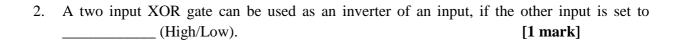
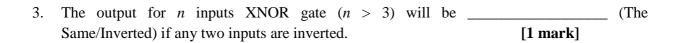
King Fahd University of Petroleum and Minerals

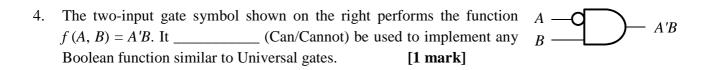
College of Computer Science and Engineering Computer Engineering Department

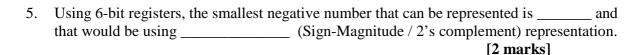
> COE 202: Digital Logic Design (3-0-3) Term 161 (Fall 2016) Major Exam 2 Saturday, Dec. 3rd, 2016


Time: 120 minutes, Total Pages: 11

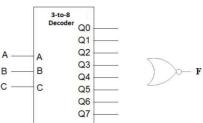

Name:	ID:	Section:
Notes:		
Do not open the exam book until inst	ructed	
Calculators are not allowed (be	asic, advanced, cell phones, et	<i>cc.</i>)
Answer all questions	•	
All steps must be shown		
Any assumptions made must be clear	ly stated	


Question	Maximum Points	Your Points
1	14	
2	16	
3	20	
4	6	
5	14	
6	20	
7	20	
Total	110	

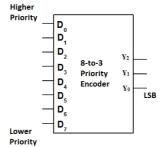

Question 1: Fill in the Spaces: (Show all work needed to obtain your answer)


[14 marks]





6. Using 6-bit 2's complement representation, the largest number that can be added to +5 without causing an overflow is _____ (in decimal). [1 mark]



8.	For the func	tion F(X,	Y, Z) re	presented	d in the follow	ing K-	-map,	F has
		(How	many)	prime	implicants,	and	of	these
			(How m	any) are	essential primo	e impli	cants	of F.
	[2 marks]							

X 0	0 01	11	10
0		1	1
1	1	1	Г

9.	The largest	decoder	we can	build	using	five	2-to-4	decoders	with	Enable	without	any
	additional co	to)	_ dec	coder.				[1 mark]		

- 10. In the priority encoder shown below with $\underline{\mathbf{D_0}}$ having highest priority and $\underline{\mathbf{D_7}}$ the lowest priority, the output $Y_2Y_1Y_0 = 101$ when the status at inputs D_0 - D_7 is as described in ______ (select one of I, II, III, or IV) with all other inputs being in a don't care condition. [2 marks]
 - I. $D_0 = 1$ and $D_2 = 1$.
 - II. $D_1 = 1$ and $D_2 = 1$.
 - III. $D_3 = 1$ and $D_5 = 1$.
 - IV. $D_6 = 1$ and $D_5 = 1$.

Question 2.

1) Consider the Boolean function $F(W, X, Y, Z) = \prod M(1, 4, 6, 9) + \sum d(0, 3, 5, 7, 11, 12, 14)$. Identify **all** the *prime implicants* and the *essential prime implicants* of **F.** [6 marks]

2) Simplify the Boolean function **F**(**w**,**x**,**y**,**z**) shown in the K-map below together with its don't care conditions, into *minimal* <u>sum-of-products</u> expression. [4 marks]

wx∖yz	00	01	11	10
00	1	0	0	1
01	0	0	1	1
11	X	X	X	X
10	1	0	X	X

3) Implement the following function using minimum number of *NAND* gates. <u>Assume that all inputs are available in true and complement forms.</u> [2 marks]

$$F = A'B + B'C + AC'$$

4) Implement the function in part (3) above using minimum number of <u>NOR</u> gates only.

<u>Assume that all input are available in true and complement forms.</u> [4 marks]

Question 3: [20 marks]

a) Show the **8-bit binary representation** of the following decimal numbers. [4 marks]

Decimal Number	8-bit Sign-Magnitude representation	8-bit 2's complement representation
+35		
-76		

b) Given the following 8-bit binary value, show the equivalent decimal value when the binary number is interpreted as unsigned, as a sign-magnitude number, as a 1's complement, or as a 2's complement signed number. [4 marks]

8-bit	Decir	mal Value when the	binary number is inter	rpreted as:
Binary	Unsigned Number	Sign-Magnitude Decimal Number	1's complement Decimal Number	2's complement Decimal Number
1011 1010				

c) Show the addition / subtraction of the following 8-bit signed numbers represented in 2's complement. Indicate whether there is an overflow (Yes / No). [6 marks]

	0 1 1 1				-			_				0 0		-
0ver	flow	1?					Ov	erf	101	v ?				

Qu	Question 4:								
It is	required to design a circuit to multiply two 2-bit unsigned binary numbers; A_1A_0 are	ad $\mathbf{B_1}\mathbf{B_0}$.							
a)	Obtain the truth table for this circuit.	[4 marks]							
b)	Using the Karnaugh map, find a minimal sum-of-product expression for the output weight 2 (i.e. 2 nd bit from the right).	bit with [2 marks]							

Question 5: For this question, <u>Properly label all components</u>, their inputs and outputs.

Given the function $F(A, B, C) = A \overline{C} + \overline{B} C$

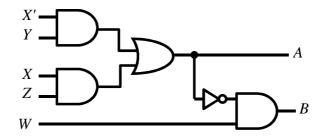
[14 marks]

a) Implement F using the smallest size MUX. Do not use any additional gates.

[6 marks]

b) Implement F using a single 3-to-8 decoder, and a single OR gate.

[4 marks]


c) Implement F using two 2-to-4 decoders with enable, one inverter, and one NOR gate. [4 marks]

Question 6: For this question, properly label all components, their inputs and outputs.

Using a <u>minimal</u> number of standard components (such as **decoders**, **encoders**, **multiplexers**, **adders**, **magnitude comparators**) and any other necessary logic gates, design a circuit that:

- Takes three 4-bit unsigned binary numbers $A = A_3A_2A_1A_0$, $B = B_3B_2B_1B_0$, and $C = C_3C_2C_1C_0$.
- And produces two 4-bit outputs $X = X_3X_2X_1X_0$, and $Y = Y_3Y_2Y_1Y_0$ such that X equals the <u>smallest number</u> among A, B, and C (i.e. $X = \min(A,B,C)$), while Y corresponds to the <u>largest number</u> among A, B, and C (i.e. $Y = \max(A,B,C)$). [20 marks]

Question 7: Consider the combinational circuit shown below with inputs X, Y, Z, and W, and outputs A and B: [20 marks]

a) Write a Verilog module (call it **CC**) describing this circuit, *as is*, using primitive gates. Assume the following gate delays; inverter's delay= 1 (time unit), AND's delay= 2, OR's delay=3. **[5 marks]**

b) Write a test bench to test the above circuit for the following input combinations (add 10ns delay between the application of each input set):

XYZW=0000, then 0110, then 0010

[5 marks]

	Vrite another Verilog module (Call it CC_2) describing the same circuit but using t ssignment (i.e. assign statement). The output delays should also be modeled in	
	What do we need to change in the test bench of part (b) to simulate the 2 nd module (0	CC 2) (b) 9
u) v	vitat do we need to change in the test bench of part (b) to simulate the 2 module (c	[2 marks]
e) A	dso, if we modify the test bench to try all possible 16 input combinations, would the produce exactly the same simulation results? Briefly explain why	e two modules [3 marks]