
Introduction to the BGV FHE Scheme

Inferati Inc.

Washington, USA

Scope

This is the 2nd article of our blog series on Fully Homomorphic Encryption
(FHE) and its applications. In this article, we introduce the levelled Brakerski-
Gentry-Vaikuntanathan (BGV) [BGV14] scheme, another Ring-Learning with
Errors (RLWE)-based cryptosystem that offers computing on encrypted data.
BGV and BFV offer the same capability, i.e., exact computation on integral
messages, however, they have a few differences in their construction that will
become evident in this article.

Contents

1 Introduction 2

2 Plaintext and Ciphertext Spaces 4

3 Parameters 4

4 Plaintext Encoding and Decoding 5

5 Key Generation 5

6 Encryption and Decryption 5

7 Homomorphic Evaluation 6
7.1 EvalAdd . 6

7.2 EvalMult . 7

8 Relinearization 8

9 ModSwitch 9

10 Security of the Scheme 9

1

1 Introduction

The BGV scheme is another FHE scheme that belongs to the second generation
of FHE schemes. Its security stems from the hardness of the Ring-Learning
with Errors (RLWE) problem [LPR13].

Similar to the BFV scheme, BGV defines plaintext and ciphertext rings.
The encryption procedure maps input plaintext elements of the plaintext ring
to ciphertext elements of the ciphertext ring. Broadly speaking, encryption
is done by concealing the plaintext message with an almost random mask
that is computed using the public key (or the secret key in the symmetric-key
operation mode). The output of encryption is typically two elements of the
ciphertext space; the first of which contains the masked plaintext data whereas
the second contains auxiliary information that can be used in the decryption
procedure. Decryption uses the secret key and the auxiliary information in the
ciphertext to remove the mask and recover the plaintext message. This might
ring a bell for the readers who are familiar with ElGamal encryption [ElG21]
which maps a single plaintext element to a paired-element ciphertext.

One crucial notion in RLWE-based FHE schemes is the error, also known
as noise, that is added to the plaintext message during encryption. The error
is crucial to satisfy the RLWE hardness assumptions, or else the RLWE would
turn into an easy computational problem that can be solved by commodity
computing machines and as a result, it would render FHE schemes built on
such easy problems easy to break. Recall that in BFV, the error magnitude
grows as we perform homomorphic evaluations (mainly, homomorphic addi-
tion and homomorphic multiplication). BGV exhibits similar noise behaviour,
i.e., error resulting from homomorphic addition grows at a lower rate than
that due to homomorphic multiplication.

So far we talked about the similarities between BFV and BGV. In the fol-
lowing paragraphs, we describe how the two schemes are different. Firstly,
the BFV scheme is typically scale-invariant (or scale-independent), that is, the
ciphertext modulus does not change during homomorphic evaluation. On the
other hand, BGV is a scale-dependent scheme that defines multiple ciphertext
moduli, one modulus per level. As we can see in Figure 1, BGV defines a chain
of ”small” moduli Q = {p0, p1, . . . , pL}. Associated with each level 0 ≤ l ≤ L,
is a ciphertext big modulus ql . Note that the choice of the small moduli pl’s
and consequently the set of big moduli ql’s is not arbitrary and the rationale
behind that will become evident later in this article. While performing the ho-
momorphic computation, ciphertexts keep moving from one level to another.
The typical flow of ciphertexts is as follows: a freshly encrypted ciphertext
starts at level L, which we call the encryption level for demonstration. As we
compute on the ciphertext, it moves from a higher level l to lower level l − 1.
Eventually and right before decryption, the ciphertext is at level 1. It should
be remarked that the aforementioned downward-restricted flow is the typical

2

𝑞𝐿 = 𝑝0 ⋅ 𝑝1 ⋅ …………… ⋅ 𝑝𝐿
Encryption level
Level (𝐿)

𝑞𝐿−1 = 𝑝0 ⋅ 𝑝1 ⋅ …… ⋅ 𝑝𝐿−1 Level (𝐿 − 1)

𝑞𝑙 = 𝑝0 ⋅ 𝑝1 ⋅ …… ⋅ 𝑝𝑙

𝑞1 = 𝑝0 ⋅ 𝑝1 Level (1)

𝑞0 = 𝑝0
Decryption level
Level (0)

… …

… …

Figure 1: Scale-dependant BGV ciphertext moduli.

flow in the levelled-version of BGV. In bootstrappable BGV, the ciphertext can
move in both directions (upward or downward) as necessary.

We note that the previous description with fixed levels for encryption and
decryption is rather simplified as it is possible to encrypt or decrypt at any
level 0 ≤ l ≤ L. It should also be noted that the BFV scheme can also be in-
stantiated as a scale-dependent scheme, which makes this difference between
the two schemes controversial.

