King Fahd University of Petroleum and Minerals
 College of Computer Science and Engineering
 Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 171 (Fall 2017)
Major Exam 2
Saturday, November 25th, 2017

Time: 120 minutes, Total Pages: 9

Name: \qquad ID: \qquad Section: \qquad

Notes:
Do not open the exam book until instructed
Calculators are not allowed (basic, advanced, cell phones, etc.)
Answer all questions
All steps must be shown
Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	15	
2	15	
3	15	
4	10	
5	20	
6	15	
7	10	
Total	100	

Question 1:

Given the following two 8-bit binary numbers \mathbf{A} and \mathbf{B} :
$\mathrm{A}=10100011$
$B=10000010$
a) What are the decimal values of A and B if they are unsigned numbers?

```
A = (1010 0011)unsigned = 128+32+2+1 = 163
B = (1000 0010)unsigned = 128+2 = 130
```

b) What are the decimal values of A and B if they are signed numbers in signed-magnitude?

```
A = 1010 0011 = -(32+2+1) = -35
B = 1000 0010 = -2
```

c) What are the decimal values of A and B if they are signed numbers in 2's complement?

```
A = 1010 0011 = -128+32+2+1 = -93
B = 1000 0010 = -128+2 = -126
```

d) If A and B are signed numbers in 2's complement, Compute A+B and specify if there is an overflow

e) If A and B are signed numbers in 2 's complement, Compute $\mathrm{A}-\mathrm{B}$ and specify if there is an overflow
d) $\mathrm{A}-\mathrm{B}=\mathrm{A}+(2$'s complement of B$)$

$$
\text { Carry } \quad 1111111
$$

A	$=10100011$
$+(2 ' s$ complement of $B)$	$=01111110$
	00100001

Question 2. Let $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(0,2,3,4,5,8,11,12,13,14,15)$
a) Draw the Karnaugh map of the function f.

$a \mathrm{~b} \backslash \mathrm{c} d$	00	01	11	10
00	1		1	1
01	1	1		
11	1	1	1	1
10	1		1	

b) Write the terms of ALL the prime Implicants and indicate which ones are Essential.

There are Seven Prime Implicants: $a b, c^{\prime} d^{\prime}, b c^{\prime}, a^{\prime} b^{\prime} c, a^{\prime} b^{\prime} d^{\prime}, a c d, b^{\prime} c d$
Only three prime implicants are Essential: $a b, c^{\prime} d^{\prime}, \quad b c^{\prime}$
c) Find ALL minimum sum-of-product expressions of f ($\mathbf{3}$ solutions).
$f=a b+c^{\prime} d^{\prime}+b c^{\prime}+a^{\prime} b^{\prime} c+a c d$ (Solution 1)
$f=a b+c^{\prime} d^{\prime}+b c^{\prime}+a^{\prime} b^{\prime} c+b^{\prime} c d$ (Solution 2)
$f=a b+c^{\prime} d^{\prime}+b c^{\prime}+\underline{a^{\prime} b^{\prime} d^{\prime}+b^{\prime} c d}$ (Solution 3)

Question 3.

Given the following function $g(a, b, c, d)=\sum m(0,1,6,15)$
with the don't care conditions $=\sum d(3,5,7,11,14)$,
a) Find the minimal Sum-of-Product expressions of g ($\mathbf{1}$ Solution).

$\mathrm{a} \mathrm{b} \backslash \mathrm{c} d$	00	01	11	10
00	1	1	X	
01		X	X	1
11			1	X
10			X	

Minimal SOP expression: $g=a^{\prime} b^{\prime} c^{\prime}+b c$ (minimum terms \rightarrow minimum \# of NAND gates)
b) Find the minimal Product-of-Sum expressions of the function g (2 Solutions).

$\mathrm{a} \mathrm{b} \backslash \mathrm{c} d$	00	01	11	10
00			X	1
01	1	x	X	
11	1	$1)$		x
10	1	1	X	1

Minimal POS expressions of g :
$\begin{array}{lll}g^{\prime}=b c^{\prime}+b^{\prime} c+a b^{\prime} \Rightarrow & g=\left(b^{\prime}+c\right)\left(b+c^{\prime}\right)\left(a^{\prime}+b\right) & \text { (Solution 1) } \\ g^{\prime}=b c^{\prime}+b^{\prime} c+a c^{\prime} \Rightarrow & g=\left(b^{\prime}+c\right)\left(b+c^{\prime}\right)\left(a^{\prime}+c\right) & \text { (Solution 2) }\end{array}$
$g^{\prime}=b c^{\prime}+b^{\prime} c+a c^{\prime} \Rightarrow g=\left(b^{\prime}+c\right)\left(b+c^{\prime}\right)\left(a^{\prime}+c\right) \quad($ Solution 2)
c) Assuming that all inputs are available as true and complement, implement g using minimum number of the same gate type (i.e. using only one type of gates)

Question 4.

It is required to design a circuit that receives a BCD input N and compute two outputs; Q is the quotient $=N / 3$, and $R=$ remainder. e.g. if the input $\mathrm{N}=7$, then $\mathrm{Q}=2$, and $\mathrm{R}=1$.

