King Fahd University of Petroleum and Minerals
 College of Computer Science and Engineering
 Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 161 (Fall 2016)
Major Exam 2
Saturday, Dec. 3rd, 2016

Time: $\mathbf{1 2 0}$ minutes, Total Pages: $\mathbf{1 1}$

Name: \qquad ID: \qquad Section: \qquad

Notes:
Do not open the exam book until instructed
Calculators are not allowed (basic, advanced, cell phones, etc.)
Answer all questions
All steps must be shown
Any assumptions made must be clearly stated

Question	Maximum Points	Your Po:
1	14	
2	16	
3	20	
4	6	
5	14	
6	20	
7	20	
Total	110	

1. The symbol gate.
 is an equivalent representation of the \qquad OR \qquad (AND/OR/NOT) [1 mark]
2. A two input XOR gate can be used as an inverter of an input, if the other input is set to
\qquad (High/Low).
[1 mark]
3. The output for n inputs XNOR gate ($n>3$) will be \qquad (The Same/Inverted) if any two inputs are inverted.
[1 mark]
4. The two-input gate symbol shown on the right performs the function $f(A, B)=A^{\prime} B$. It \qquad (Can/Cannot) be used to implement any
 Boolean function similar to Universal gates.
[1 mark]
5. Using 6-bit registers, the smallest negative number that can be represented is $\mathbf{- 3 2}$ and that would be using \qquad (Sign-Magnitude / 2's complement) representation.
[2 marks]
6. Using 6-bit 2's complement representation, the largest number that can be added to +5 without causing an overflow is _+26_(in decimal).
7. Complete the circuit on the right to implement the function $F(A, B, C)=\Pi M(0,1,4,6)$ using a single 3-to-8 decoder and a NOR gate. The inputs to the NOR gates will be_ Q0, Q1, Q4, and Q6_.
[2 marks]

8. The largest decoder we can build using five 2-to-4 decoders with Enable without any additional components is a \qquad _ to \qquad 6 decoder.
9. In the priority encoder shown below with $\underline{D}_{\mathbf{0}} \underline{\text { having highest priority and } \underline{D}_{\underline{7}} \text { the lowest }}$ priority, the output $\mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}=101$ when the status at inputs $\mathrm{D}_{0}-\mathrm{D}_{7}$ is as described in
\qquad (select one of I, II, III, or IV) with all other inputs being in a don't care condition.
[2 marks]
I. $\mathrm{D}_{0}=1$ and $\mathrm{D}_{2}=1$.
II. $\mathrm{D}_{1}=1$ and $\mathrm{D}_{2}=1$.
III. $\mathrm{D}_{3}=1$ and $\mathrm{D}_{5}=1$.
IV. $D_{6}=1$ and $D_{5}=1$.

Question 2. Consider the Boolean function $F(W, X, Y, Z)=\Pi M(1,4,6,9)$

1) Identify all the prime implicants and the essential prime implicants of \mathbf{F}. [6 marks]

Solution:

Prime implicants:

$$
W \bar{Z}, \bar{X} \bar{Z}, W X, X Z, Y Z, \bar{X} Y, W Y
$$

Essential prime implicants:

$$
X Z, \bar{X} \bar{Z}
$$

2) Simplify the Boolean function $\mathbf{F}(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z})$ shown in the K-map below together with its don't care conditions, into minimal sum-of-products expression.

wxlyz	00	01	11	10.
00	1:	0	0	\% 1
01	0	0	1	1
11	x	\mathbf{x}	\% ${ }^{1}$	X
10	1:	0	x	x

Minimal Solution:

$$
F=\bar{X} \bar{Z}+X Y
$$

3) Implement the following function using minimum number of NAND gates. Assume that all inputs are available in true and complement forms.

$$
\mathbf{F}=\mathbf{A}^{\prime} \mathbf{B}+\mathbf{B}^{\prime} \mathbf{C}+\mathbf{A} \mathbf{C}^{\prime}
$$

4) Implement the function in part (3) above using minimum number of NOR gates only. Assume that all input are available in true and complement forms. [4 marks]

Question 3:

a) Show the $\mathbf{8}$-bit binary representation of the following decimal numbers.

Decimal Number	8-bit Sign-Magnitude representation	8-bit 2's complement representation
$\mathbf{+ 3 5}$	00100011	00100011
$\mathbf{- 7 6}$	$\mathbf{1 1 0 0 1 1 0 0}$	10110100

b) Given the following 8-bit binary value, show the equivalent decimal value when the binary number is interpreted as unsigned, as a sign-magnitude number, as a 1's complement, or as a 2 's complement signed number.
[4 marks]

8-bit Binary	Equivalent Decimal Value when the binary number is interpreted as:			
	Unsigned Number	Sign-Magnitude Decimal Number	1's complement Decimal Number	2's complement Decimal Number
$\mathbf{1 0 1 1 \mathbf { 1 0 1 0 }}$	186	-58	-69	-70

c) Show the addition / subtraction of the following 8 -bit signed numbers represented in 2 's complement. Indicate whether there is an overflow (Yes / No).

0	1	1	1	0	0	1	0
-1	0	0	1	0	1	1	1
1	1						
0	1	1	1	0	0	1	0
0	1	1	0	1	0	0	1
	1	0	1	1	0	1	1

Overflow? YES

Question 4:

It is required to design a circuit to multiply two 2-bit unsigned binary numbers; $\mathbf{A}_{\mathbf{1}} \mathbf{A}_{\mathbf{0}}$ and $\mathbf{B}_{\mathbf{1}} \mathbf{B}_{\mathbf{0}}$.
a) Obtain the truth table for this circuit.

