King Fahd University of Petroleum and Minerals
 College of Computer Science and Engineering
 Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 181 (Fall 2018)
Final Exam
Saturday, December 15 ${ }^{\text {th }}, 2018$

Time: 150 minutes, Total number of Pages $=9$

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions, show all steps, and clearly state any assumptions you make
- When instructed to use MSI components, only use standard components such as Adders, MUXs, Magnitude Comparators, DeMUXs, Decoders, Encoders (straight or priority). Label each component and its inputs/outputs clearly.

Question	Maximum Points	Your Points
1	14	
2	16	
3	16	
4	14	
Total	60	

Question 1.
a) Implement the function $G(\mathrm{~A}, \mathrm{~B}, \mathrm{C})$ with the following truth table using a single MUX with minimum size and inverters (as needed):
(3 points)

A	B	C	G
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

b) Suppose you have three 4-1 MUXs, but you need an 8-1 MUX. Show one possible implementation of the 8-1 MUX using the three 4-1 MUXs you have.
(3 points)
c) Consider the circuit shown below:

Inputs are A and B , and outputs are F0 and F1. Derive the truth table for this circuit. Hint: It helps if you evaluate the internal signals, L1 and L2, before evaluating the outputs. points)

A B	L1 L2	F0 F1	
$\mathbf{0}$	$\mathbf{0}$		
$\mathbf{0}$	$\mathbf{1}$		
$\mathbf{1}$	$\mathbf{0}$		
$\mathbf{1}$	$\mathbf{1}$		

d) A circuit receives two 4-bit signed numbers in 2 's complement representation $\mathbf{A}=\mathbf{A}_{3} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{\mathbf{0}}$, and
$\mathbf{B}=\mathbf{B}_{3} \mathbf{B}_{2} \mathbf{B}_{1} \mathbf{B}_{0}$, two selection inputs S 1 and S 0 , and produces a 4-bit output $\mathbf{C}=\mathbf{C}_{3} \mathbf{C}_{2} \mathbf{C}_{1} \mathbf{C}_{0}$
According to the following table:

S1	S0	Function		
0	0	$\mathbf{C}=\mathbf{A}+\mathbf{B}$		
0	1	$\mathbf{C}=\mathbf{A}-\mathrm{B}$		
1	0	$\mathbf{C}=\mathbf{B}-\mathbf{A}$		
1	1	$\mathbf{C}=$	$\stackrel{\text { 10XX }_{2}}{\text { Position of most-significant } 1 \text { in A }}$,if $\mathrm{A}=\mathbf{0 0 0 0}_{2}$,if $\mathrm{A} \neq 0000_{2}$

This table illustrates the last function (when ($\{\mathrm{S} 1, \mathrm{~S} 0\}=2^{\prime} \mathrm{b} 11$):

$\mathbf{A}_{3} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{0}$	$\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{0}$
0000	10 XX
1 XXX	0011
01 X	0010
0 O	0001
0001	0000

Design the above circuit using only one adder and any other MSI components and logic gates as needed. Note that you can freely use Verilog notation in your diagram, e.g. the concatenation operator, replacing 1000_{2} with $\left\{1^{\prime} \mathrm{b} 1,3^{\prime} \mathrm{b} 0\right\}$ is acceptable.
(6 points)

Question 2:

a) Given the shown Master-Slave configuration of two clocked S-R latches, it is required to complete the Y and Z signals in the following timing diagram. Assume Y and Z are initially equal to zero.

Also assume zero propagation delays.

(3 points)

b) Derive the state diagram of a synchronous Moore sequential circuit that receives a serial input Y and produces a serial output Z that is set to 1 when the circuit detects the sequence 00 X 1, where X represents a 0 or 1 .
(6 points)
c) A sequential circuit has one input X and one output Y . Its state diagram is as shown below. Design the circuit using minimum number of FFs and minimum logic gates. Use the specified state assignment codes. (write the solution on the next page)

d) Specify whether the above circuit (in \mathbf{c} above) has an unused state and explain why. (1 point)

Question 3:
Part I: Given the synchronous sequential circuit shown below:
a) Is it a Mealy or Moore sequential circuit and why?
(1 point)
b) Obtain the state diagram of this circuit. (6 points)

Part II: The following state diagram is for a sequential circuit with input x, output z, two state variables A and B, positive edge-triggered flip-flops, and asynchronous active $\mathbf{H I}$ reset.

a) Complete the timing diagram below for the above state diagram, showing the waveforms of the state variables \boldsymbol{A} and \boldsymbol{B}, and the output \boldsymbol{z}. Initially, the flip-flops are reset to $\boldsymbol{A}=\boldsymbol{B}=\mathbf{0}$. (4 points)

b) Write a behavioral Verilog description of the circuit with the state diagram shown in part II above.

Question 4:

[14 points]
a) Using D flip-flop(s), MUXs, and logic gates only (i.e. do not use any other MSI components), design a 3-bit register with two mode selection inputs $\mathbf{S 1}$ and $\mathbf{S 0}$. The register should operate according to the following table:
(6 points)

S1	S0	Function
0	0	No change
0	1	Parallel load (load inputs $\mathbf{I}_{\mathbf{2}} \mathbf{I}_{\mathbf{1}}$ into register in parallel)
1	0	Rotate Left (i.e., shift register contents to the lest feeding in the shifted bit out from the last bit location as a serial input to the first location)
1	1	Synchronous clear (i.e. load with zeros) - the register does not have asynchronous reset

b) Write a behavioral Verilog description of the register in (a) above.
(3 points)
c) The 4-bit shift register shown was initially loaded with $\mathbf{A B C D}=\mathbf{0 0 0 0}$. List in the table below the contents of the register after receiving each of the clock pulses indicated. (2 points)

	Register Contents ABCD (Binary)
Initial	0000
After Clock Pulse 1	
After Clock Pulse 2	

d) The counter circuit shown below is a modulo \qquad counter. If the clock frequency is $\mathbf{2 4 0} \mathbf{~ M H z}$, then the frequency at the $\boldsymbol{L C}$ node (output of the 4-IP AND gate) is \qquad MHz and the frequency of the Q0 output is \qquad MHz.
(3 points)

LD	EN	Operation of the counter
0	0	Hold count
0	1	Increment count
1	X	Parallel load