Determine the number of bits in N, Q, and R , and draw the truth table for this circuit.
Solution: N is 4-bits, Q max value is $\mathbf{3 \rightarrow 2} \mathbf{~ b i t s , ~} \mathrm{R}$ max value is also $2 \rightarrow 2$ bits
Truth Table

$\begin{gathered} \text { Input } N \\ \mathbf{N}_{3} \mathbf{N}_{2} \mathrm{~N}_{1} \mathrm{~N}_{0} \end{gathered}$	$\begin{gathered} \text { Output Q } \\ \mathrm{Q}_{1} \mathrm{Q}_{\theta} \end{gathered}$	$\begin{gathered} \text { Output } R \\ \mathbf{R}_{1} \mathbf{R}_{\theta} \end{gathered}$
0000	00	00
0001	00	01
0010	00	10
0011	01	00
0100	01	01
0101	01	10
0110	10	00
0111	10	01
1000	10	10
1001	11	00
1010	X X	X X
1011	X X	X X
1100	x x	X X
1101	$\mathrm{x} \times$	$\mathrm{x} \times$
1110	X x	X X
1111	X X	X x

Question 5. Label all your components, inputs, and outputs

1) Given the function $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\mathbf{A B} \mathbf{B}^{\prime}+\mathbf{A C}+\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}+\mathbf{A}^{\prime} \mathbf{B} \mathbf{C}^{\prime}$,

Implement F using minimum number of 2-to-1 Multiplexors.

2) Given the functions $\mathbf{G}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\Pi \mathbf{M}(\mathbf{0}, \mathbf{2 , 3 , 5 , 7})$, and $\mathbf{H}=\sum \mathbf{m}(\mathbf{0}, \mathbf{1}, \mathbf{4}, 6,7)$

Implement \mathbf{G} and \mathbf{H} using minimum number of 2-to-4 Decoders and other gates with minimum sizes (i.e. number of inputs per gate).
(10 Points)
We need to construct a 3-to-8 decoder from two 2-to-4 decoders and an inverter.
Since G has only 3 minterms ($1,4,6$) we will use a decoder + OR design,
Since H has only 3 Maxterms $(2,3,5)$ we will use a decoder + NOR design:

Question 6. For the logic diagram below:

1. Complete the Gate level Verilog description of this circuit using the Gate delays in the table below
(6 Points)
module Y1_Y2 (input A, B, C, D, E, output Y1, Y2) ;
wire n1, n2, n3, A_b, C_b, Y2_b ;
not \#1 (A_b, A) ; not \#1 (C_b,C) ; and \#2 (n1, A_b, C) ;
and \#3 ($\mathrm{n} 2, \mathrm{~B}, \mathrm{C}, \mathrm{A}$) ; and \#3 ($\mathrm{n} 3, \mathrm{D}, \mathrm{B}, \mathrm{A} _\mathrm{b}$) ;
not \# 1 (Y2_b, Y2) ; or \#3 (Y1, n1, Y2_b) ; or \#4 (Y2, n2, n3, E) ;
endmodule

Gate	Delay
NOT	$\mathbf{1} \mathbf{n s}$
2-IPAND	2 ns
2-IP OR	3 ns
3-IPAND	3 ns
3-IP OR	4 ns

2. Describe the same circuit again (including the delay) in Verilog, but using the assign statement.
module Y1_Y2 (input A, B, C, D, E, output Y1, Y2) ;
assign \#8 Y2 = E | ${ }^{\sim} \mathrm{A} \& \mathrm{~B} \& \mathrm{D} \mid \mathrm{A} \& \mathrm{~B} \& \mathrm{C}$;
assign \#12 Y1 $={ }^{\sim}\left(\mathrm{E}\left|{ }^{\sim} \mathrm{A} \& \mathrm{~B} \& \mathrm{D}\right| \mathrm{A} \& \mathrm{~B} \& \mathrm{C}\right) \mid \mathrm{A} \&{ }^{\sim} \mathrm{C}$; // if Y1 is defined as a endmodule // function of Y2, the delay would be wrong!
3. Convert it to NAND-only gates (using minimum number of NAND gates)

Question 7.

 Label all your components, inputs, and outputs1. Using any standard functional block (Adders, Multiplexors, decoders ...etc.) design a circuit that compute the absolute difference between two unsigned 4-bit numbers A and B (If $A \geq B, \operatorname{Diff}(A, B)=A-B$, else $\operatorname{Diff}(\mathrm{A}, \mathrm{B})=\mathrm{B}-\mathrm{A})$
(4 Points)

SOLUTION 1

SOLUTION 2

The CO (output carry) of $(\mathbf{B}-\mathrm{A})$ is 1 when $(B-A \geq 0)$ and 0 otherwise. It is used as the select input of the mux. It works only when A and B are unsigned.
2. Now using your circuit above, and any other components, design an ALU that has two 4-bit data inputs A and B , two control bits C 1 and C 0 , and performs the following functions: (6 Points)
(for the bitwise ANDing and ORing of A and $B, Y 4$ should be 0)

C1 C0	Functionality
0	$\mathrm{Y} \leftarrow \mathrm{A} \& \mathrm{~B}$ (Y= bitwise ANDing of A and B)
01	$\mathbf{Y} \leftarrow \mathrm{A} \mid \mathrm{B}$ ($\mathbf{Y}=$ bitwise ORing of \mathbf{A} and $\mathbf{B})$
10	$Y \leftarrow A+B(Y=S U M$ of A and $B)$
1	$\mathrm{Y} \leftarrow \operatorname{Diff}(\mathbf{A}, \mathrm{B})(\mathbf{Y}=$ the absolute difference between A and B, i.e. $\|A-B\|)$

