King Fahd University of Petroleum and Minerals
College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 181 (Fall 2018)
Major Exam 1
Saturday, October 6th, 2018
10 am
Time: 90 minutes, Total Pages: 6

SOLUTION

Notes:

Do not open the exam book until instructed
Calculators are not allowed (basic, advanced, cell phones, etc.)
Answer all questions
All steps must be shown
Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	15	
2	18	
3	12	
4	15	
Total	60	

Question 1 (15 Points): Fill in the spaces for parts (1) to (7), $\mathbf{1}$ point each.

1) Counting the number of days in a year in $B C D$ requires (how many) \qquad 12 bits.
2) The largest $\mathbf{2}$-digit number in hexadecimal is \qquad FF , which is equal to \qquad 255 in decimal.
3) If the number (31) \mathbf{r} in radix \mathbf{r} is equal to $\mathbf{1 6}$ in decimal, then the radix $\mathbf{r}=$ \qquad 5 .
4) If 10 bits are used to code only 1000 decimal values then the number of unused binary codes will be $2^{2^{10}-1,000}=1024-1000=24$ \qquad .
5) If a computer uses 3 bits for red colors, 3 bits for green, and 3 bits for blue, then the total number of colors that represent all combinations of red, green, and blue is \qquad $2^{9}=512$
6) For the Logic Diagram Shown: The gate delays are shown on the gates

a) The logic function $\mathbf{F}=\mathrm{AB}+\mathrm{C}+\mathrm{BDEG}^{\prime}$ (without any re-arrangement)
b) This circuit has _____ number of logic levels (Fill in the space)
c) The longest path's (i.e. critical path) delay $=\underline{9 n s}$
7) Convert between different number systems. Fill-in the table below.
(6 points)

Decimal	Binary	Hexadecimal
123	1111011	$7 B$
27.625	11011.101	$1 B . A$
0.3125	0.0101	0.5

Question 2 (18 points):

a) For the questions below, fill in the spaces:

1. The ASCII code 1010001 corresponds to " Q " character. An odd parity bit is appended at the end of the code and then transmitted. The transmitted code is \qquad 10100010 \qquad The receiver receives the following code word 1110 0011, would the receiver detect an error
\qquad No \qquad .(Yes/NO?).
(2 points)
2. A machine uses the following unsigned binary number representation $(X X X X . X X X)_{2}$, where 4 digits are used for the integer part and 3 digits are used for the fraction part. For this machine, the smallest nonzero fraction is equal to \qquad 2^{-3} \qquad (in decimal value), while the largest number is equal to \qquad $2^{4}-2^{-3}$ \qquad (in decimal value).
(2 points)
3. The minimum number of binary digits required to assign unique binary codes for the 100 students in an academic department is equal to \qquad 7__ (how many?). When the number of students increases by a factor of 16 over the next two years, the minimum number of bits required will be \qquad 11 \qquad (how many?).
(2 points)
b) The decimal number 103 is to be stored in a computer's memory. Specify how the number is represented for each of the following codes:
a) $\mathrm{BCD} 5421: \quad 000100000011$
b) BCD Excess-3: 010000110110
c) Perform the following arithmetic operations in the respective numbering system. Specify the carry-in and borrow digits at every stage.
(9 points)

$110 \leftarrow$ Carry in	$(10110110)_{2}$
(32A) ${ }_{16}$	X (110) ${ }_{2}$
+ (2E8) ${ }_{16}$	
---------	00000000
$(612)_{16}$	10110110
	10110110
	$(10001000100)_{2}$
$\begin{aligned} & \quad 01111110 \leqslant \text { Borrows } \\ & \quad(11001000)_{2} \\ & -\quad(10011111)_{2} \end{aligned}$	
$(0010$ 1001) 2	

Question 3 (12 Points):

1. Find the complement of $\mathrm{F}: F=[(\bar{A}+B) C D+E G]$

$$
\bar{F}=(A \bar{B}+\bar{C}+\bar{D})(\bar{E}+\bar{G})
$$

2. Given $\mathrm{F}=\mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{AB} \mathrm{CD}^{\prime}+\mathrm{ABC} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{AB} \mathrm{B}^{\prime} \mathrm{C}$ Simplify F to minimum number of literals in Sum-of-Product format (SOP)
(4 points)

3. Given F (A.B,C) $=\sum \mathrm{m}(0,4,5)$ Simplify F to minimum number of literals in Product-of-Sum format (POS)

First write F as an algebraic $\mathrm{POM}: \mathbf{F}=\Pi \mathbf{M}(1,2,3,6,7)$

$$
=\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)=
$$

$=\left(A+C^{\prime}\right)\left(A^{\prime}+B^{\prime}\right)\left(A^{\prime}+B^{\prime}\right)=\left(A+C^{\prime}\right)\left(B^{\prime}+A A^{\prime}\right)=\left(A+C^{\prime}\right) B^{\prime}$ or right away recognizing that B^{\prime} is common to all combinations of $A \& C$:
$=\left(\mathrm{A}+\mathrm{C}^{\prime}\right)\left[\mathrm{B}^{\prime}+(\mathrm{A}+\mathrm{C})\left(\mathrm{A}^{\left.\left(+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{C}^{\prime}\right)\right]=\left(\mathrm{A}+\mathrm{C}^{\prime}\right) \mathrm{B}^{\prime}, ~}\right.\right.$
Another solution:

