King Fahd University of Petroleum and Minerals

College of Computer Science and Engineering Computer Engineering Department

> COE 202: Digital Logic Design (3-0-3) Term 171 (Fall 2017) Final Exam Monday, January 8th, 2018

Time: 120 minutes, Total Pages: 10

Name:	ID:	Section:
Notes:		
Do not open the exam book unti	l instructed	
Calculators are not allowed	${f ed}$ (basic, advanced, cell phones, etc.)
Answer all questions	•	•
All steps must be shown		
Any assumptions made must be	clearly stated	

Question	Maximum Points	Your Points
1	25	
2	10	
3	15	
4	12	
5	8	
6	10	
7	15	
Total	95	_

Question 1: [25 points]

- a) For a basic NOR SR latch the input SR = _____ keeps the state of the latch unchanged, while the forbidden input is SR = _____
 (2 points).
- b) The shown 3-bit binary counter counts **upwards/downward** (circle one).

The counter has a maximum count of _____and a minimum count of _____(3 points).

c) Given the following block diagram below:

If the output Q is 1 during the current cycle t, shown the output Q at (t+1) after 1 cycle, and at (t+2) after 2 cycles. (2 points)

Q(t)	Q(<i>t</i> +1)	Q(t+2)
0001		

Describe the function of the circuit in the above diagram:

(1 points)

d) The 4-bit shift register shown was initially loaded with ABCD = 0100. List in the table below the contents of the register after receiving each of the clock pulses indicated. (2 points).

	Register Contents
	ABCD (Binary)
Initial	0 1 0 0
After Clock Pulse 1	
After Clock Pulse 2	

- e) A sequential circuit has two inputs; X and Y, and one output Z and the state diagram below:
- The *synchronous reset* input is ______ (*X or Y*?) The circuit is reset when this input is *High/Low* (circle one) and the *reset state* is ______ The **unused state** is ______ (4 points)

- For the input sequence **00 then 11 then 11 then 10,** the circuit would **end up in state** ______ (**1 point**)

f) For the clocked SR latch shown, complete the waveform of the Q output for the given S, R, and clock (C) inputs. Initially, Q is 0. Ignore any propagation delays. (2 points).

g) Given the master-slave D-FF shown in Figure, complete the timing diagram for signals Y and Z (assume they are both initially at 0 and ignore any propagation delays. (4 points).

h) Given a synchronous sequential circuit with 13 states, the minimum number of flip flops required to implement the circuit is ______ flip flops and the number of unused states is _____ states.

(2 points)

i) For a 5-bit synchronous binary counter with outputs Q4, Q3, Q2, Q1, and Q0 (where Q0 is the least-significant bit), if the clock frequency is **800** MHz then the frequency of Q2 is _____ MHz and the frequency of Q4 is _____ MHz. (2 points)

Question 2. [10 points]

Draw the state diagram of a <u>Moore</u> synchronous sequential circuit that receives a serial input y and produces a serial output z. The output z should be 1 when the circuit detects the sequence **01100**. Overlapping sequences **are allowed**. A sample input/output trace after a reset is shown below:

	0								_			
z	0	0	0	0	0	\mathbf{z}_1	0	0	0	\mathbf{u}_1	0	0

Question 3. A sequential circuit has one input *x* and one output *z*. and has the state diagram shown below. [15 Points]

a) Design the circuit using minimum number of logic gates and positive-edge triggered D Flip-Flops. (10 points).

b) Using the timing diagram below, draw the output waveform z. Assume the circuit starts at state 00. (5 points)

For the sequential circuit shown below:

- 1. Specify the <u>inputs</u>, <u>outputs</u>, <u>reset state</u>, and the <u>type</u> (Mealy or Moore).
- (2 points)

- 2. Derive the state diagram of the circuit.
- (9 points)

3. Does this circuit has any unused states? Briefly explain your answer

Question 5. Label all your components, inputs, and outputs

[8 Points]

Using D flip-flop(s) and MUX(s) only (i.e., other components are not allowed), design a 4-bit register with mode selection inputs $\mathbf{S1}$ and $\mathbf{S0}$. The register should operate according to the following table:

S1	S0	Function
0	0	No change
0	1	Parallel load (load inputs into register in parallel)
1	0	Rotate Right (i.e., shift register contents to the right feeding in the shifted bit out from the last bit location as a serial input to the first location)
1	1	Load register with 1's complement of its current content

Question 6. [10 Points]

Use as many as you need of the 4-bit binary counter shown below (with the table explaining its operation) and minimal gates to design a counter that counts up from 5 to 125 in binary and then back to 5. Label properly the inputs and outputs of your designed counter.

LD	EN	Operation of the counter	
0	0	Hold count	
0	1	Increment count	
1	X	Parallel load	

Question 7. [15 Points]

1. The state diagram below is for a sequential circuit that one input **X** (in addition to the asynchronous Reset) and one output **Y**. Write a **behavioral** Verilog description of this circuit. (10 points)

2. Write a <u>behavioral</u> Verilog description of a universal register that has three control inputs in addition to the clock input; Clr, LD, and Count, <u>and 4-bit input Din and output Q</u>, with the following functionality: <u>(the counter does not have asynchronous inputs)</u> (5 points)

Clr	LD	Count	Functionality
0	0	0	No change (i.e. Q stay the same)
1	X	X	Clear register no matter what LD and Count are (i.e. Q=0)
0	1	X	Load the register with Din (i.e. Q=Din)
0	0	1	Count up till Q=9, then go back to 0