King Fahd University of Petroleum and Minerals College of Computer Science and Engineering
 Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 171 (Fall 2017)
Major Exam 1
Saturday, October 21st, 2017

Time: 90 minutes, Total Pages: 6

Name: \qquad ID: \qquad Section: \qquad

Notes:
Do not open the exam book until instructed
Calculators are not allowed (basic, advanced, cell phones, etc.)
Answer all questions
All steps must be shown
Any assumptions made must be clearly stated

Question	Maximum Points	Your Point
1	12	
2	6	
3	6	
4	6	
5	20	
Total	50	

Question 1: Fill in the Spaces:

1. The number of bits required to provide distinct binary codes for 60 different colors is equal to
\qquad
\qquad bits. If the number of colors in (i.e. 60 colors) is doubled four times (i.e. multiplied by 16), then the number of required bits will be equal to \qquad 10 \qquad bits.
2. Counting the number of hours in one day in $B C D$ requires a minimum of \qquad 8 \qquad (how many) bits. (2 points)
3. The number (B3D.C6) ${ }_{16}$ converted to binary is equal to \qquad 101-100-111-101.110-001-10 \qquad while if converted to octal it will be \qquad 5475.614 \qquad .
(4 points)
4. The largest decimal value for an unsigned 3-bit binary fraction number is equal to $1-2^{-3}=0.875$ \qquad while the smallest decimal value for an unsigned 3 -bit binary fraction number is equal to $2^{-3}=$ 0.125 \qquad .
5. The ASCII code 1000001 corresponds to " A " character. An even parity bit is appended at the end of the code and then transmitted. The transmitted code is \qquad 10000010 \qquad . The receiver receives the following code word 1000 0001, would the receiver detect an error \qquad No \qquad (Yes/No?).

Question 2.

The binary number 10010100 is stored in a computer. What is the decimal value represented if the stored number is"
a) BCD 5421
$\rightarrow 64$
\{1 pt per digit\}
b) Excess 3 BCD number
excess-3 $\rightarrow 61 \quad$ \{1 pt per digit $\}$
c) Unsigned binary number
(2 points)
Binary unsigned $\quad \rightarrow 128+16+4=148 \quad\{2$ points $\}$

Question 3. Perform the following arithmetic operations in the specified number system. (6 Points) Show the details of all your work (carries, borrows ...etc.)

Hexadecimal Addition		Binary Multiplication

\{1 pt per bit/digit\}

Question 4.

(5 Points)

1. For the Logic Diagram Below:

a) Write the Boolean expression for the output $F=\left(A^{\prime}+B\right) C+D+\left(E^{\prime} G+L+H+K\right)\left(2^{\text {nd }}\right.$ set of brackets is optional)
(as in the logic diagram without any re-arrangement)
b) This circuit has \qquad 5 \qquad number of logic levels (Fill in the space)
c) For the gates delays shown in the Table below, the worst case delay (i.e. critical path delay) of this circuit is = __12ns__ (2 Point)

Gate	Delay (in Nano seconds)
NOT	1 ns
2-IP AND	2 ns
2-IP OR	3 ns
4-IP OR	5 ns

Question 5.

1) Given the function $\mathbf{F}(\mathbf{a}, \mathbf{b}, \mathbf{c})=\mathbf{a}\left(\mathbf{b}^{\mathbf{\prime}}+\mathbf{c}\right)$,
(a) Express \mathbf{F} as a product of Maxterms (use the mathematical notation $\boldsymbol{F}=\Pi \ldots$ ($\mathbf{~} \mathbf{2}$ points)
(b) Express \mathbf{F} as an algebraic sum of Minterms (i.e. write F as a Boolean expression) (2 points)
(a) $F(a, b, c)=\prod M(0,1,2,3,6)$.

The solution using a truth table:

a	b	c	$f=a\left(b^{\prime}+c\right)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Another way ..
F is already in POS form, so obtain the Maxterms in each OR term:

$$
\begin{aligned}
& \mathbf{a}=\left(a^{+}+b+c\right),\left(a^{+}+b^{+}+c^{\prime}\right),\left(a^{\prime}+b^{\prime}+c\right),\left(a^{+}+b^{\prime}+c^{\prime}\right)=M_{0}, M_{1}, M_{2}, M_{3} \\
& b^{\prime}+c=\left(a^{\prime}+b^{\prime}+c\right),\left(a^{\prime}+b^{\prime}+c\right)=M_{2}, M_{6}
\end{aligned}
$$