Another less controversial difference between BFV and BGV is the cipher-
text structure and how the plaintext message is encrypted. Figure 2 shows the
ciphertext structure of BFV and BGV. In the former, the plaintext message is
placed towards the Most Significant Bits (MSB) side of the ciphertext coeffi-
cient. This is done by scaling the message by the rather large value ∆ = b q

t c
during encryption. On the other hand, BGV places the message towards the
Least Significant Bits (LSB) side of the ciphertext coefficient. It is important
that during homomorphic evaluation, the plaintext and noise never overlap
so that decryption can recover the expected computation result.

In the subsequent sections, we dive deeper into BGV and describe its plain-
text and ciphertext spaces, parameters, and the basic cryptographic primitives;
key generation, encryption, decryption, homomorphic evaluation, modulus
switching and security analysis.

3

noise budget 𝜇𝑒

𝑞

payloadnoise

𝑡

BGV ctxt

MSB

noise budget 𝑒

𝑞

Plaintext noise

𝑡

BFV ctxt

MSB

𝜇

Figure 2: Ciphertext structure in BFV and BGV. MSB stands for most signifi-
cant bit, q is the ciphertext modulus and t is the plaintext modulus. Adapted
from [CKKS17].

2 Plaintext and Ciphertext Spaces

The plaintext and ciphertext spaces of BGV are similar to those in BFV. The
plaintext polynomial ring is defined as P = Rt = Zt[x]/(xn + 1), i.e., the
set of polynomials with degree less than n and coefficients in Zt, where the
plaintext modulus t and the ring dimension n are both integers. The cipher-
text space is defined as C = Rql × Rql , where Rql = Zql [x]/(xn + 1) and
ql ∈ Z is the ciphertext modulus at level l. For efficiency purposes, n is usu-
ally set as a power-of-2 integer similar to our discussion on BFV. Also, q is
usually much greater than t which affects the message expansion rate after
encryption. There are security and functionality constraints that should be
considered when setting up these parameters. The reader is advised to refer
to the homomorphic encryption standard document for a set of recommended
parameters [ACC+

18].

3 Parameters

In addition to the plaintext and ciphertext parameters, BGV defines the fol-
lowing three random distributions:

• R2: mostly used in the encryption keys, is a uniform random distribu-
tion used to sample polynomials with integer coefficients in {−1, 0, 1}.

• X : is the error distribution defined as a discrete Gaussian distribution
with parameters µ and σ over R bounded by some integer β. Ac-
cording to the current version of the homomorphic encryption stan-
dard [ACC+

18], (µ, σ, β) are set as (0, 8√
2π
≈ 3.2, b6 · σe = 19).

4

• Rq: is a uniform random distribution over Rq used for sampling poly-
nomials in {0, 1, . . . , q− 1}.

4 Plaintext Encoding and Decoding

Similar to our discussion in BFV, the input data needs to be encoded to be
compatible with the plaintext space Rt. We refer the reader to our description
of BFV in which we introduced two encoding schemes. They can also be used
with BGV without any modification.

5 Key Generation

The secret key SK is a random ternary polynomial that is generated from R2.
The public key PK is a pair of polynomials (PK1,PK2) calculated as follows:

PK1 = [−1(a · SK+ t · e)]qL (1)

PK2 = a

where a is a random polynomial in Rql , and e is a random error polynomial
sampled from X . The notation [·]ql means that polynomial arithmetic should
be done modulo ql . Note how the error is scaled by t here unlike key genera-
tion in BFV.

6 Encryption and Decryption

The encryption algorithm takes as input a plaintext message M in P and the
public key PK and outputs ciphertext C = (C1,C2) in C encrypting the input
message as a result. Encryption proceeds as follows: we generate three small
random polynomials u from R2 and e1 and e2 from X and compute:

C1 = [PK1 · u + t · e1 +M]ql (2)

C2 = [PK2 · u + t · e2]ql

Note how the error polynomial in C1 is scaled by the plaintext modulus
t. This conforms with what we demonstrated previously in Figure 2 with the
message situated in the lower bits of the ciphertext coefficient while the noise
can grow in the upper bits.

