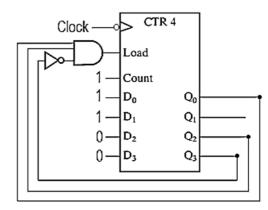
King Fahd University of Petroleum and Minerals

College of Computer Science and Engineering Computer Engineering Department

> COE 202: Digital Logic Design (3-0-3) Term 161 (Fall 2016) Final Exam Wednesday, December 11, 2017

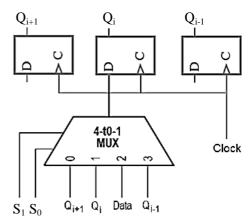
Time: 120 minutes, Total Pages: 14

Name:	ID:	Section:
Notes:		
Do not open the exam book	until instructed	
Calculators are not allowed	d (basic, advanced, cell phones, etc.)	
Answer all questions	•	
All steps must be shown		
Any assumptions made mus	t be clearly stated	


Question	Maximum Points	Your Points
1	16	
2	7	
3	6	
4	15	
5	9	
6	6	
7	6	
8	15	
9	10	

Total	90	
Total	90	

Question 1: Fill in the Spaces: (Show all work needed to obtain your answer)


(16 points)

- 1. A high value to the two R and S inputs of the NAND-gate latch will (Change/No Change) the state/output of the latch. (1 point)
- Asynchronous reset to a flip flop doesn't depend on the clock input ______ (True/False).
 (1 point)
- 3. Given a synchronous sequential circuit with 9 states, the minimum number of flip flops required to implement the circuit is _____ flip flops and the number of unused states is _____ states. (2 points)
- 4. The following circuit shows a parallel load binary counter, the range of the counter is _____ to ____. (2 points)

5. The below figure shows connections to the *D* input of stage *i* in a multi-function register of D-type flip flops. Study the circuit and fill in the missing information in the table below (empty slots) only for supported register functions. (2 points)

S ₁ S ₀	Register Function (where applicable)
	Shift right
	Clear register
	No change in output
	Load Data input

- 7. For a 4-bit synchronous binary counter (outputs Q₃, Q₂, Q₁ and Q₀), with input clock frequency of 48 MHZ, the frequency of Q₁ is ______ MHZ and the frequency of Q₃ is _____ MHZ. (2 points)
- 8. Two RS level sensitive latches and one inverter are used to make an edge triggered flip flop which can be used to store up to two bits _____ (True/False). (1 point)
- 9. Consider the below 4-bit register. If the initial register contents (Q outputs) *ABCD* are *0111* and the serial input is kept at 1, show the contents *ABCD* = _____ of the register after two clock pulses. (2 points)

- 10. A state machine with two inputs and three outputs will have _____ (how many) arcs going out from each state to any other states. (1 point)
- 11. For any given problem/requirement, the number of states required by a Mealy machine or a Moore machine is always the same _____ (True/False). (1 point)

Question 2: (7 points)

Derive the state diagram of a synchronous \underline{Moore} sequential circuit that receives a serial input Y and produces a serial output F that is set to $\mathbf{1}$ when the circuit detects the sequence $\mathbf{11X0}$, where \mathbf{X} represents don't care.

Question 3: (6 points)

Design a combinational circuit using a ROM. The circuit accepts a 3-bit number $X = X_2X_1X_0$ and generates an output binary number Y equal to 3X + 4. The ROM should contain a minimum number of columns. Fill the truth table and ROM table below and draw the block diagram.

Truth Table		ROM '	Table

Question 4: (15 points)

Given the following state table:

a) Obtain minimal sum-of-products equations for the next state and output.

(12 points)

b) Draw the circuit diagram.

(3 points)

Present State	Next	Output	
АВС	x = 0	x = 1	Z
000	001	000	0
001	010	000	1
010	0 1 1	000	1
0 1 1	100	000	1
100	101	001	0
1 0 1	101	0 1 1	1

Question 5: Consider the following sequential circuit:

a)	Next State, (8 points)
_	

b) Is the circuit type *Mealy* or *Moore*? Justify your answer.

(1 point)

Question 6: (6 points)

Consider the following state table. Assume that the initial state of the circuit implementation of the given state table is $(Q_AQ_B = 10)$. Draw the waveforms of Q_A , Q_B , and Z for the given 2 clock cycles in response to the shown applied input X. Ignore propagation delays, setup times, and hold times. Assume that the circuit uses rising edge-triggered D-FF(s).

Present State		X	Next State		Z
Q_A	Q_B	Λ	D_A	D_B	L
0	0	0	0	1	1
0	0	1	1	1	0
0	1	0	1	0	0
0	1	1	0	0	0
1	0	0	1	0	0
1	0	1	0	0	1
1	1	0	0	0	1
1	1	1	1	0	1

Question 7: (6 points)

Use minimal external gates and as many of the following counter as necessary to design a counter that counts from 1 to 52 and then repeats. Note that the operation of the provided counter is according to the table to the right of the counter. Note also that CO stands for Carry-output which gets set to 1 when the maximum count of 15 is reached. Assume that the counter is initially loaded with the value 1. Properly label (Q0 - Q7) and (D0 - D7) of the designed counter.

- CLK - LOAD	Q3 —
-EN	Q2
D3	Q1
-D2	Q0 -
D1 D0	co-

LOAD	EN	Operation
0	0	Hold count
0	1	Increment count
1	X	Parallel load

.

Question 8: (15 points)

Using D-FFs and any other components, design a 4-bit rotator register with direct asynchronous reset that has two control inputs; Load and Rot with the functionality shown in the table below:

Reset	Load	Rot	Function
0	0	0	No Change (Q stay as is)
1	Х	Χ	asynchronous reset: Q = 0
0	1	Χ	Load: Q = D
0	0	1	Rotate Left: Q3=Q2, Q2=Q1,Q1=Q0, Q0=Q3

a) Draw the circuit diagram

(5 points)

b) Write a **behavioral** Verilog description of the above rotator register

(6 points)

c) Write a test bench to test the above rotator register. Let the clock cycle = 20 time units. First, reset the register, then load the register with **1010**, then do nothing for two clock cycles, then rotate the register **3** times. (**4 points**)

Question 9: (10 points)

a) Write a <u>behavioral</u> Verilog description of a sequential circuit with the state diagram below. The circuit has an asynchronous **Reset** input, one input X, and two outputs: Y and Z. Use the following state encodings: S0=000, S1=001, S2=010, S3=100, S4=111. If the circuit ever gets into any of the unused states, it will go to state S0 no matter what the input value is. (6 points)

b) Write a test bench to test the circuit. Let the clock cycle = 20 time units. First, reset the circuit, then apply the following input sequence to **X**: **0**, **1**, **0**, **1**, **1**, **1**, **0**. (4 points)