Solution: To multiply 2 2-bit unsigned numbers, the maximum result is 9 , which requires 4 bits \rightarrow the $0 / P$ is 4 -bits $-->$ The truth Table

A_{1}	$\mathrm{~A}_{\bullet}$	B_{1}	$\mathrm{~B}_{0}$	p	p 2	p 1	p 0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

b) Using the Karnaugh map, find a minimal sum-of-product expression for the output bit with weight 2 (i.e. $2^{\text {nd }}$ bit from the right).

Karnaugh Map for p1

B1 B0

A1 A0	0	0	0	1	1
0	0			1	0
0	1				
1	1		1		1
1	0		1	1	1

$\mathrm{p} 1=\mathrm{A} 1 \mathrm{~B} 1^{\prime} \mathrm{B} 0+\mathrm{A} 1 \mathrm{~A} 0^{\prime} \mathrm{B} 0+\mathrm{A} 1^{\prime} \mathrm{A} 0 \mathrm{~B} 1+\mathrm{A} 0 \mathrm{~B} 1 \mathrm{BO}^{\prime}$

Question 5: For this question, Properly label all components, their inputs and outputs.
Given the function $F(A, B, C)=A \bar{C}+\bar{B} C$
a) Implement F using the smallest size MUX. Do not use any additional gates.
b) Implement F using a single 3 -to- 8 decoder, and a single OR gate.
c) Implement F using two 2 -to- 4 decoders with enable, one inverter, and one NOR gate. [4 marks]
a)

b)

c)

Question 6: For this question, properly label all components, their inputs and outputs.
Using a minimal number of standard components (such as decoders, encoders, multiplexers, adders, magnitude comparators) and any other necessary logic gates, design a circuit that:

- Takes three 4-bit unsigned binary numbers $A=A_{3} A_{2} A_{1} A_{0}, B=B_{3} B_{2} B_{1} B_{0}$, and $C=C_{3} C_{2} C_{1} C_{0}$,
- And produces two 4-bit outputs $X=X_{3} X_{2} X_{1} X_{0}$, and $Y=Y_{3} Y_{2} Y_{1} Y_{0}$ such that X equals the smallest number among $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} (i.e. $\mathrm{X}=\min (\mathrm{A}, \mathrm{B}, \mathrm{C})$), while \boldsymbol{Y} corresponds to the largest number among \boldsymbol{A}, B, and C (i.e. $Y=\max (A, B, C)$).
[20 marks]

One Possible Solution:

Question 7: Consider the combinational circuit shown below with inputs $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and W , and outputs A and B :
[20 marks]

a) Write a Verilog module (call it CC) describing this circuit, as is, using primitive gates. Assume the following gate delays; inverter's delay= 1 (time unit), AND's delay=2, OR's delay=3. [5 marks]

```
'timescale 1ns/1ns
module CC (input X,Y,Z,W, output wire A,B);
    wire w1,w2,w3,X_b,A_b ;
    not #1 (X_b,X) ;
    and #2 (w1,X_b,Y);
    and #2 (w2,X,Z);
    or #3 (A,w1,w2);
    not #1 (A_b,A) ;
    and #2 (B,A_b,W);
endmodule
```

b) Write a test bench to test the above circuit for the following input combinations (add 10ns delay between the application of each input set): $X Y Z W=0000$, then $\mathbf{0 1 1 0}$, then 0010

```
'timescale 1ns/1ns
module CC_tb ();
wire A,B;
reg X,Y,Z,W ;
CC m1 (X,Y,Z,W,A,B) ;
initial begin
X=0; Y=0; Z=0; W=0; //or simply {X,Y,Z,W}=0 ;
#10 Y=1; Z=1; //or simply {X,Y,Z,W}=6 ;
#10 Y=0; //or simply {X,Y,Z,W}=2 ;
end
endmodules
```

c) Write another Verilog module (Call it CC_2) describing the same circuit but using the continuous assignment (i.e. assign statement). The output delays should also be modeled in this module. [5 marks]
'timescale 1ns/1ns
module CC_2 (input X, Y, Z, W, output wire $A, B)$;

assign \#3 B = ~A \& W ; // case delay - for B, the delay of A //would be added to an inverter's + AND's delays
// or assign \#9 B = ~(~X\&Y)|(X\&Z) \& W;
endmodule
d) What do we need to change in the test bench of part (b) to simulate the $2^{\text {nd }}$ module (CC_2) (b)?
[2 marks]

Only the instantiation statement \rightarrow CC_2 m1 (X,Y,Z,W,A,B);
e) Also, if we modify the test bench to try all possible 16 input combinations, would the two modules produce exactly the same simulation results? Briefly explain why

No. The $1^{\text {st }}$ module models the delay at the gate-level, so different input combinations may result in different outputs delay, e.g. when the input changes from 0011 to 0010, output B's delay will be 2 ns , but when the input changes from 0011 to 1011 (or 0111), output B's delay will be 9 ns (or 8 ns). In the $2^{\text {nd }}$ module we model the worst case delay, so outputs A and B's delays will always be 6 and 9 ns, respectively.

