# King Fahd University of Petroleum and Minerals <br> College of Computer Science and Engineering <br> Computer Engineering Department 

## COE 202: Digital Logic Design (3-0-3) <br> Term 161 (Fall 2016) <br> Final Exam <br> Wednesday, December 11, 2017

Time: $\mathbf{1 2 0}$ minutes, Total Pages: 14

Name: $\qquad$ ID: $\qquad$ Section: $\qquad$

Notes:
Do not open the exam book until instructed
Calculators are not allowed (basic, advanced, cell phones, etc.)
Answer all questions
All steps must be shown
Any assumptions made must be clearly stated

| Question | Maximum Points | Your Points |
| :---: | :---: | :---: |
| 1 | 16 |  |
| 2 | 7 |  |
| 3 | 6 |  |
| 4 | 15 |  |
| 5 | 9 |  |
| 6 | 6 |  |
| 7 | 6 |  |
| 8 | 15 |  |
| 9 | 10 |  |


| Total | $\mathbf{9 0}$ |  |
| :---: | :---: | :---: |

1. A high value to the two R and S inputs of the NAND-gate latch will (Change/No Change) the state/output of the latch.
(1 point)
2. Asynchronous reset to a flip flop doesn't depend on the clock input $\qquad$ (True/False).
(1 point)
3. Given a synchronous sequential circuit with 9 states, the minimum number of flip flops required to implement the circuit is $\qquad$ flip flops and the number of unused states is
$\qquad$ states.
(2 points)
4. The following circuit shows a parallel load binary counter, the range of the counter is $\qquad$ to $\qquad$ _. (2 points)

5. The below figure shows connections to the $\boldsymbol{D}$ input of stage $\boldsymbol{i}$ in a multi-function register of D type flip flops. Study the circuit and fill in the missing information in the table below (empty slots) only for supported register functions.

| $\mathbf{S}_{\mathbf{1}} \mathbf{S}_{\mathbf{0}}$ | Register Function <br> (where applicable) |
| :--- | :--- |
|  | Shift right |
|  | Clear register |
|  | No change in output |
|  | Load Data input |


6. In the ROM circuit shown, $\mathbf{X}$ indicates a connection. At address $\boldsymbol{A B C}=\mathbf{1 1 0}$, the ROM stores the data $\boldsymbol{Y}_{4} \boldsymbol{Y}_{3} \boldsymbol{Y}_{2} \boldsymbol{Y}_{1} \boldsymbol{Y}_{0}=$ $\qquad$ .
(1 point)

7. For a 4-bit synchronous binary counter (outputs $\mathrm{Q}_{3}, \mathrm{Q}_{2}, \mathrm{Q}_{1}$ and $\mathrm{Q}_{0}$ ), with input clock frequency of 48 MHZ , the frequency of $\mathrm{Q}_{1}$ is $\qquad$ MHZ and the frequency of $\mathrm{Q}_{3}$ is
$\qquad$ MHZ.
8. Two RS level sensitive latches and one inverter are used to make an edge triggered flip flop which can be used to store up to two bits $\qquad$ (True/False).
9. Consider the below 4-bit register. If the initial register contents (Q outputs) $\boldsymbol{A B C D}$ are $\mathbf{0 1 1 1}$ and the serial input is kept at 1 , show the contents $\boldsymbol{A B C D}=$ $\qquad$ of the register after two clock pulses.

10. A state machine with two inputs and three outputs will have $\qquad$ (how many) arcs going out from each state to any other states.
11. For any given problem/requirement, the number of states required by a Mealy machine or a Moore machine is always the same $\qquad$ (True/False).

## Question 2:

(7 points)
Derive the state diagram of a synchronous Moore sequential circuit that receives a serial input $\boldsymbol{Y}$ and produces a serial output $\boldsymbol{F}$ that is set to $\mathbf{1}$ when the circuit detects the sequence $\mathbf{1 1} \mathbf{X 0}$, where $\mathbf{X}$ represents don't care.