Hence, $F(\mathbf{a}, \mathrm{~b}, \mathbf{c})=\Pi \mathrm{M}(\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, 6)$.
(b) $\mathbf{F}(\mathbf{a}, \mathbf{b}, \mathbf{c})=\sum \mathrm{m}(4,5,7)=\mathbf{a b}^{\prime} \mathbf{c}^{\prime}+\mathbf{a b} \mathbf{b}^{\prime} \mathbf{c}+\mathbf{a b c}$
2) Given the function $\mathbf{G}(\mathbf{a}, \mathbf{b}, \mathbf{c})=\Pi \mathbf{M}(\mathbf{0}, \mathbf{1}, \mathbf{2})$, Express $\overline{\mathbf{F}}+\mathbf{G}$ as Product of Maxterms (3 points) $\mathrm{G}=\sum \mathrm{m}(\mathbf{3}, 4,5,6,7), \mathrm{F}^{\prime}(\mathbf{a}, \mathrm{b}, \mathrm{c})=\sum \mathrm{m}(0,1,2,3,6) \rightarrow \mathrm{F}^{\prime}+\mathrm{G}$ is the union of their Minterms $=\sum \mathrm{m}(0,1,2,3,4,5,6,7)=1$ (i.e. $F^{\prime}+G$ is always 1)
i.e. $\mathbf{F}^{\prime}+\mathbf{G}=\prod \mathbf{M}(\boldsymbol{\Phi})$
3) Using DeMorgan's theorem, find the complement of the following two functions: (6 points)
a) $f=a b d^{\prime}+b^{\prime} c^{\prime}+a^{\prime} c d$
b) $g=(a+b)\left(b^{\prime}+c\right)+d^{\prime}\left(a^{\prime}+b c\right)$
a) $f^{\prime}=\left(a^{\prime}+b^{\prime}+d\right)(b+c)\left(a+c^{\prime}+d^{\prime}\right)$
b) $g^{\prime}=\left(a^{\prime} b^{\prime}+b c^{\prime}\right)\left(d+a\left(b^{\prime}+c^{\prime}\right)\right)$
\{2 pts for missing first pair of 0 or second pair of () - operation precedence!\}
4) Given that: $\boldsymbol{a} \boldsymbol{b} \boldsymbol{c}^{\prime}+\boldsymbol{a} \boldsymbol{b}^{\prime} \boldsymbol{c}+\boldsymbol{a}^{\prime} \boldsymbol{b} \boldsymbol{c}+\boldsymbol{a} \boldsymbol{b} \boldsymbol{c}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{a} \boldsymbol{c}+\boldsymbol{b} \boldsymbol{c}$, then use the Duality Principle to find out $\left(a+b+c^{\prime}\right)\left(a+b^{\prime}+c\right)\left(a^{\prime}+b+c\right)(a+b+c)=? ? ?$
(i.e. use duality to find the right hand expression) (1 points)
$\left(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}^{\prime}\right)\left(\boldsymbol{a}+\boldsymbol{b}^{\prime}+\boldsymbol{c}\right)\left(\boldsymbol{a}^{\prime}+\boldsymbol{b}+\boldsymbol{c}\right)(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c})=(\mathrm{a}+\mathrm{b})(\mathrm{a}+\mathrm{c})(\mathrm{b}+\mathrm{c})$
5) Using the properties of Boolean algebra, minimize the following functions to the stated number of literals (Show your steps and the properties that you used):
(6 points)
(a) $\mathbf{F}=\mathbf{a} \mathbf{b}^{\prime} \mathbf{c}^{\prime}+\mathbf{a}^{\prime} \mathbf{b}^{\prime} \mathbf{c}+\mathbf{a} \mathbf{b}^{\prime} \mathbf{c}+\mathbf{b} \mathbf{c}$
$=\boldsymbol{a} \boldsymbol{b}^{\prime} \boldsymbol{c}^{\prime}+\boldsymbol{a}^{\prime} \boldsymbol{b}^{\prime} \boldsymbol{c}+\boldsymbol{a} \boldsymbol{b}^{\prime} \boldsymbol{c}+\boldsymbol{b} \boldsymbol{c}$
$=\boldsymbol{a} \boldsymbol{b}^{\prime} \boldsymbol{c}^{\prime}+\boldsymbol{a} \boldsymbol{b}^{\prime} \boldsymbol{c}+\boldsymbol{a} \boldsymbol{b}^{\prime} \boldsymbol{c}+\boldsymbol{a}^{\prime} \boldsymbol{b}^{\prime} \boldsymbol{c}+\boldsymbol{b} \boldsymbol{c}$
$=a b^{\prime}\left(c^{\prime}+c\right)+\left(a+a^{\prime}\right) b^{\prime} \boldsymbol{c}+\boldsymbol{b} \boldsymbol{c}$
$=\boldsymbol{a} \boldsymbol{b}^{\prime}+\boldsymbol{b}^{\prime} \boldsymbol{c}+\boldsymbol{b} \boldsymbol{c}$
$=\boldsymbol{a} \boldsymbol{b}^{\prime}+\left(b^{\prime}+\boldsymbol{b}\right) \boldsymbol{c}$
$=\boldsymbol{a} \boldsymbol{b}^{\prime}+\boldsymbol{c}$

(minimize to three literals)

Commutativity and Idempotence
Distributivity
Complement $\left(c^{\prime}+c\right)=1$
Distributivity
(b) $G=\left(x^{\prime}+z\right)\left(x+y^{\prime}+z\right)(x+y+z)$
$=\left(\mathbf{x}^{\prime}+\mathrm{z}\right)\left(\mathbf{x}+\mathrm{z}^{+} \mathbf{y}^{\prime} \mathbf{y}\right)$
$=\left(x^{\prime}+z\right)(x+z)$
$=z^{+} x^{\prime} \boldsymbol{x}$
$=\mathrm{z}+0=\mathrm{z}$

(minimize to one literals)

Distributivity
$\left.\left(y^{\prime} y\right)=0,0+x+z\right)=(x+z)$
Distributivity
Reduced to 1 literal

Or

$$
\begin{aligned}
\mathbf{G} & =\left(\mathbf{x}^{\prime}+\mathbf{z}\right)\left(\mathbf{x}+\mathbf{y}^{\prime}+\mathbf{z}\right)(\mathbf{x}+\mathbf{y}+\mathbf{z}) \\
& =\left(\mathbf{x}^{\prime}+\mathbf{z}\right)(\mathbf{x}+\mathbf{z}) \\
& =\mathbf{z}
\end{aligned}
$$

minimization theorem $\left(x+z+y^{\prime}\right)(x+z+y)=(x+z)$
minimization theorem $\left(z^{+}+x^{\prime}\right)\left(z^{+}+x\right)=z$

Many other solutions are also possible for (a) and (b)

