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Why A Course on Data Privacy?

Personal Information is Everywhere
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Netflix Recommendation

THEY TOOK YOUR DATA.

THEN THEY TOOK CONTROL.

JULY 24
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"Our personal data is being used against
us in ways that we don't understand and it
could bring down severe harm on us.”

"So, as individuals, we can limit the flood of data that
we're leaking all over the place. But there's no silver
bullet. There's no way to go off the grid. So, you
have to understand how your data is affecting
your life. Our dignity as humans is at stake. But the
hardest part in all of this is that all of these wreckage
sites and crippling division begins with the
manipulation of one individual then the other
then the other. So I can't help but to ask myself: can I
be manipulated? Can you?”

— David Carroll



What Is Security?

*Security 1s about protecting data/systems from external
or internal forces by preserving the three “pillars” of
security

*Confidentiality

* Access to systems or data is limited to
authorized parties

*Integrity Data

* When you receive data, you get the Security
“right” data

* Availability

* The system (or data) is “available” when you need it
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What Is Privacy?

Before we define privacy, allow me to ask you two
questions

Who enjoys using all the features provided by tech. companies
in return for the data we share?
Example: Google maps, Fitbit programs, etc.

Who gets paranoid about his privacy and keeps the share data
features off all the times?
Example: customized ads, shared location, incognito mode, etc.

What Is Privacy?

Let's hear from you!
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Security Vs. Privacy

What Is Privacy?

The terms are often used interchangeably

In this course, hopefully you will be able to distinguish between
the two

Two widely accepted definitions of privacy
"The right to be let alone"
"The fair use of information*

Privacy 1s relative to individuals, families, societies,
countries, etc.
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COE 426/526: Data Privacy

Data Privacy:
Definition and terminologies

Data Privacy Policies, Laws, and Regulations
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Privacy-Preserving Enhancing Technologies

_ WORLD
Centre for the ECONOMIC

Revotition el 1- Al for Scientific Discovery

—

In collaboration
with Frontiers

Top 10 Emerging
Technologies of 2024

FLAGSHIP REPORT

3- Reconfigurable Intelligent Surfaces

JUNE 2024

4- High Altitude Platform Stations

The steering group was then presented with a 5' Integrated SenSIHg and Communication

curated list of 70 technologies from which the final
10 were selected. The group reviewed and selected

the technologies based on the following criteria: 6 I . .
- Immersive Technology for the Built World

-~ Novelty: The technology is emerging and at
an early stage of development but is not yet

widely used. 7 E I I .
- Applicability: The technology is potentially N a St O C a O r I C S
of significant use and benefit to societies

and economies. 8 C b . R b
— Depth: The technology is being developed - a r O n _Ca pt u rl n g M I C ro eS
by more than one company, with the focus of

increasing investment interest and excitement.

9- Alternative Livestock Feeds

Power: The technology is potentially game
changing to established ways and industries.

10- Genomics and Transplants
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COE 426/526: Data Privacy

Data Privacy:
Definition and terminologies
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Computing on Encrypted Data

Nigel Smart ' | KU Leuven and Zama

“The ability to compute on encrypted data is fast becoming a
practical reality. We discuss the progress in four technologies which
enable this:”

Trusted Full Zero-
. y . Multi-Party
Execution Homomorphic . Knowledge
. . Computation
Environments Encryption Proofs.

https://www.computer.org/csdl/magazine/sp/2023/04/101944
92/1P4BEqduz9C
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Homomorphic Encryption

*Name 1nspired by ring-homomorphism

Ring of Enc
plaintexts

+,X

\ 4

R Ring of
ciphertexts

H.X

Ring of

Ring of Enc
plaintexts

ciphertexts
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A Toy HE Scheme

Encryption: Double the plaintext. x — 2x
Decryption: Halve the ciphertext. x — x/2

cipharspace

6+10 = 16 (6 «10)/2 = 30
SEERE = 8 S ReR S — 5
plainspace

https://www.americanscientist.org/article/alice-and-bob-in-cipherspace
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An Analogy

* Alice wants workers to assemble raw materials into jewelry

*But Alice 1s worried about theft:
* She wants workers to process raw materials without having access.

* Alice puts raw materials in locked glovebox.
* Workers assemble jewelry inside glovebox, using the gloves.
* Alice unlocks box to get “results”.
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Evolution of FHE Schemes

2013
| 2014 :: 2016
2009 NTRU LV
branch
~30 yeal’S 2012 fast bootstrapping
branch
2013
2020

1978

leveled schemes
branch

2016

“over the integers” branch
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Examples of Homomorphic Encryption

"Unpadded" RSA is a multiplicative homomorphic
encryption scheme

Recall Epp(x) = x¢mod n
Epp(x) - Epg(y) = x*mod n - y*mod n
= (x-y)*modn = Epg(x - y)

How about Epx (x + y)?
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Examples of Homomorphic Encryption