$$
\mathbf{F}=(\mathbf{A}+\mathbf{B}+\underbrace{\left.\mathbf{C}^{\prime}\right)\left(\mathbf{A}+\mathbf{B}^{\prime}+\mathbf{C}\right)\left(\mathbf{A}+\mathbf{B}^{\prime}+\mathbf{C}^{\prime}\right)\left(\mathbf{A}^{\prime}+\mathbf{B}^{\prime}+\mathbf{C}\right)\left(\mathbf{A}^{\prime}+\mathbf{B}^{\prime}+\mathbf{C}^{\prime}\right.})=
$$

$=\left(\mathbf{A}+\mathrm{C}^{\prime}\right)\left(\mathbf{B}^{\prime}+\mathbf{C}\right)\left(\mathbf{A}^{\prime}+\mathrm{B}^{\prime}\right)$
$=\left(\mathbf{A}+\mathbf{C}^{\prime}\right)\left(\mathbf{B}^{\prime}+\mathbf{A}^{\prime}\right)\left(\mathbf{B}^{\prime}+\mathbf{C}\right) \quad$ just reordering the terms
$=\left(\mathbf{A}+\mathbf{C}^{\prime}\right)\left(\mathbf{B}^{\prime}+\mathrm{A}^{\prime} \mathbf{C}\right) \quad$ Distributive property
$=\left(\mathbf{A}+\mathbf{C}^{\prime}\right)\left(\mathbf{B}^{\prime}+\left(\mathbf{A}+\mathbf{C}^{\prime}\right)^{\prime}\right) \quad$ DeMorgan's
$=\left(\mathbf{A}+\mathbf{C}^{\prime}\right) \mathbf{B}^{\prime}+\left(\mathbf{A}+\mathbf{C}^{\prime}\right)\left(\mathbf{A}+\mathbf{C}^{\prime}\right)^{\prime} \quad$ Distribute
$=\left(\mathbf{A}+\mathbf{C}^{\prime}\right) \mathbf{B}^{\prime} \quad 3$ literals only

Question 4 (15 points): In this question, we denote Minterm number i by m_{i} and Maxterm number i by M_{i}.

1. Complete the following truth table where A, B, and C are the inputs. If you believe that any of the minterms or maxterms cannot be evaluated, explain why and leave it blank.

A	B	C	m_{2}	M_{2}	m_{6}	M_{8}
0	0	0	0	1	0	
0	0	1	0	1	0	
0	1	0	1	0	0	
0	1	1	0	1	0	
1	0	0	0	1	0	
1	0	1	0	1	0	
1	1	0	0	1	1	
1	1	1	0	1	0	

Not possible to evaluate M_{8} because its subscript exceeds the maximum row index of the truth table.
2. What is the value of $M_{i} m_{i}$? Explain your answer.
$M_{i} m_{i}$ is always equal to 0 since $m_{i}=\overline{M_{i}}$.
3. Let $F(A, B, C)=\bar{A} B+A \bar{C}$. Express $F(A, B, C)$ as a sum of minterms using the \sum notation.
(2 Point)

$$
F(A, B, C)=\sum m(2,3,4,6)
$$

4. Let

$$
G(a, b, c)=\left(\sum m(2,6)\right)+\left(\prod M(1,2,3,4,5,7)\right)
$$

Express $G(a, b, c)$ algebraically as a sum of minterms.
(3 Points)

$$
G(a, b, c)=\left(\sum m(2,6)\right)+\left(\sum m(0,6)\right)=\sum m(0,2,6)=\bar{a} \bar{b} \bar{c}+\bar{a} b \bar{c}+a b \bar{c}
$$

5. Let $F(w, x, y, z)=w z+\bar{x} \bar{z}+x \bar{y}$. Express $F(w, x, y, z)$ algebraically as a product of maxterms.

$$
\begin{aligned}
F(w, x, y, z) & =\sum m(0,2,4,5,8,9,10,11,12,13,15) \\
& =\prod M(1,3,6,7,14) \\
& =(w+x+y+\bar{z})(w+x+\bar{y}+\bar{z})(w+\bar{x}+\bar{y}+z)(w+\bar{x}+\bar{y}+\bar{z})(\bar{w}+\bar{x}+\bar{y} \\
& +z)
\end{aligned}
$$

6. Let $G=A B+\bar{C} D$. Express G in a product of sums standard form.

Take the dual of G

$$
\begin{aligned}
G_{d} & =(A+B)(\bar{C}+D) \\
& =A \bar{C}+A D+B \bar{C}+B D
\end{aligned}
$$

Take the dual of the dual

$$
G=(A+\bar{C})(A+D)(B+\bar{C})(B+D)
$$

