King Fahd University of Petroleum and Minerals
 College of Computer Science and Engineering
 Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
 Term 161 (Fall 2016)
 Major Exam 1

Saturday, Oct. 22, 2016

Time: $\mathbf{9 0}$ minutes, Total Pages: 7

Name: \qquad ID: \qquad Section: \qquad

Notes:
Do not open the exam book until instructed
Calculators are not allowed (basic, advanced, cell phones, etc.)
Answer all questions
All steps must be shown
Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	13	
2	6	
3	6	
4	$\mathbf{1 0}$	
5	$\mathbf{3}$	
6	$\mathbf{4}$	
7	50	
Total		

a. To represent the decimal number 65 in binary we need \qquad (how many) bits.
b. $(1324)_{5}=$ \qquad $)_{10}$
c. A communication system uses a 1-bit parity scheme for error detection. The receiver receives a byte represented in hexadecimal as D3 without error. The parity scheme used is \qquad (even/odd) parity.
d. For 5 variables ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$), $\mathrm{m}_{13}=$ \qquad (algebraic expression), while the algebraic expression ($\overline{\mathrm{A}}+\mathrm{B}+\overline{\mathrm{C}}+\overline{\mathrm{D}}+\mathrm{E}$) represents the maxterm M ? \qquad .
e. The canonical form (sum of minterms or product of maxterms) represents the most simplified form of a logic function \qquad (True/False).
(1 point)
f. The number of minterms and maxterms in the function $F(A, B, C)=A+B+\bar{C}$ is \qquad minterms and \qquad maxterms.
(2 Points)
g. Given the identity: $A B+\bar{A} C+B C=A B+\bar{A} C$, using the duality principle $(A+B)(\bar{A}+C)(B+C)=$ \qquad The property/theorem is known as \qquad theorem.
h. For the logic circuit shown below, assuming that all gates have the same propagation delay of $\mathbf{2} \mathbf{~ n s}$, then the circuit takes \qquad ns to produce the correct output.

Question 2: Perform the following conversions:
i. (110100.011) $)_{2}$ to Decimal.
ii. (59.7) $)_{10}$ to Binary (use up to 4 fractional bits accuracy).
iii. (651.13) 8 to hexadecimal.

[6 points]

Question 3: Without converting to other bases, find the result of the following arithmetic operations:
i. $\quad(57.6)_{16}+(4 \mathrm{E} .7)_{16}$
[2 points]
ii. $(111)_{2} \times(110)_{2}$
[2 points]
iii. $(110100)_{2}-(100101)_{2}$
[2 points]

Question 4:

a) List all the Minterms and Maxterms of the following Boolean function (using the Σ and Π notations):

$$
f(x, y, z)=x y+\left(x^{\prime}+z\right)\left(y+z^{\prime}\right) \quad[4 \text { points }]
$$

b) Given the following Boolean functions f and g :

[6 points]

$$
\begin{aligned}
& f(x, y, z)=\sum(1,3,6) \\
& g(x, y, z)=\sum(0,2,4,6,7)
\end{aligned}
$$

i) Write an algebraic expression for f as a sum-of-minterms
ii) Write an algebraic expression for $\left(f^{\prime} \cdot g\right)$ as a product-of-maxterms

Question 5: Consider the following circuit with two outputs f and g.
a) Write an expression for the output f as a sum-of-products
[1 points]
b) Write an expression for the output g as a product-of-sums.

Question 6: Find the complement of each of the function below as they are (i.e., do not change or simplify them first):
[4 Points]
a) $[2$ points $] \mathrm{F}=(\mathrm{X} \cdot \mathrm{Y}+\mathrm{Z}) \cdot \overline{\mathrm{W}} \cdot(\mathrm{E}+\overline{\mathrm{D}})$
b) $[2$ points $] \mathrm{G}=\mathrm{A}+\mathrm{D}+\mathrm{B} \cdot \mathrm{C} \cdot \overline{\mathrm{E}}$

Question 7: Using Boolean Algebra and showing all steps of your work:

[8 points]

ii. Simplify the following function to minimum number of literals in SOP form:

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(8,10,12,14)
$$

