King Fahd University of Petroleum and Minerals
 College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 172 (Spring 2018)
Final Exam
Sunday May 13, 2018

Time: $\mathbf{1 2 0}$ minutes, Total Pages: 14

Name:_KEY \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- No Calculators are allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	13	
2	15	
3	15	
4	10	
5	10	
6	12	
Total	75	

Question 1.

Answer the following questions by filling the spaces with the correct answers:
a) (2 points) The following circuit implements an edge-triggered D flip flop. Is it a positive or negative edge-triggered and why?

It is a negative edge-triggered D-FF because when $\mathrm{CLK}=1$ the master latch is active capturing input changes and the slave lave is inactive while when $C L K=0$, the master is turned off and the slave is turned on copying the last value captured by the master.

b) (3 points) In the circuit shown, A is a D-type latch and B is a D-type flip flop. For the input waveforms given for the clock signal (Clk) and the input X , accurately draw the resulting waveforms at outputs $\mathbf{Q}_{\mathbf{A}}$ and $\mathbf{Q}_{\mathbf{B}}$.

Assume that both Q_{A} and Q_{B} are initially at 0 .

c) (2 points) Given a synchronous sequential circuit with 5 states, the minimum number of flipflops required to implement the circuit is 3 flip flops and the number of unused states is 3 states.
d) (2 points) For a 3-bit synchronous binary counter (outputs $\mathrm{Q}_{2}, \mathrm{Q}_{1}$ and Q_{0}), with input clock frequency of 64 MHZ , the frequency of Q_{0} is 32 MHZ and the frequency of Q_{2} is 8 MHZ .
e) (2 points) Consider the sequential circuit given below with the 4-bit register ABCD . Initially the register has the contents $\mathrm{ABCD}=1001$ and the serial input line is kept at 1 . After the first rising-edge of the clock, the register contents become $\mathrm{ABCD}=0110$. After the second risingedge, the register contents become $\mathrm{ABCD}=1011$.

f) (2 points) Consider the given synchronous counter circuit. The LOAD input is synchronous and the Clear (reset to 0) input is asynchronous. Initially one short 0 pulse is applied at the clear input. The circuit implements a modulo- 9 counter. With a clock input signal having a frequency of 720 cycles $/ \mathrm{sec}$, the frequency at the output signal is 80 cycles $/ \mathrm{sec}$.

Question 2.

Given the following synchronous sequential circuit with input X and output Z and asynchronous Reset:

a) (1 point) Is it a Mealy or Moore sequential circuit and why?
b) (2 points) Write the equations at the inputs of all flip-flops.
c) (1 point) Write the output equation.
d) (5 points) Draw the state table showing the present state, next state, and output Z.
e) (1 point) Are there any unused states? Which ones?

Solution:

a) Moore sequential circuit, because output Z does not depend on input X.
b) $D_{A}=\boldsymbol{X} \cdot \boldsymbol{C} \quad D_{B}=A \quad D_{C}=B^{\prime} \oplus C$
c) $Z=\left(A^{\prime}+C^{\prime}\right)^{\prime}=A \cdot C$
d)

$\begin{gathered} \text { Present State } \\ A, B, C \end{gathered}$	Next State when $X=0$	Next State when $X=1$	Output Z
000	001	001	0
001	000	100	0
010	000	000	0
011	001	101	0
100	011	011	0
101	010	110	1
110	010	010	0
111	011	111	1

e) State $\mathbf{1 1 1}$ is unused. It is unreachable from the other states.
f) (5 points) Complete the timing diagram, starting at the initial state $(A B C=000)$. Note that all the flip-flops are positive edge-triggered.

Question 3.

The state transition table below is for a sequential circuit with one input \mathbf{X} and one output \mathbf{Y}. The circuit has two state variables \mathbf{A} and \mathbf{B}, and synchronous input Reset that resets the circuit to state $\mathrm{AB}=\mathbf{0 1}$ when Reset=1:

Reset State \longrightarrow| Present State | Next State | | | Output | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A B | X=0 | A B | A A B | X=0 | Y $=1$ |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 1 | |
| 1 | 0 | 0 | 1 | 0 | 1 |
| 10 | 0 | 1 | 1 | 0 | 0 |

a) (9 points) Implement the sequential circuit using minimum number of logic gates and risingedge triggered D-FFs and draw the logic diagram of the implemented circuit. The circuit should have synchronous reset that resets it to state $\mathbf{0 1}$.

