King Fahd University of Petroleum and Minerals
 College of Computer Science and Engineering
 Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
 Term 181 (Fall 2018)
 Major Exam 2
 Saturday, November 11th, 2018

Time: 120 minutes, Total Pages: 9

Name: \qquad ID: \qquad Section: \qquad

Notes:
Do not open the exam book until instructed
Calculators are not allowed (basic, advanced, cell phones, etc.)
Answer all questions
All steps must be shown
Any assumptions made must be clearly stated
Clearly label all inputs and outputs of any circuit component

Question	Maximum Marks	Your Marks
1	$\mathbf{1 8}$	
2	19	
3	20	
4	13	
Total	70	

Question 1.

a) Consider the following Boolean function and its don't care conditions:

$$
F(A, B, C, D)=\prod M(3,11,12,13)+\sum d(2,6,10,14)
$$

Represent F on a K-map along with its don't care conditions.
(4 Marks)

b) The K-map below represents a function $G(X, Y, Z, W)$:

1. List all the prime implicants and essential prime implicants of G.
(4 Marks)

PIs: X'Z', X'Y, Z'W, Y'Z', X'W' EPIs: Y'Z' and X'W'

Note that $Z^{\prime} \mathbf{W}$ is not EPI because only the don't care is not in any other PI - Don't cares do not have to be covered so they don't make an EPI!
2. Minimize G to a minimal SOP expression

$$
\mathbf{G}=\mathbf{Y}^{\prime} \mathbf{Z}^{\prime}+\mathbf{X}^{\prime} \mathbf{W}^{\prime}
$$

3. Minimize G to a minimal POS expression
(4 Marks)

$$
\mathbf{G}=\left(\mathbf{Z}^{\prime}+\mathbf{W}^{\prime}\right)\left(\mathbf{X}^{\prime}+\mathbf{Y}^{\prime}\right)\left(\mathbf{X}^{\prime}+\mathbf{Z}^{\prime}\right)
$$

| ZW | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: |
| XY | | | | |
| 0 | 00 | 01 | 11 | 10 |
| 00 | 1 | 1 | 0 | 1 |
| 01 | 1 | X | X | 1 |
| 11 | 0 | X | X | 0 |
| 10 | 1 | 1 | 0 | 0 |

c) Let $\mathrm{F}=\mathrm{A}^{\prime}\left(\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)(\mathrm{A}+\mathrm{C})$ Implement F using minimum number of NOR gates only. (4 Marks)
F is actually $=\mathbf{m 1}=A^{\prime} B^{\prime} C=\left(A+B+C^{\prime}\right)$

Another solution (you lose 1 mark!)

Question 2:

It is required to design a circuit that receives a 3-bit signed number in signed-magnitude representation, \mathbf{X}, and computes the equation $\mathbf{Y}=\mathbf{3}^{*} \mathbf{X} \mathbf{- 2}$ where \mathbf{Y} is also represented in signedmagnitude representation.
a. Determine the number of bits needed for the output Y. Justify your answer.

The smallest negative value is -3 . Thus, $3^{*}-3-2=-11$. This implies that we need $\mathbf{5}$ bits to represent the output correctly (1-bit for the sign, and 4-bits for the magnitude).
b. Fill the table below with the truth table for the output Y.

X2 X1 X0			Decimal Value of Y	Output Y: Y4 Y3 Y2 Y1 Y0				
0	0	0	-2	1	0	0	1	0
0	0	1	+1	0	0	0	0	1
0	1	0	+4	0	0	1	0	0
0	1	1	+7	0	0	1	1	1
1	0	0	-2	1	0	0	1	0
1	0	1	-5	1	0	1	0	1
1	1	0	-8	1	1	0	0	0
1	1	1	-11	1	1	0	1	1

c. If the output of the circuit Y is fed as input to another circuit that will compute the equation: $\mathbf{Z}=\mathbf{Y}^{\mathbf{2}}$, what will be the don't care conditions for \mathbf{Z}.

The don't care conditions include all the values that do not occur at the output of Y, i.e. $0,+2$, $+3,+5,+6,+8$ to $+15,-1,-3,-4,-6,-7,-9,-10,-12,-13,-15,-16$
d. Implement the following two functions using a decoder and additional gates, each with the smallest possible Fan-in (i.e. number of inputs). Clearly mark all inputs and outputs of the decoder. F1 $(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum \mathrm{m}(0,4,5,6,7) \quad \mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(4,5,7)$

F1 $(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum \mathrm{m}(0,4,5,6,7)=\Pi \mathrm{M}(1,2,3) \rightarrow$ it is better to implement it as POM 3 I/Ps \rightarrow 3-to-8 decoder \& a 3-I/Ps NOR Gate
$\mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(4,5,7)=\prod \mathrm{M}(0,1,2,3,6) \rightarrow$ it is better to implement it as SOM $3 \mathrm{I} / \mathrm{Ps} \rightarrow 3$-to-8 decoder \& a 3-I/Ps OR Gate

e. Convert the circuit below to 2-input NAND gates only. Redraw the circuit to obtain a multilevel NAND circuit implementation. Assume that both the true and complement forms of each input variable are available. Use the circuit as is and do not attempt to simplify it. (5 Marks)

Question 3.

a) Represent the given signed numbers using 8 -bit signed binary numbers in the specified representations in the table below:
(6 Marks)

Decimal Value	Sign-Magnitude representation	1's complement representation	2's complement representation
-34	10100010	11011101	11011110
-67	11000011	10111100	10111101

b) \mathbf{A} and \mathbf{B} below are 8 -bit signed integers represented in the 2 's complement representation:
$A=11011000 \quad B=01110101$