The decryption procedure reverses encryption by taking as input the ci-
phertext and the secret key SK. It outputs the plaintext message M given that
the noise did not grow out of control during computation. Decryption pro-
ceeds as follows:

5

M =
[
[C1 + C2 · SK]ql

]
t

(3)

In order to check why decryption works and under which conditions, let
us expand Equation (3) as follows assuming that decryption occurs right after
encryption for simplicity of exposition:

C1 + C2 · SK = PK1 · u + t · e1 +M+ (PK2 · u + t · e2) · SK (4)
= −(a · SK+ t · e) · u + t · e1 +M+ a · u · SK+ t · e2 · SK
= (((((−a · u · SK − t · e · u + t · e1 +M+((((a · u · SK + t · e2 · SK
= M− t · e · u + t · e1 + t · e2 · SK
= M+ t · v

By reducing the result above modulo t, we get rid of the noise vector v and
recover M without the noise. But there is a caveat here that is related to the
norm of v. Decryption works as long as‖v‖∞ <

ql
2t

, where‖v‖∞ is defined as
the largest absolute coefficient in (v). The bound is set so that the magnitude
of the noise does not grow too much and destroy the message.

7 Homomorphic Evaluation

What differentiates FHE from classic encryption schemes are the homomor-
phic evaluation procedures. Here we study the two main homomorphic oper-
ations: addition and multiplication.

7.1 EvalAdd

As shown in Equation (5), homomorphic addition takes as input two cipher-
texts C(1) and C(2) defined with respect to the same modulus ql and returns a
ciphertext (C3) that contains an encryption of the summation of the two plain-
text messages encrypted in the input, that is, Decryption(C3,SK) = M1 +M2
mod t. This will apply as long as the error in the addend ciphertexts is not
too large. In order to understand this, let us analyze the homomorphic addi-
tion procedure. Equation (5) is fairly simple, we just add the corresponding
polynomials in each ciphertext.

EvalAdd(C(1),C(2)) = ([C
(1)
1 + C

(2)
1]ql , [C

(1)
2 + C

(2)
2]ql) = (C

(3)
1 ,C(3)

2) = C(3) (5)

In order to see why this works, let us break Equation (5) as follows: assume
that C(1) and C(2) are fresh encryptions of M(1) and M(2). Algebraically, they
can be expressed as follows (See Equation (2)):

6

C(1) = ([PK1 · u(1) + t · e(1)1 +M(1)]ql , [PK2 · u(1) + t · e(1)2]ql) (6)

C(2) = ([PK1 · u(2) + t · e(2)1 +M(2)]ql , [PK2 · u(2) + t · e(2)2]ql)

By substituting C(1) and C(2) in Equation (5) we get the following:

C(3) = (C
(3)
1 ,C(3)

2) (7)

= ([PK1 · (u(1) + u(2)) + t(e(1)1 + e(2)1) + (M(1) +M(2))]ql ,

[PK2 · (u(1) + u(2)) + t(e(1)2 + e(2)2)]ql)

= ([PK1 · u(3) + t · e(3)1 + (M(1) +M(2))]ql , [PK2 · u(3) + t · e(3)2]ql) (8)

It is straightforward to see that Equation (8) has the form of a valid ci-
phertext encrypting M(3) = M(1) +M(2). Note that the error term in C(3) is
approximately, following a worst-case scenario analysis, the sum of the noise
terms in the input ciphertexts, i.e., the noise grows additively.

7.2 EvalMult

Homomorphic multiplication takes as input two ciphertexts C(1) and C(2) de-
fined with respect to the same modulus ql and returns a ciphertext (C3) that
contains an encryption of the product of the two plaintext messages encrypted
in the input ciphertexts, that is, Decryption(C3,SK) = M1 ·M2 mod t.

In the following analysis, we interpret the decryption formula as a cipher-
text evaluation at SK:

C(1)(SK) = M(1) + t · v1 + ql · r1 (9)

C(2)(SK) = M(2) + t · v2 + ql · r2

Multiplying the ciphertexts gives us:

(C(1) · C(2))(SK) =M(1) ·M(2) + t(M(1) · v2 +M(2) · v1)+

ql · t(v1 · r2 + v2 · r1) + ql · (M(1) · r2 +M(2) · r1)+

t2 · v1 · v2 + ql
2 · r1 · r2

=M(1) ·M(2) + t(M(1) · v2 +M(2) · v1 + t · v1 · v2)

(10)

The decryption formula of the product ciphertext has the structure of a valid
ciphertext encrypting (M(1) ·M(2)) with noise v = M(1) · v2 +M(2) · v1 + t · v1 ·
v2. Note how the noise term grows multiplicatively as the product of the noise

7

in the input ciphertexts (the term t · v1 · v2). This means that as we go deeper
in the computation, the noise grows exponentially. To resolve this problem,
BGV uses ModSwitch to reduce the rate at which multiplication noise grows.
ModSwitch will be described later on in this article.

