King Fahd University of Petroleum and Minerals

 College of Computer Science and Engineering Computer Engineering DepartmentCOE 202: Digital Logic Design (3-0-3)
Term 191 (Fall 2019)
Major Exam 1
Saturday Oct. 12, 2019

Time: 120 minutes, Total Pages: 9

Name: \qquad ID: \qquad Section: \qquad

\square Dr. Aiman El-Maleh	\square Dr. Muhamed Mudawar
\square Dr. Ali Al-Suwaiyan	\square Dr. AbdulAziz Tabakh

Notes:

- Do not open the exam book until instructed
- No Calculators are allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
Q1	20	
Q2	16	
Q3	14	
Q4	15	
Total	65	

Question 1.

a) (2 points) Counting the number of days in a month in binary requires (how many?) \qquad bits, whereas counting the same in BCD requires (how many?) \qquad bits.
b) (2 points) The largest octal number which has 3 integer digits and 2 fraction digits is (in octal) \qquad , and it equals (formula is enough, no need for the final number) \qquad in decimal.
c) (2 points) The decimal number 17 can be represented in $B C D$ as \qquad and in Excess-3 as
\qquad —.
d) (1 point) In the equation $\sum_{n=0}^{5}\left(7 \times 8^{n}\right)=8^{m}-1$, the value of m must equal to \qquad .
e) (6 points) Fill-in the table below with different representations of a number.

Decimal	Binary	Hexadecimal
$\mathbf{1 5 4}$		
$\mathbf{0 . 1 2 5}$		1D.4

f) (2 points) If you type the word ' BC ' on your keyboard, what is the binary sequence sent to the computer using 8 -bit ASCII with the 8th most-significant bit being an even parity bit. Note that the 7 -bit ASCII code of ' A ' in hexadecimal is 41 .
g) (2 points) Given that d_{0}, d_{1}, and d_{2} are three integers whose values are between 0 and 15 (inclusive), find the values of d_{0}, d_{1}, and d_{2} in this equation $d_{0}+16 d_{1}+256 d_{2}=2049$.
h) $(1$ point $)$ Compute $(01111111)_{2}+(11011111)_{2}$ and indicate whether there is a carry out or not.
i) $\left(2\right.$ points) Compute $(11110000)_{2}-(10101101)_{2}$.

Question 2.

a) (3 points) Express the Boolean function, F, represented by the circuit given below in minimal sum of products form:

b) (3 points) Find the complement of the function $F 1=\left(\left(A B^{\prime}\right)^{\prime}+C\right) D^{\prime}+A C^{\prime}$ and express it in minimal sum of products form.
c) (10 points) Using Boolean Algebraic manipulations, minimize the following functions to minimum number of literals in sum of products representation. Show your work clearly step by step indicating the used properties of Boolean Algebra:
(i) (2 points) $F 2=(A+C)^{\prime}+(A+C)\left(A^{\prime}+C^{\prime}\right)$
(ii) (4 points) $F 3=A^{\prime} B^{\prime}+B^{\prime} C+A B^{\prime} C^{\prime}+A B$
(iii) (4 points) $F 4=\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\left(A+C^{\prime}\right)\left(B+C^{\prime}\right)\left(B^{\prime}+C\right)$

Question 3:

a) (1 point) The function F, where $F(A, B, C, D)=\sum(2,3,6)$, can be expressed algebraically in canonical form as:
a. $A^{\prime} B C^{\prime}+A^{\prime} B C+A B C^{\prime}$
b. $A^{\prime} B^{\prime} C+A^{\prime} C D$ '
c. $(A+B+C)\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)$
d. Answers (a) and (c)
e. None of the Above.
b) (1 point) Refer to the following statements:

Statement 1: All canonical forms for representing a function are standard forms.
Statement 2: All standard forms for representing a function are canonical forms.
Statement 3: The canonical forms and the standard forms are unique for each function Which of these statements is/are correct?
a. All statements.
b. Statement 1 only.
c. Statement 2 only.
d. Statement 3 only.
e. None.
c) (5 points) Given $G(x, y, z)=x \prime y+x z+y z$.
(i) (2 points) Derive the truth table for function $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
(ii) (1 point) List all the Minterms of function $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ using the \sum notation.
(iii) (2 points) Write function $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ as a product of Maxterms using algebraic form.
d) (4 points) Given the Boolean functions $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ as:

$$
\begin{aligned}
& F(x, y, z)=\sum(0,2,4,5) \\
& G(x, y, z)=\left(x+y+z^{\prime}\right)\left(x+y^{\prime}+z\right)\left(x+y^{\prime}+z^{\prime}\right)\left(x^{\prime}+y+z^{\prime}\right):
\end{aligned}
$$

(i) (2 points) List the minterms of $\left(F . G^{\prime}\right)$ using the \sum notation.
(ii) (2 points) List the maxterms of $\left(F^{\prime}+G\right)$ using the Π notation.
e) (3 points) Given the following implementation of function F. Calculate the propagation delay of F and determine the critical path. Assume the delay of each gate is equal to the number of inputs (i.e. the delay of an inverter is 1 ns , the delay of a 2 -input AND/OR gate is 2 ns)

Question 4.
a) (2 points) Given the function $f(a, b, c, d)=\sum m(0,2,4,6,7,10,11,12)+\sum d(1,8,13)$, draw the K-map of f.
b) (13 points) Given the following K-map of the function $g(a, b, c, d)$, where \mathbf{X} is a don't-care:

		cd			
		00	01	11	10
$a b$	00				X
	01	1			1
	11	X	1	X	1
	10		1	1	1

(i) (5 points) Write the terms of all Prime Implicants of g.
(ii) (2 points) Write the terms of all Essential Prime Implicants of g.
(iii) (4 points) Find ALL minimum Sum-of-Products expressions of g.
(iv) (2 points) Find ALL minimum Product-of-Sums expressions of g.