1. What are the decimal values of A and B ?
(2 Marks)
Decimal Value of $\mathrm{A}=\mathbf{- 1 2 8 + \mathbf { 6 4 } + \mathbf { 1 6 } + \mathbf { 8 } = \mathbf { - 4 0 } , ~}$
Decimal Value of $B=\mathbf{6 4 + 3 2 + 1 6 + 4 + 1 = + 1 1 7}$
2. Compute $\mathrm{A}+\mathrm{B}$ in binary and indicate whether there is overflow or not.
```
1111
    1 1 0 1 1 0 0 0
+ 0 1 1 1 0 1 0 1
------------------
    010011 0 1
```

There is NO overflow because C_{7} and C_{8} are identical. Last carry is ignored.
The result $=+77$
3. Compute A - B by converting subtraction into binary addition. Indicate whether there is overflow or not. Show all the steps.

```
A - B = A + (2's complement of B) = A + (1's complement of B) + 1
1 1 1 1
    11011000
+10001010
---------------
    0 1 1 0 0 0 1 1
```

Yes, there is overflow because C_{7} and C_{8} are different. The result is positive, while it is supposed to be negative. The exact result $\mathbf{- 1 5 7}$ cannot be represented using 8 bits only.
c) Suppose that \mathbf{X}, \mathbf{Y}, and \mathbf{Z} are 4-bit unsigned integers. Let $\mathbf{S}=\mathbf{X}+\mathbf{Y}+\mathbf{Z}$ be the unsigned sum.

1 . What is the number of bits required to represent the output \mathbf{S} ?
(1 Mark)
S should have 6 bits to represent the largest sum: 15+15+15 = 45 in binary
2. Draw a circuit that computes $\mathbf{S}=\mathbf{X} \mathbf{+} \mathbf{Y}+\mathbf{Z}$ using only full adders and half adders.
(5 Marks)

Solution:

Better Solution:

Question 4

Consider the following implementation of a full-adder circuit:

a) Write a gate-level Verilog description of the above full adder using the Inputs, Outputs, and wire names and gate delays shown on the diagram above.
(5 Marks)

```
module full_adder(output S, Cout, input A, B, Cin);
    wire P, X, G;
    xor #3 (P, A, B); // or assign #3 P = A^B
    xor #3 (S, P, Cin); // or assign #3 S = P^Cin
    and #2 (X, P, Cin); // or assign #2 X = P & Cin
    and #2 (G, A, B); // or assign #2 G = A & B
    or #2 (Cout, X, G); // or assign #3 Cout = X | G
```

endmodule
b) Write another Verilog description of the full adder, with delay modeling, using a single assign statement per output (i.e. two assign statements).

```
module full_adder(output S, Cout, input A, B, Cin);
    assign #6 S = A^B^Cin ;
    assign #7 Cout = (A^B)& Cin | A & B;
endmodule
if someone does assign #6 {Cout,S} = A + B + Cin ; he loses 1 mark
for wrong delay modeling of Ci and even if he uses #7
```

c) Using the full adder in (a) above, write a testbench to test a 2-bit adder (i.e. uses two of the full adder in (a)) to add two 2-bit numbers \mathbf{A} and \mathbf{B} with a carry in $\mathbf{C i}$, and produces a 2-bit $\operatorname{Sum} \mathbf{S}$ and carry out $\mathbf{C o}$.

The testbench should test the 2-bit adder for the following input values (with 10 time units delay inbetween the two input patterns):
$\mathbf{A}=\mathbf{0 0}, \mathbf{B}=\mathbf{0 0}, \mathbf{C i n}=\mathbf{0}$, and the second input is $\mathbf{A}=\mathbf{1 0}, \mathbf{B}=\mathbf{0 1}, \mathbf{C i n}=\mathbf{1}$.

```
module t.b;
    reg [1:0] A, B;
    reg Ci;
wire [1:0] S, Co;
full_adder fa1(S[0], Co[0], A[0], B[0], Ci);
full_adder fa2(S[1], Co[1], A[0], B[0], Co[0]);
initial begin
    A[0]= 0 ; A[1]= 0 ;
    B[0]= 0 ; B[1]= 0 ;
    Ci= 0 ;
    #10 A[0]= 0 ; A[1]= 1 ;
        B[0]= 1 ; B[1]= 0 ;
        Ci= 1 ;
    end
endmodule
```

```
module t.b;
```

module t.b;
reg A1,A0, B1,B0;
reg A1,A0, B1,B0;
reg Ci;
reg Ci;
wire S1, S0, Co0, Co1;
wire S1, S0, Co0, Co1;
full_adder fal(S0, Co0, A0, B0, Ci);
full_adder fal(S0, Co0, A0, B0, Ci);
full_adder fa2(S1, Co1, A1, B1, Co0);
full_adder fa2(S1, Co1, A1, B1, Co0);
initial begin
initial begin
A0= 0 ; A1= 0 ;
A0= 0 ; A1= 0 ;
B0= 0 ; B1= 0 ;
B0= 0 ; B1= 0 ;
Ci= 0 ;
Ci= 0 ;
\#10 A0= 0 ; A1= 1 ;
\#10 A0= 0 ; A1= 1 ;
B0= 1 ; B1= 0 ;
B0= 1 ; B1= 0 ;
Ci= 1 ;
Ci= 1 ;
end

```
    end
```

OR
endmodule