From the above discussion, we can deduce that EvalMult can be evaluated
as polynomial multiplication of the input ciphertexts as can be shown in the
following equation:

EvalMult(C(1),C(2)) = ([C
(1)
1 · C

(2)
1]ql , [C

(1)
1 · C

(2)
2 + C

(1)
2 · C

(2)
1]ql ,

[C
(1)
2 · C

(2)
2]ql)

(11)

EvalMult increases the number of ring elements in the resulting ciphertext
from 2 to 3. Moreover, the product ciphertext is defined with respect to SK2

rather than the original SK, that is, it is decryptable using SK2. In order to
reduce the number of elements back to 2 and make the ciphertext decryptable
using SK, the Relinearization procedure, described next, can be used.

8 Relinearization

This procedure is used to overcome the two issues that arise in EvalMult, ci-
phertext expansion and defining the ciphertext with respect to the original
SK. We described this procedure thoroughly in our BFV article in Section 9

(Relinearization). We reiterate briefly here due to some minor changes related
to the ciphertext modulus.

The problem we are trying to solve can be formulated as follows: let C∗ =
{C∗1 ,C∗2 ,C∗3}. Our goal is to find Ĉ

∗
= {Ĉ∗1 , Ĉ∗2} such that:

[C∗1 + C∗2 · SK+ C∗3 · SK2]ql ≈ [Ĉ
∗
1 + Ĉ

∗
2 · SK+ r]ql (12)

Access to SK2 is provided by means of the evaluation key EK = (−(a ·SK+
e) + SK2, a). Note that this is a masked version of SK2 since EK1 + EK2 · SK =

SK2 − e. Now we can compute Ĉ∗ as follows:

Ĉ
∗
1 = [C∗1 + EK1 · C∗3]ql (13)

Ĉ
∗
2 = [C∗2 + EK2 · C∗3]ql

If we write the decryption formula for Equation (13) we obtain what we
want as follows:

8

Ĉ
∗
1 + Ĉ

∗
2 · SK = C∗1 + EK1 · C∗3 + SK · (C∗2 + EK2 · C∗3) (14)

= C∗1 + C∗2 · SK+ C∗3 · (EK1 + EK2 · SK)
= C∗1 + C∗2 · SK+ C∗3 · SK2 + C∗3 · e

9 ModSwitch

As mentioned previously, ModSwitch is used to control the multiplication
noise. This notion was first introduced in [BGV14], and it exploits the fact
that given a ciphertext C defined with respect to modulus q and secret key
SK, it can be transformed into an equivalent ciphertext C′ defined with re-
spect to another modulus q′ and the same secret key SK such that:

[C(SK)]q = [C′(SK)]q′ (15)

The transformation is done by scaling the coefficients of C by the quantity
q′/q and some suitable rounding. To reduce the noise magnitude, we choose
a fairly smaller q′ than q, which allows us to scale down the multiplication
noise.

Note that in the BGV context, q can be at any level l, i.e., ql ; and q′ in this
context is simply ql−1. Moreover, the ciphertext moduli ql , ∀ 0 ≤ l ≤ L are
chosen such that they are equivalent modulo t. This results in scaling down
the noise without affecting the encrypted plaintext message. It is as if we are
scaling by 1 from the plaintext perspective.

ModSwitch can be computed as shown in Equation (16), where [·] is a
suitable rounding function. The transformed ciphertext C′ is defined with
respect to the new modulus q′.

C′ =
[q′

q
· C

]
(16)

10 Security of the Scheme

To the best of our knowledge, BGV is still considered a secure scheme with no
known attacks published in the literature. Its security stems from the hardness
of the RLWE problem. We remark that choosing optimal BGV parameters that
maximize performance and respect both security and functionality constraints
is a fairly complex task and it is best to consult expert cryptographers to do so.
For a brief security analysis and a set of recommended parameters for BGV
(and other FHE schemes), we refer the reader to the homomorphic encryption
standard [ACC+

18].

9

References

[ACC+
18] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi

Goldwasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim
Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin
Moody, Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan.
Homomorphic encryption security standard. Technical report, Ho-
momorphicEncryption.org, Toronto, Canada, November 2018.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (lev-
eled) fully homomorphic encryption without bootstrapping. ACM
Transactions on Computation Theory (TOCT), 6(3):1–36, 2014.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song.
Homomorphic encryption for arithmetic of approximate numbers.
In International Conference on the Theory and Application of Cryptology
and Information Security, pages 409–437. Springer, 2017.

[ElG21] ElGamal Encryption. Elgamal encryption — Wikipedia, the free
encyclopedia, 2021. [Online; accessed 2021-June-2021].

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. Journal of the ACM
(JACM), 60(6):1–35, 2013.

10

