King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 171 (Fall 2017) Major Exam 1 Saturday, October 21st, 2017

Time: 90 minutes, Total Pages: 6

 Name:
 ID:
 Section:

Notes:

Do not open the exam book until instructed

Calculators are not allowed (*basic, advanced, cell phones, etc.*)

Answer all questions

All steps must be shown

Any assumptions made must be clearly stated

Question	Maximum Points	Your Point	
1	12		
2	6		
3	6		
4	6		
5	20		
Total	50		

Question 1: Fill in the Spaces:

- 1. The number of bits required to provide distinct binary codes for 60 different colors is equal to **6** bits. If the number of colors in (i.e. 60 colors) is doubled four times (i.e. multiplied by 16), then the number of required bits will be equal to _____10_____ bits. (2 points)
- 2. Counting the number of hours in one day in BCD requires a minimum of _____8____ (how many) bits. (2 points)
- 3. The number (B3D.C6)₁₆ converted to binary is equal to **101-100-111-101.110-001-10** while if converted to octal it will be _____5475.614_____. (4 points)
- 4. The largest decimal value for an unsigned 3-bit binary fraction number is equal to $1-2^3 = 0.875$ while the smallest decimal value for an unsigned 3-bit binary fraction number is equal to 2⁻³ = 0.125 _____ (2 points)
- 5. The ASCII code 100 0001 corresponds to "A" character. An even parity bit is appended at the end of the code and then transmitted. The transmitted code is _____100 0001 0_____. The receiver receives the following code word 1000 0001, would the receiver detect an error No (Yes/No?). (2 points)

Question 2.

Binary unsigned

The binary number 1001 0100 is stored in a computer. What is the decimal value represented if the stored number is" a) BCD 5421 (2 points)

→ 64 BCD 5421 {1 pt per digit} b) Excess 3 BCD number (2 points) $\rightarrow 61$ {1 pt per digit} excess-3 c) Unsigned binary number (2 points) \rightarrow 128+16+4 = 148 {2 points}

Question 3. Perform the following arithmetic operations in the specified number system. (6 Points) Show the details of all your work (carries, borrows ...etc.)

(6 Points)

Page 3 of 6

Hexadecimal	Binary	Binary	
Addition	Subtraction	Multiplication	
11	1 1 1		
13A	110 001	1101	
+ E9	- 100 111	× 110	
223	001 010	0000	
		11101	
		1101	
		1001110	

{1 pt per bit/digit}

Question 4.

(5 Points)

1. For the Logic Diagram Below:

a) Write the Boolean expression for the output F = (A'+B)C + D + (E'G + L + H + K) (2nd set of brackets is optional)

(as in the logic diagram without any re-arrangement) (3 Point)

- b) This circuit has ___5___ number of logic levels (Fill in the space) (1 Point)
- c) For the gates delays shown in the Table below, the worst case delay (i.e. critical path delay) of this circuit is = __12ns____ (2 Point)

Gate	Delay (in Nano seconds)
NOT	1 ns
2-IP AND	2 ns
2-IP OR	3 ns
4-IP OR	5 ns

Page 4 of 6

Question 5.

(20 Points)

- 1) Given the function F(a,b,c) = a (b' + c),
 - (a) Express F as a product of Maxterms (use the mathematical notation $F = \prod \dots$) (2 points)
 - (b) Express F as an algebraic sum of Minterms (i.e. write F as a Boolean expression) (2 points)
 - (a) $F(a,b,c) = \prod M (0, 1, 2, 3, 6).$

The solution using a truth table:

a	b	с	$f = a \ (b' + c)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Another way .. F is already in POS form, so obtain the Maxterms in each OR term: a = (a+b+c), (a+b+c'), (a+b'+c), (a+b'+c') = M₀, M₁, M₂, M₃ b'+c= (a+b'+c), (a'+b'+c) = M₂, M₆ Hence, F(a,b,c)=∏M (0, 1, 2, 3, 6).

(b) $F(a,b,c) = \sum m (4,5,7) = ab'c' + ab'c + abc$

2) Given the function $G(a,b,c) = \prod M(0,1,2)$, Express $\overline{F} + G$ as Product of Maxterms (3 points)

G = $\sum m(3,4,5,6,7)$, F'(a,b,c) = $\sum m(0,1,2,3,6)$ → F'+G is the union of their Minterms = $\sum m(0,1,2,3,4,5,6,7) = 1$ (i.e. F'+G is always 1)

i.e. $F'+G = \prod M(\Phi)$

3) <u>Using DeMorgan's theorem</u>, find the complement of the following two functions: (6 points)

- a) f = a b d' + b' c' + a' c d
- b) g = (a + b) (b' + c) + d' (a' + b c)
- a) f' = (a'+b'+d)(b+c)(a+c'+d')
- b) g' = (a'b' + bc')(d + a(b' + c'))

{2 pts for missing first pair of () or second pair of () – operation precedence!}

4) Given that: a b c' + a b' c + a' b c + a b c = a b + a c + b c, then use the Duality Principle to find out (a + b + c') (a + b' + c) (a' + b + c) (a + b + c) = ??? (i.e. use duality to find the right hand expression) (1 points)

(a+b+c')(a+b'+c)(a'+b+c)(a+b+c) = (a+b)(a+c)(b+c)

5) Using the properties of Boolean algebra, minimize the following functions to the stated number of literals (Show your steps and the properties that you used): (6 points)

(a)
$$\mathbf{F} = \mathbf{a} \mathbf{b'} \mathbf{c'} + \mathbf{a'} \mathbf{b'} \mathbf{c} + \mathbf{a} \mathbf{b'} \mathbf{c} + \mathbf{b} \mathbf{c}$$
 (minimize to three literals)

= a b' c' + a' b' c + a b' c + b c= a b' c' + a b' c + a b' c + a' b' c + b c= a b' (c' + c) + (a + a') b' c + b c= a b' + b' c + b c= a b' + (b' + b) c= a b' + c

Commutativity and Idempotence Distributivity Complement (c' + c) = 1Distributivity

(b) G = (x' + z) (x + y' + z) (x + y + z) (minimize to one literals) = (x' + z) (x + z + y'y) = (x' + z) (x + z) = z + x' x $= z + \theta = z$ Or G = (x' + z) (x + y' + z) (x + y + z)

Many other solutions are also possible for (a) and (b)