King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 172 (Spring 2018) Major Exam 1 Saturday Feb. 24, 2018

Time: 90 minutes, Total Pages: 9

Name:	ID:	Section:

Notes:

- Do not open the exam book until instructed
- No Calculators are allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	19	
2	15	
3	16	
Total	50	

2B.C

Questi	ion 1.		(<mark>19</mark> poi	nts)
a)	bits. If the	•	ferent colors in binary is equivalent times in binary is equivalent bits. (2 point)	n the
b)	Counting the number of second	onds in one minute in BCD re	equires (how many)(1 point	
c)	The smallest non-zero 3-bit equal to	fraction in binary is	, and its decimal val (2 point	
d)	extra parity bit equal to	aracter "C" is 01000011 . Usin The receiver receives a ver detect an error (Yes/No)?	•	
e)	Convert between different n representations of a number.	umber systems. Fill-in the tab	le below with different (<mark>6</mark> point	ts)
	Decimal	Binary	Hexadecimal	
	102.25			

f) Convert between BCD 8421 and Excess-3 codes:

(2 Points)

BCD 8421	Excess-3 BCD
1001 0101	
	1010 0111

g) Given the following 8-bit binary numbers:

(4 Points)

$$A = (00110110)_2$$

 $B = (11101101)_2$

i) Compute A+B in binary and indicate whether there is a final carry.

ii) Compute A-B in binary and indicate whether there is a final borrow.

Question 2. (15 points)

a) Express the Boolean function, F, represented by the circuit given below in <u>sum of products</u> form: (3 Points)

b) Find the <u>complement</u> of the function $F1 = (A \bar{B} + C)\bar{D} + E$ (2 Points)

c) Using Boolean Algebraic manipulations, minimize the following functions to <u>minimum</u> number of literals in <u>sum of products</u> representation:

(i)
$$F2 = A + \bar{A}C + (A + C)(\bar{A} + \bar{C})$$
 (3 Points)

(ii)
$$F3 = AB + \overline{A}C + \overline{B}C + A\overline{C}$$
 (4 Points)

(iii)
$$F4 = (A + B)(A + C)(\bar{A} + \bar{B})(A + \bar{C})$$

(3 Points)

Question 3. (16 points)

- a) For the following subparts (i iv), assume that $F(A, B, C) = \sum (1,2,5,7)$
 - (i) Complete the truth table of the function F.

	_	_	
(2	Pα)in	ts)

A	В	C	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

(ii) List all the $\underline{\mathsf{maxterms}}$ of F using the \prod notation.

(2 Points)

(iii) List all the $\underline{\text{minterms}}$ of \overline{F} using the Σ notation.

(2 Points)

(iv) Express $\overline{{\cal F}}$ algebraically as a product-of-maxterms.

(2 Points)

b) Let the function G(A,B,C)=1 whenever $A=\overline{B}$, regardless of the value of C. List the <u>minterms</u> of G using the Σ notation. (2 Points)

c) Let $H(A,B,C)=(\sum (1,3,5,7))(\prod (2,4,6,7))$. List the <u>minterms</u> of H using the Σ notation. (2 Points)

d) Let $K(A, B, C) = AB + \bar{C}$. List the <u>minterms</u> of K using the Σ notation. (2 Points)

e) Consider the following circuit:

(2 Points)

The following table summarizes the propagation delay of the gates:

Gate	Delay
2-input AND gate	2 ns
3-input AND gate	3 ns
2-input OR gate	2 ns

Calculate the propagation delay for each of the following gates: X1, X2, X3, and G. The delay must be calculated from the primary inputs to the <u>output of the</u> gate. Please fill in the second column of the following table for answering this part.

Gate	Propagation delay (ns)
X1	
X2	
X3	
G	