Paillier cryptosystem 1s an additive homomorphic
encryption scheme

Epx(x) = g* - ™ mod n?
Epk (x) - Epg(y) = (g*r{") mod n* (g”r{*) mod n*

= g**Y ()" mod n® = Epg(x + y)

How about Epg (x - y)?
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Homomorphic Encryption Types

Partially Homomorphic Encryption (PHE)

Can evaluate functions with very limited operations
(+or *)

Fully Homomorphic Encryption (FHE)

Arbitrary functions with any operations
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Towards FHE

Genrty(09: A bootstrapping technique

Somewhat homomorphic — Fully homomorphic

Scheme E can evaluate
its own decryption
circuit

/)

Scheme E* can
evaluate any circuit

Gentry also described a candidate “bootstrappable™

scheme
Based on 1deal lattices

Then extended to integer values

2009

~30 years




A homomorphic symmetric encryption

Shared secret key: odd number p
To encrypt a bit m:

Choose at random large o 2r+m much
smaller than p

Output c =pq + 2r + m
Ciphertext is close to a multiple of p
m = LSB of distance to nearest multiple of p

To decrypt c:

Output m = (¢ mod p) mod 2
m = c—pe°[c/p]mod?2
= ¢—[c/p] mod 2
= LSB(c) XOR LSB([c/p])
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Why 1s this homomorphic?

¢,=q,pt2r,tm,;, c,=q,pt2r,+tm,
15|stance to nearest multlple of p

cite, = (qiTq)p + 2(1,+1,) +
(m,+m,)
2(r,+1,)+(m;+m,) still much smaller
than p
¢, +c, mod p = 2(1,+1,) + (m;+my,)

€| X ¢ = (€q,1q;€,—q,q)P
+ 2(2rr,+r;m,+m;r,)
+m;m,
2(2rr,+...) still much smaller than p
=>c,xc, mod p = 2(2r1r,+...) + mym, 20



How homomorphic 1s this?

Can keep adding and multiplying until the “noise term”
grows larger than q/2
Noise doubles on addition, squares on multiplication

Encrypt(x)
valid ciphertext
Encrypt(x) o
incorrec t decryption

2 5
We chooser~2", p~2" (andq~2")
Can compute polynomials of degree ~n before the noise grows
too large
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Homomorphic Public-Key Encryption

Secret key 1s an odd p as before
Public key 1s many “encryptions of 0

f' ap 2f’orl 1,2,..
Enc_, (m): x&hoose a random subset S € {1,2,.

rancfom integer r and output

C « m+2r+22xl

LES 41X

Dec(c) = (¢ mod p) mod 2
Eval as before

..,T}and a
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Bootstrapping

= Enc})kl
. = E'n,(}pk;;2
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Use case

1
@ Initialize global model

Global Model

—
) Model aggregation
_— 1

)

r 1
Return model updates back to the server

-----------

L — |
Train model locally @
N |

dataset m dataset nz dataset ns dataset n«
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Speeding Up Bootstrapping

Cheetah: Optimizing and Accelerating
Homomorphic Encryption for Private Inference

Brandon Reagen*l’z, Woo-Seok Choi*3, Yeongil K04, Vincent T. Lee®
Hsien-Hsin S. Lee?, Gu-Yeon Wei#, David Brooks*

NTT Architecture for a Linux-Ready RISC-V
Fully-Homomorphic Encryption Accelerator

Rogério Paludo™, Student Member, IEEE, and Leonel Sousa™, Senior Member, IEEE

GPU Acceleration of High-Precision Homomorphic Computation
Utilizing Redundant Representation

Shintaro Narisada Hiroki Okada Kazuhide Fukushima
KDDI Research, Inc. KDDI Research, Inc. KDDI Research, Inc.
Saitama, Japan Saitama, Japan Saitama, Japan
sh-narisada@kddi.com ir-okada@kddi.com ka-fukushima@kddi.com

Shinsaku Kiyomoto Takashi Nishide
KDDI Research, Inc. University of Tsukuba
Saitama, Japan Ibaraki, Japan
sh-kiyomoto@kddi.com nishide@risk.tsukuba.ac.jp
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FHE Application Space

Number of data owners or users

Many

Secure machine Cross-domain
learning Networking
Secure document Secure mission
sharing tasking
Encrypted
Analysis
Autonomous
interdiction
Encrypted query
Autonomous recon
Cooperative Adversarial

*Source: DARPA DPRIVE presentati



Computing on Encrypted Data

Nigel Smart™ | KU Leuven and Zama

“The ability to compute on encrypted data is fast becoming a
practical reality. We discuss the progress in four technologies which
enable this:”

Trusted Zero-
i Multi-Party
Execution ) Knowledge
. Computation
Environments Proofs.

https://www.computer.org/csdl/magazine/sp/2023/04/101944
92/1P4BEqduz9C
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Secure Multiparty Computation (SMPC or MPC)

Secure multiparty computation is a subfield of
encrypted computation ®

MPC involves multiple parties (who do not trust each ®
other) agreeing to compute a joint function of their oy xel ]3’6 y
inputs but only if the data is encrypted \

