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Abstract

Self-localization is important in almost all
robotic tasks. For playing an aesthetic and ef-
fective game of robotic soccer, self-localization
is a necessary prerequisite. When we designed
our robotic soccer team for RoboCup’98, it
turned out that all existing approaches did not
meet our requirements of being fast, accurate,
and robust. For this reason, we developed a
new method, which is presented and analyzed
in this paper. We additionally present experi-
mental evidence that our method outperforms
other methods in the RoboCup environment.

1 Introduction

Robotic soccer is an interesting scientific challenge [10]
and an ideal domain for testing new ideas and demon-
strating existing techniques. One of our main inten-
tions in participating in last year’s RoboCup’98 [1] was to
demonstrate the usefulness of self-localization techniques
that we have developed [8].

Solving the self-localization problem—the problem of
determining the position and orientation of the robot—
is necessary for almost all tasks. In robotic soccer it
seems even impossible to play an effective and aesthetic
game if the soccer agents do not know where they are
and how they are oriented. As a matter of fact, some of
the problems displayed in the games of the middle size
league at RoboCup’97 [9] seemed to have to do with the
fact that the soccer robots had the wrong idea about
their positions, which led to erratic movements and a
number of own goals.

The self-localization problem can be addressed using
a wide range of sensors (e.g. odometry, sonars, vision,
compasses, laser range finders, other sensors, or com-
binations thereof) and a wide range of methods. In the
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sequel we will only consider the combination of data from
the odometry and from laser range finders (LRF), since
the latter provide accurate and reliable data, which can
be interpreted with much less computational effort than,
say, data from a vision system.

Self-localization can be based on recognizing known
landmarks or on dense sensor matching. In the first
approach, features are extracted from the sensor in-
puts and matched with the features of the landmarks
in order to determine the locations of the landmarks.
However, in the RoboCup environment, there are only
few natural landmarks that are always visible to the
sensors and for this reason we did not consider this
approach. In the second approach, all sensor inputs
are matched against the expected sensor inputs for
a given model. Two competing methods for dense
sensor matching are grid-based Markov localization [3;
2] and Kalman filtering using scan matching [5; 8]. As
it has been demonstrated, Markov localization is more
robust, because it always generates some position hy-
potheses and because it can recover from catastrophic
failures. However, self-localization using Kalman filter-
ing based on scan matching is more accurate [6], since it
does not rely on grids.

For robotic soccer, we need robustness, accuracy, and
efficiency, whereby the latter property means that we
want to estimate the position and orientation in a few
milliseconds. Unfortunately, none of the approaches de-
scribed above satisfies all three requirements. For this
reason, we designed a new scan-matching approach that
extracts features from the raw sensor inputs, namely,
straight lines, that are matched against an a priori
model. Using the scan match, which can be computed
efficiently, the new position estimation is then derived by
combining it with the odometry reading using Kalman
filtering.

2 Scan Matching

Scan matching is the process of translating and rotating
a range scan (obtained from a range device such as a
laser range finder) in such a way that a maximum overlap
between sensor readings and an a priori map emerges.
Most of the scan matching methods presume an initial



pose estimation that must be close to the true pose in
order to limit the search space.

The robot pose and its update from scan matching are
modeled as single Gaussian distributions. This has the
advantage that robot poses can be calculated with high
precision, and that an efficient method for computing
the update step can be used, namely, Kalman filtering.

The extended Kalman filter method has the following
form. The probability of a robot pose is modelled as
a Gaussian distribution I(t) ~ N(w,X;), where i =
(z,y,a)T is the mean value and ¥; its 3 x 3 covariance
matrix.

On robot motion a ~ N((4,0)%,3,) where the robot
moves forward a certain distance § and then rotates by
0, the pose is updated according to:

x + 6 cos(a)
w = E(F(l,a)= ( y + dsin(a) )
a+0
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Here E denotes the expected value of the function F' and
VE; and VF, are its Jabobians with respect to [/ and a.
From scan matching a pose update s ~ N(us, Xs) is
obtained and the robot pose is updated using standard
Kalman filter equations [13]:
meo= (ST I (O e+ 2 )
o= (teryhHTt

The success of the Kalman filter depends heavily on
the ability of scan matching to correct the robot pose.
There are a number of methods for matching scans:

Cox [5] matches sensor readings with the line segments
of a hand-crafted CAD map of the environment. He as-
signs scan points to line segments based on closest neigh-
borhood and then searches for a translation and rotation
that minimizes the total squared distance between scan
points and their target lines.

Weiss et. al. [16] use histograms for matching a pair
of scans. They first compute a so-called angle histogram
for determining the rotation of the two scans and then
use z and y histograms for computing the translation.
Although this method seems to be well suited for the
RoboCup environment it is computationally expensive
and the precision of the algorithm depends on the dis-
cretization size of the histograms.

Lu and Milios [12] match pairs of scans by assign-
ing points in one scan to points in the other scan. For
finding a corresponding scan point two heuristics called
closest-point-rule and matching-range-rule are applied
and a combination is used for computing the rotation
and translation of the two scans. This IDC algorithm
(iterative dual correspondence) is well suited for any type
of environment including non-polygonal ones.

Gutmann and Schlegel [8] use a combination of the
Cox matching approach and the IDC method for com-
bining the efficiency and robustness of the line matching
method with the universal capabilities of the IDC al-
gorithm. They call their algorithm the combined scan
matcher (CSM).

Unfortunately all those matching algorithms possess
a high computational complexity, e.g. O(n?) where n
are the number of scan points, and their robustness is
limited due to the small search space.

