

5. At offset 2Ch inside the program segment prefix area.

6.

7. Tiny

8.

9. 64 Kilobytes

10.

11. One

12.

13. The ORG directive assigns a specific offset to the very next label or instruction following 
the directive. The addresses of all subsequent labels are calculated from that point onward. 
COM programs, for example, always have ORG 100h at the beginning of the program 
code, so the first executable instruction will be located at offset 100h.

14.

15. DS and ES point to the program segment prefix area of the program.

16.

17. The EXEMOD program displays statistics about a program’s memory usage, and also per-
mits many settings in the EXE header to be modified.

18.



46 Answers to Odd-Numbered Section Review Questions

16.4  Interrupt Handling

1. It displays a message on the screen "Abort, retry, or ignore?", and terminates the current 
program. 

2.

3. At address 0000:0040h, because 0040h equals 10h * 4

4.

5. The CLI (clear interrupt flag) instruction

6.

7. IRQ 0 has highest priority

8.

9. INT 9h

10.

11. Functions 25h and 35h

12.

13. A terminate and stay resident (TSR) program leaves part of itself in memory when it exits. 
This is accomplished by calling INT 21h function 31h.

14.

15. Rather than executing an IRET instruction when it finishes, it can instead execute a JMP 
to the address that was previously stored in the interrupt vector. 

16.

17. Ctrl + Alt + Right shift + Del


	1 Basic Concepts
	1.1 Welcome to Assembly Language
	1.2 Virtual Machine Concept
	1.3 Data Representation
	1.4 Boolean Operations

	2 IA-32 Processor Architecture
	2.1 General Concepts
	2.2 IA-32 Processor Architecture
	2.3 IA-32 Memory Management
	2.4 Components of an IA-32 Microcomputer
	2.5 Input-Output System

	3 Assembly Language Fundamentals
	3.1 Basic Elements of Assembly Language
	3.2 Example: Adding Three Integers
	3.3 Assembling, Linking, and Running Programs
	3.4 Defining Data
	3.5 Symbolic Constants

	4 Data Transfers, Addressing, and Arithmetic
	4.1 Data Transfer Instructions
	4.2 Addition and Subtraction
	4.3 Data-Related Operators and Directives
	4.4 Indirect Addressing
	4.5 JMP and LOOP Instructions

	5 Procedures
	5.1 Introduction
	5.2 Linking to an External Library
	5.3 The Book’s Link Library
	5.4 Stack Operations
	5.5 Defining and Using Procedures
	5.6 Program Design Using procedures

	6 Conditional Processing
	6.1 Introduction
	6.2 Boolean and Comparison Instructions
	6.3 Conditional Loops
	6.4 Conditional Loop Instructions
	6.5 Conditional Structures
	6.6 Application: Finite-State Machines
	6.7 Using the .IF Directive (Optional)

	7 Integer Arithmetic
	7.1 Introduction
	7.2 Shift and Rotate Instructions
	7.3 Shift and Rotate Applications
	7.4 Multiplication and Division Instructions
	7.5 Extended Addition and Subtraction

	8 Advanced Procedures
	8.1 Introduction
	8.2 Local Variables
	8.3 Stack Parameters
	8.4 Stack Frames
	8.5 Recursion
	8.6 Creating Multimodule Programs

	9 Strings and Arrays
	9.1 Introduction
	9.2 String Primitive Instructions
	9.3 Selected String Procedures
	9.4 Two-Dimensional Arrays
	9.5 Searching and Sorting Integer Arrays

	10 Structures and Macros
	10.1 Structures
	10.2 Macros
	10.3 Conditional-Assembly Directives
	10.4 Defining Repeat Blocks

	11 32-Bit Windows Programming
	11.1 Win32 Console Programming
	11.2 Writing a Graphical Windows Application
	11.3 IA-32 Memory Management

	12 High-Level Language Interface
	12.1 Introduction
	12.2 Inline Assembly Code
	12.3 Linking to C++ Programs

	13 16-Bit MS-DOS Programming
	13.1 MS-DOS and the IBM-PC
	13.2 MS-DOS Function Calls (INT 21h)
	13.3 Standard MS-DOS File I/O Services

	14 Disk Fundamentals
	14.1 Disk Storage Systems
	14.2 File Systems
	14.3 Disk Directory
	14.4 Reading and Writing Disk Sectors (7305h)
	14.5 System-Level File Functions

	15 BIOS-Level Programming
	15.1 Introduction
	15.2 Keyboard Input with INT 16h
	15.3 Video Programming with INT 10h
	15.4 Drawing Graphics Using INT 10h
	15.5 Memory-Mapped Graphics
	15.6 Mouse Programming

	16 Expert MS-DOS Programming
	16.1 Introduction
	16.2 Defining Segments
	16.3 Runtime Program Structure
	16.4 Interrupt Handling


