King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 181 (Fall 2018)
Major Exam 1
Saturday, October 6th, 2018
10 am
Time: 90 minutes, Total Pages: 6

Name: \qquad ID: \qquad Section: \qquad

Notes:
Do not open the exam book until instructed
Calculators are not allowed (basic, advanced, cell phones, etc.)
Answer all questions
All steps must be shown
Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	15	
2	18	
3	12	
4	15	
Total	60	

Question 1 (15 Points): Fill in the spaces for parts (1) to (7), $\mathbf{1}$ point each.

1) Counting the number of days in a year in $B C D$ requires (how many) \qquad bits.
2) The largest 2-digit number in hexadecimal is \qquad , which is equal to \qquad in decimal.
3) If the number (31)r in radix \mathbf{r} is equal to 16 in decimal, then the $\operatorname{radix} \mathbf{r}=$ \qquad .
4) If 10 bits are used to code only 1000 decimal values then the number of unused binary codes will be \qquad .
5) If a computer uses 3 bits for red colors, 3 bits for green, and 3 bits for blue, then the total number of colors that represent all combinations of red, green, and blue is \qquad .
6) For the Logic Diagram Shown: The gate delays are shown on the gates

a) The logic function $F=$
(without any re-arrangement)
b) This circuit has \qquad number of logic levels (Fill in the space)
c) The longest path's (i.e. critical path) delay $=$ \qquad
7) Convert between different number systems. Fill-in the empty slots in the table below. (6 points)

Decimal	Binary	Hexadecimal
123		
	11011.101	
0.3125		

Question 2 (18 points):

a) For the questions below, fill in the spaces:

1. The ASCII code $\mathbf{1 0 1} \mathbf{0 0 0 1}$ is transmitted using an odd parity bit that is appended at the end of the code. The code that should be transmitted is \qquad . If the receiver receives the following code word $\mathbf{1 1 1 0} \mathbf{0 0 1 1}$, it will \qquad (Yes/NO?) detect an error.
2. A machine uses the following unsigned binary number representation (XXXX.XXX) ${ }_{2}$, where 4 digits are used for the integer part and 3 digits are used for the fraction part. For this machine, the smallest nonzero fraction is equal to \qquad (in decimal value), while the largest number is equal to \qquad (in decimal value).
(2 points)
3. The minimum number of binary digits required to assign unique binary codes for the 100 students in an academic department is equal to \qquad (how many?). When the number of students increases by a factor of 16 over the next two years, the minimum number of bits required will be \qquad (how many?).
(2 points)
b) The decimal number 603 is to be stored in a computer's memory. Specify how the number is represented for each of the following codes:
(3 points)
a) BCD 5421:
b) BCD Excess-3:
c) Perform the following arithmetic operations in the respective numbering system. Specify the carry-in and borrow digits at every stage.

$\begin{array}{r} (32 \mathrm{~A})_{16} \\ +\quad(2 \mathrm{E} 8)_{16} \end{array}$	X	$\begin{array}{r} (10110110)_{2} \\ (110)_{2} \end{array}$
$\begin{array}{r} \quad(11001000)_{2} \\ -\quad(10011111)_{2} \end{array}$		

Question 3 (12 Points):

1. Find the complement of $\mathrm{F}: F=[(\bar{A}+B) C D+E G]$
(3 points)
2. Given $\mathrm{F}=\mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{AB}^{\prime} \mathrm{CD}^{\prime}+\mathrm{ABC}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{AB}^{\prime} \mathrm{C}$ Simplify F to minimum number of literals in Sum-of-Product format (SOP)
(4 points)
3. Given $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum \mathrm{m}(0,4,5)$ Simplify F to minimum number of literals in Product-of-Sum format (POS)

Question 4 (15 points): In this question, we denote Minterm number i by m_{i} and Maxterm number i by M_{i}.

1. Complete the following truth table where A, B, and C are the inputs. If you believe that any of the minterms or maxterms cannot be evaluated, explain why and leave it blank. (2 Points)

A	B	C	m_{2}	M_{2}	m_{6}	M_{8}
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

2. What is the value of $M_{i} m_{i}$? Explain your answer.
(2 Points)
3. Let $F(A, B, C)=\bar{A} B+A \bar{C}$. Express $F(A, B, C)$ as a sum of minterms using the \sum notation.
4. Let $\quad G(a, b, c)=\left(\sum m(2,6)\right)+\left(\prod M(1,2,3,4,5,7)\right)$

Express $G(a, b, c)$ algebraically as a sum of minterms.
(3 Points)
5. Let $F(w, x, y, z)=w z+\bar{x} \bar{z}+x \bar{y}$. Express $F(w, x, y, z)$ algebraically as a product of maxterms.
6. Let $G=A B+\bar{C} D$. Express G in a product of sums standard form.
(3 Points)