Trusted

Parties wish to preserve T Yy oo
Privacy: parties can’t observe each others’ inputs
Correctness: the function gives the correct results

Privacy must be preserved in the face of adversarial .
behavi}c;r by -

One (or some) of the participants, or
An external party

28



A Couple of Observations

In all cases, we are dealing with s
distributed multi-party protocols R
A protocol describes how parties are : / N e
E A
supposed to exchange messages on the o
network o
-

All these tasks can be easily
computed by a trusted third party

The goal of secure multi-party
computation 1s to achieve the same
result without involving a trusted
third party



Yao’s Millionaire Problem

Yao’s Millionaire Problem 1s another example oj am more
rich

I am rich

Two millionaires, Alice and Bob want to know
of them is richer without revealing their actual

This problem is analogous to a more general problem where
there are two numbers A and B and the goal 1s to solve the
inequality without revealing the actual values of A and B

We will see a solution to Yao’s Millionaire problem using
encrypted computing
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Garbled Circuit

* A “garbled” version of a Boolean circuit
*Also known as encrypted circuit, or scrambled circuit

Qverview

Boolean Circuit

INPUT x OUTPUTYy the clear

Bellare, Mihir, Viet Tung Hoang, and Phillip Rogaway. "Foundations of garbled circuits." Proceedings of the 2012 ACM conference on Computer and
communications security. 2012.
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Garbled Circuit

* A “garbled” version of a Boolean circuit
*Also known as encrypted circuit, and scrambled circuit

Overview

Boolean Circuit

computing in

Encoding function Decoding function “secure” way

Garbled Circuit

Bellare, Mihir, Viet Tung Hoang, and Phillip Rogaway. "Foundations of garbled circuits." Proceedings of the 2012 ACM conference on Computer and
communications security. 2012.
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Use case: Private Set Intersection

(2 (2
dh dh

Abdullah Abdulazi
Bader ﬂ y4 a
Muhama Bader
d Mahmoo
Khalid d

Saleh



Presenter Notes
Presentation Notes
SFE:   Great result from theory of crypto that allows 2 parties to jointly compute some function, without either learning anything other than the result.




Practical Multi-Party Private Set Intersection
Protocols

Ahmed

Abdullah '} Ahmed
Bader ') Abdullah
Muhamad - Bader

0] ONJ 0f 1] 0 i B D e I Khalid

Po

BHEDZAaRE" ERERDE
Ahmed / Ahmed
Abdullah '} \ ") Abdullah
Bader

Bader
Muhamad Muhamad
Khalid

Khalid

Bay, Asli, et al. "Practical multi-party private set intersection protocols." IEEE Transactions on Information Forensics and Security 17 (2021): 1-15



Practical Multi-Party Private Set Intersection
Protocols

Ahmed

Khalid - % B/ - mmad
What if sets are
updated?
K Ve N e
e | (R Decrypt to - |

find set
intersection

Bay, Asli, et al. "Practical multi-party private set intersection protocols." IEEE Transactions on Information Forensics and Security 17 (2021): 1-15



"Updatable" Multi-Party Private Set Intersection
Protocols

Ahmed

Abdullah '} Ahmed

Bader ') Abdullah

Muhamad - Bade
BREDZAEER" ERERDE

Ahmed
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Exciting News!!

NIST Announces Post-Quantum Cryptography
Standards > Three security standards are ready for use,

with a fourth on the way

BY DINA GENKINA | 13 AUG 2824 | 5 MIN READ | []

Dina Genkina is the computing and hardware editor at IEEE Spectrum

SEC595: Encrypted Computing | Dr. Muhamad Felemban
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Course Objectives

The objective of this course is to
Introduce the students to the emerging field of encrypted computing.
Expose students to the state-of-the-art algorithms in homomorphic encryption and
secure multiparty computation
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Course Learning Outcomes

After taking this course, you will be able to
Explain various encrypted computing techniques and algorithms.
Identify the advantages and challenges of different encrypted computing algorithms.
Apply appropriate encrypted computing techniques based on the application’s
requirements.
Design new encrypted computing techniques and protocols.
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Logistics

Lectures: Sunday & Tuesday, 6:45-8:00 PM

Office hours: UT K:00-9:00 PM
Office# 22-214

Teams (or send me on Teams and I will try to accommodate
your Qs online )

Web page:
Blackboard page

SEC595: Encrypted Computing | Dr. Muhamad Felemban
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Logistics

*Evaluation
*Paper Presentation
*Term Project
*Major Exam
*Final Exam

10 %
30%
30%
30%

SEC595: Encrypted Computing | Dr. Muhamad Felemban
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Logistics

Course Project:

Teams of 2-3 (if you want to work alone, please let me know
ahead of time)

Project proposal: 0.5-1 page (TBA)

Deliverable Part I: 1-2 page Progress report (TBA)
Deliverable Part II: Written report: 4-8 pages (TBA)
In-class presentations (Week 15)

SEC595: Encrypted Computing | Dr. Muhamad Felemban
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