## Question 3:

(6 points)
Design a combinational circuit using a ROM. The circuit accepts a 3-bit number $\boldsymbol{X}=\boldsymbol{X}_{2} \boldsymbol{X}_{1} \boldsymbol{X}_{\boldsymbol{0}}$ and generates an output binary number $\boldsymbol{Y}$ equal to $\mathbf{3 X + 4}$. The ROM should contain a minimum number of columns. Fill the truth table and ROM table below and draw the block diagram.

Truth Table


ROM Table


## Question 4:

Given the following state table:
a) Obtain minimal sum-of-products equations for the next state and output.
(12 points)
b) Draw the circuit diagram.

| Present State | Next State |  | Output |
| :---: | :---: | :---: | :---: |
| A B C | $\mathrm{x}=0$ | $x=1$ | $z$ |
| 000 | 001 | 000 | 0 |
| 001 | 010 | 000 | 1 |
| 010 | 011 | 000 | 1 |
| 011 | 100 | 000 | 1 |
| 100 | 101 | 001 | 0 |
| 101 | 101 | 011 | 1 |

Question 5: Consider the following sequential circuit:

a) Provide a state table for the given circuit showing the Present State, the input $\mathbf{X}$, the Next State, and the output $\mathbf{Z}$.
$\qquad$
b) Is the circuit type Mealy or Moore? Justify your answer.

## Question 6:

(6 points)
Consider the following state table. Assume that the initial state of the circuit implementation of the given state table is $\left(Q_{A} Q_{B}=10\right)$. Draw the waveforms of $Q_{A}, Q_{B}$, and $Z$ for the given 2 clock cycles in response to the shown applied input $X$. Ignore propagation delays, setup times, and hold times. Assume that the circuit uses rising edge-triggered D-FF(s).

| Present State |  | Next State  $Z$ <br> $Q_{A}$   <br> $Q_{B}$   |  | $D_{A}$ | $D_{B}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 |  | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 | 1 |



## Question 7:

(6 points)
Use minimal external gates and as many of the following counter as necessary to design a counter that counts from $\mathbf{1}$ to $\mathbf{5 2}$ and then repeats. Note that the operation of the provided counter is according to the table to the right of the counter. Note also that CO stands for Carry-output which gets set to 1 when the maximum count of 15 is reached. Assume that the counter is initially loaded with the value 1 . Properly label (Q0-Q7) and (D0 - D7) of the designed counter.


| LOAD | EN | Operation |
| :---: | :---: | :--- |
| 0 | 0 | Hold count |
| 0 | 1 | Increment count |
| 1 | X | Parallel load |

## Question 8:

Using D-FFs and any other components, design a 4-bit rotator register with direct asynchronous reset that has two control inputs; Load and Rot with the functionality shown in the table below:

| Reset | Load | Rot | Function |
| :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | No Change (Q stay as is) |
| 1 | $X$ | $X$ | asynchronous reset: Q = 0 |
| 0 | 1 | $X$ | Load: Q = D |
| 0 | 0 | 1 | Rotate Left: Q3=Q2, Q2=Q1,Q1=Q0, Q0=Q3 |


a) Draw the circuit diagram
(5 points)
b) Write a behavioral Verilog description of the above rotator register
c) Write a test bench to test the above rotator register. Let the clock cycle $=20$ time units. First, reset the register, then load the register with $\mathbf{1 0 1 0}$, then do nothing for two clock cycles, then rotate the register $\mathbf{3}$ times.

## Question 9:

(10 points)
a) Write a behavioral Verilog description of a sequential circuit with the state diagram below. The circuit has an asynchronous Reset input, one input X, and two outputs: $\mathbf{Y}$ and $\mathbf{Z}$. Use the following state encodings: $\mathbf{S 0}=\mathbf{0 0 0}, \mathbf{S 1}=\mathbf{0 0 1}, \mathbf{S 2 = 0 1 0}, \mathbf{S 3}=\mathbf{1 0 0}, \mathbf{S 4}=111$. If the circuit ever gets into any of the unused states, it will go to state $\mathbf{S 0}$ no matter what the input value is.

b) Write a test bench to test the circuit. Let the clock cycle $=20$ time units. First, reset the circuit, then apply the following input sequence to $\mathbf{X}: \mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0}$.
(4 points)