	$\mathbf{0 0}$	01	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0}$	0		$?$	\square
1	4	1	$?$	1

$\mathrm{D}_{\mathrm{A}}=\mathrm{XA}+\mathrm{XB}=\mathrm{X}(\mathrm{A}+\mathrm{B})$

	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0}$			$?$	$?$
$\mathbf{1}$	1	4	5	$?$

$\mathrm{D}_{\mathrm{B}}=\mathrm{X}^{\prime} \mathrm{A}+\mathrm{X} \mathrm{A}^{\prime} \mathrm{B}^{\prime}$

	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0}$	0	1	$?$	
$\mathbf{1}$	1	4		5

$\mathrm{Z}=\mathrm{X}^{\prime} \mathrm{B}+\mathrm{XB}^{\prime}=\mathrm{X} \oplus \mathrm{B}$

b) (6 points) It is required to write a behavioral Verilog module to model the given sequential circuit. Complete the given Verilog code to achieve that.

```
module FinalQ3 (output reg Y, input X, Reset, CLK);
reg [1:0] state, next_state;
always @ (posedge CLK) //synch reset
    if (Reset) state <= 2'b01;
    else state <= next_state; // the state transition
always @(state, X) begin //comb. Logic
                    \(\mathrm{Y}=0\); \(\quad\) next_state \(=2\) 'b00; //Default value of Y and next_state
    case (state)
            2'b00: if (X) begin next_state=2'b01; Y=1; end
            2'b01: if (X) next_state \(=2\) 'b10; else \(\mathrm{Y}=1\);
            2'b10: if (X) begin next_state=2'b10; Y=1; end else next_state=2'b01;
            endcase
end
```

endmodule

Question 4.

Draw the state diagram of a Mealy sequence detector with input X, output Z, and a reset input, that detects the input sequences $\mathbf{0 1 1 0}$ or $\mathbf{1 1 0 0}$. The sequence detector should detect overlapping sequences.
The following is an example of an input/output stream, starting at the initial state:

Clock Cycle	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Input X	0	1	1	0	0	1	1	0	1	1	0	1	1	1
Output Z	0	0	0	1	1	0	0	1	0	0	1	0	0	0

Solution:

Question 5.

a) (5 points) Using 4-bit synchronous binary counters, with synchronous load input (LD), enable input (EN), and Cout output, as shown in the graphic symbol below, show how to implement a counter that counts up from 7 to 77 and then back to 7 , repeatedly. You may use multiple instances of the 4 -bit counter and additional gates as needed to implement the 7 to 77 counter. Include an external preset input that initializes the counter to 7 .

b) (5 points) Show how to implement a 3-bit synchronous up/down counter using D-FFs and minimal additional combinational logic elements. The counter should have three synchronous control inputs (Reset, EN, and DOWN) and should function according to the following table (graphic symbol also shown below). Please note that you are not allowed to design the counter based on the use of state diagram.

Reset	EN	DOWN	Function
1	X	X	Reset $(\mathrm{Q}=0)$
0	0	X	No change
0	1	0	Count up $(\mathrm{Q}=\mathrm{Q}+1)$
0	1	1	Count down $(\mathrm{Q}=\mathrm{Q}-1)$

Question 6:

Using positive edge-triggered D-FFs and any other components, you are required to design a 3-bit multi-function register with direct asynchronous reset. The register operates according to the following function table:

Reset	F1	F0	Function
1	X	X	Asynchronous reset: $\mathrm{Q}=0$
0	0	0	No change
0	0	1	Rotate left: Q2< $2=\mathrm{Q} 1, \mathrm{Q} 1<=\mathrm{Q} 0, \mathrm{Q} 0<=\mathrm{Q} 2$
0	1	X	Load: Q = D

a) (4 points) Draw the circuit diagram of this register.

b) (4 points) The following Verilog module is supposed to model the register described above. Complete the module by filling the blanks in the following code:

```
// mfr: multi-function register
module mfr (input [2:0] D, input reset, clk, F1, F0,
    output reg [2:0] Q);
always @( posedge clk, posedge reset )
begin
    if (reset) Q <= 0;
    else if (F1) Q <= D;
    else if (F0) Q <= {Q[1:0],Q[2]};
end
endmodule
```

c) (4 points) Write a test bench module to verify the functionality of Module mfr. Use the following test patterns for verification:

Clock Cycle	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Reset	1	0	0	0
F 1	X	0	1	0
F 0	X	0	0	1
$\mathrm{D}[2: 0]$	X	X	3	X

Complete the missing parts of the following test bench module.

```
module tb;
reg clk, rst, F1, F0;
reg [2:0] D;
wire [2:0] Q;
// instantiate Module mfr below this line
mfr mfr1(D, rst, clk, F1, F0, Q);
// In the space provided below, setup the clock
// and apply the test patterns shown above.
always #5 clk = ~clk;
initial begin
rst=1; clk=0;
#10 rst=0;
@(negedge clk) F1=1'b0; F0=1'b0;
@(negedge clk) F1=1'b1; F0=0; D=3'b011;
@(negedge clk) F1=1'b0; F0=1'b1;
end
endmodule
```

