King Fahd University of Petroleum and Minerals
 College of Computer Science and Engineering
 Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
 Term 171 (Fall 2017)
 Final Exam

Monday, January $8^{\text {th }}, 2018$

Time: $\mathbf{1 2 0}$ minutes, Total Pages: 10

Name: \qquad ID: \qquad Section: \qquad

Notes:
Do not open the exam book until instructed
Calculators are not allowed (basic, advanced, cell phones, etc.)
Answer all questions
All steps must be shown
Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	25	
2	10	
3	15	
4	12	
5	8	
6	10	
7	15	
Total	95	

Question 1:

a) For a basic NOR $S R$ latch the input $S R=$ \qquad keeps the state of the latch unchanged, while the forbidden input is $S R=$ \qquad (2 points).
b) The shown 3-bit binary counter counts upwards/downward (circle one).

The counter has a maximum count of \qquad and a minimum count of \qquad (3 points).

c) Given the following block diagram below:

If the output Q is 1 during the current cycle t, shown the output Q at $(t+1)$ after 1 cycle, and at $(t+2)$ after 2 cycles. (2 points)

$\mathrm{Q}(t)$	$\mathrm{Q}(t+1)$	$\mathrm{Q}(t+2)$
$\mathbf{0 0 0 1}$		

d) The 4-bit shift register shown was initially loaded with $A B C D=0100$. List in the table below the contents of the register after receiving each of the clock pulses indicated. (2 points).

	Register Contents A B C D (Binary)
Initial	01000
After Clock Pulse 1	
After Clock Pulse 2	

e) A sequential circuit has two inputs; \boldsymbol{X} and \boldsymbol{Y}, and one output \boldsymbol{Z} and the state diagram below:

- The synchronous reset input is \qquad (\boldsymbol{X} or \boldsymbol{Y} ?) The circuit is reset when this input is High/Low (circle one) and the reset state is \qquad The unused state is
\qquad (4 points)
- For the input sequence 00 then 11 then 11 then $\mathbf{1 0}$, the circuit would end up in state \qquad (1 point)

f) For the clocked SR latch shown, complete the waveform of the Q output for the given S, R, and clock (C) inputs. Initially, Q is 0 . Ignore any propagation delays. (2 points).

g) Given the master-slave D-FF shown in Figure, complete the timing diagram for signals Y and Z (assume they are both initially at 0 and ignore any propagation delays. (4 points).

h) Given a synchronous sequential circuit with 13 states, the minimum number of flip flops required to implement the circuit is \qquad flip flops and the number of unused states is \qquad states.
i) For a 5-bit synchronous binary counter with outputs Q4, Q3, Q2, Q1, and Q0 (where Q0 is the leastsignificant bit), if the clock frequency is $\mathbf{8 0 0} \mathbf{~ M H z}$ then the frequency of Q2 is \qquad MHz and the frequency of Q4 is \qquad MHz.

Question 2.

Draw the state diagram of a Moore synchronous sequential circuit that receives a serial input \mathbf{y} and produces a serial output \mathbf{z}. The output z should be $\mathbf{1}$ when the circuit detects the sequence $\mathbf{0 1 1 0 0}$. Overlapping sequences are allowed. A sample input/output trace after a reset is shown below:

y	0	1	1	0	0	1	1	0	0	0	1	
z	0	0	0	0	0	\searrow_{1}	0	0	0	\searrow_{1}	0	0

Question 3. A sequential circuit has one input \boldsymbol{x} and one output \boldsymbol{z}. and has the state diagram shown below.
[15 Points]
a) Design the circuit using minimum number of logic gates and positive-edge triggered D Flip-Flops. (10 points).

b) Using the timing diagram below, draw the output waveform z. Assume the circuit starts at state $\mathbf{0 0}$.

Question 4.

For the sequential circuit shown below:

1. Specify the inputs, outputs, reset state, and the type (Mealy or Moore).
2. Derive the state diagram of the circuit.
(9 points)
3. Does this circuit has any unused states? Briefly explain your answer

Question 5. Label all your components, inputs, and outputs
[8 Points]
Using D flip-flop(s) and MUX(s) only (i.e., other components are not allowed), design a 4-bit register with mode selection inputs $\mathbf{S 1}$ and $\mathbf{S 0}$. The register should operate according to the following table:

S1	S0		Function
0	0		No change
0	1		Parallel load (load inputs into register in parallel)
1	0	Rotate Right (i.e., shift register contents to the right feeding in the shifted bit out from the last bit location as a serial input to the first location)	
1	1		Load register with 1's complement of its current content

Question 6.

[10 Points]

Use as many as you need of the 4-bit binary counter shown below (with the table explaining its operation) and minimal gates to design a counter that counts up from $\mathbf{5}$ to $\mathbf{1 2 5}$ in binary and then back to 5 . Label properly the inputs and outputs of your designed counter.

LD	EN	Operation of the counter
0	0	Hold count
0	1	Increment count
1	X	Parallel load

Question 7.

1. The state diagram below is for a sequential circuit that one input \mathbf{X} (in addition to the asynchronous Reset) and one output \mathbf{Y}. Write a behavioral Verilog description of this circuit. (10 points)

2. Write a behavioral Verilog description of a universal register that has three control inputs in addition to the clock input; Clr, LD, and Count, and 4-bit input Din and output Q, with the following functionality: (the counter does not have asynchronous inputs) (5 points)

Clr	LD	Count	Functionality
0	0	0	No change (i.e. Q stay the same)
1	X	X	Clear register no matter what LD and Count are (i.e. $\mathrm{Q}=0$)
0	1	X	Load the register with Din (i.e. $\mathrm{Q}=$ Din)
0	0	1	Count up till $\mathrm{Q}=9$, then go back to 0