Therefore we developed a new algorithm LINEMATCH
that makes use of the simple polygonal structure of
the RoboCup environment and trades off generality for
speed and the ability to globally localize the robot on
the soccer field.

3 The LiINeEMATCH Algorithm

The LINEMATCH algorithm extracts line segments from
a scan and matches them with an a priori map of line
segments similar to the methods of [15; 4]. We expected
that this algorithm has better run-time performance and
is more robust than the other scan matchers while re-
taining the same accuracy as the other matchers. In
how far these expectations are realistic will be shown in
Section 4.

In order to guarantee that extracted lines really corre-
spond to field-border lines, only scan lines significantly
longer than the extent of soccer robots are considered.
The following algorithm shows how a matching between
model lines and scan lines is computed by recursively
trying all pairings between scan lines and model lines:

Algorithm 1 LINEMATCH(M, S, P)
Input: model lines M, scan lines S, pairs P

Output: set of positions hypotheses H
if |P| =|S| then
H:=P

else
H:=0
s := SelectScanline(S, P)
for allm € M do
if VerifyMatch(M,S,P U {(m,s)}) then
H := HU{LINEMATCH(M,S,P U {(m,s)})}

return H

SelectScanline selects the next scan line that should be
matched and VerifyMatch verifies that the new (m,s)
pairing is compatible with the set of pairings P already
accepted by computing a common rotation and transla-
tion. The algorithm returns position hypotheses in the
form of sets of pairs which can be easily transformed
into possible locations where the scan could have been
taken. For the RoboCup field the algorithm is capable
of determining the global position of the robot modulo
the symmetry of the field. This means that we get two
position hypotheses if three field borders are visible (see
Figure 1) and four hypotheses if two borders are visible.

This scan matching method is similar to the methods
described by Castellanos et al. [4] and Shaffer et al.
[15]. In contrast to these approaches, however, we only
verify that the global constraints concerning translation
and rotation as well as the length restrictions of scan
lines are satisfied. This is sufficient for determining the
position hypothesis and more efficient. Further, we do
not need any initial estimation of the pose, which means
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Fig. 1. The LINEMATCH algorithm returns two hypothe-
ses for the robot position.

that even if the robot has an extreme error in its position
estimation, it may still be able to recover from that.

After matching a range scan, the most plausible posi-
tion is used in the Kalman filter step for updating the
robot position. We use the position information from
odometry to determine the most plausible position based
on a combination of closest neighborhood and similarity
in heading.

For initializing the self-localization system the robot is
placed at any position in the RoboCup field but roughly
oriented towards the opponent goal and the mean and
error covariance of the robot position are set to:

(0,0,0)

o 0 0
0 oo O
0 0 o™

This ensures global self-localization on the first scan
match.

While it turns out that the implemented algorithm is
extremely fast in the RoboCup environment (see Sec-
tion 4.2), one may wonder how well it scales with the
size of the set M. A first rough analysis suggests that
the worst-case runtime of the algorithm is O(|M|S!),
because the depth of the recursion is |S| and in each
recursive call of LINEMATCH | M| different pairings are
tried.

As it turns out, however, it is possible to come up with
a much better run-time estimation. After the second
level of recursion, when two pairings have been made,
all degrees of freedom for rotation and translation have
been removed (SelectScanline is implemented in such a
way that it chooses non-parallel lines in the first two lev-
els of recursion). This means that on deeper levels of the
recursion only one pairing can be consistent, which leads
to invoking another recursive call of LINEMATCH. This
means that we may get |M|? possible pairings on the
first two levels of recursion which are verified by further
recursive calls trying |M||S| different pairings. Finally,
since VerifyMatch needs O(|S|) time, we get an over-
all bound of O(|M|3|S|?). In the general case, one has
to live with the cubic upper bound. Nevertheless, for
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realistic environments where not all walls are simultane-
ously visible—such as is the case in office environments—
preprocessing can be used to guarantee runtime almost
linear in |M|. Such a preprocessing phase would store
for each line all other lines that are simultaneously vis-
ible. Using such a data structure, the amount of lines
that must be tested can be dramatically reduced and as-
suming a constant upper bound of simultaneously visible
walls, we would get a linear complexity of the algorithm.

4 Comparison with other Scan
Matchers

In order to show the advantages of the LINEMATCH al-
gorithm we compared the Cox, CSM and LINEMATCH
techniques with each other. We did not include the IDC
and histogram matching methods as the properties of
these algorithms are covered by the CSM algorithm [8].

Since the CSM algorithm needs a set of reference scans
as its a priori map, we collected a small set of scans, cor-
rected the accumulated odometry error by applying the
registration method from [11], and used them as refer-
ence scans. This approach has proven to be a successful
and easy way for enabling mobile robot navigation in an
indoor environment without modifying the environment
or creating hand-crafted maps [7].

For comparing the different methods we recorded real
data with one of our mobile robotic soccer players. Each
of our soccer robots is a Pioneer I mobile robot equipped
with a SICK laser range finder, a Cognachrome vision
system for ball tracking, a Libretto 70CT laptop with
wireless ethernet connection and a custom kicking de-
vice. The laser range finder covers a 180° field of view
with an angular resolution of 1° and a range resolution
of 5em.

In order to record data of a realistic game scenario we
ran the soccer robot in our RoboCup environment with
several stationary and moving obstacles. From these
data we computed the average run-time of the differ-
ent algorithms and added different kinds of noise to the
data for determining the accuracy and robustness of the
methods.

Similar work has been reported by Shaffer et al. [14],
who compared two scan matching methods that are sim-
ilar to the Cox and LINEMATCH algorithm in this paper.
However, they used only single scan matches for their ex-
periments whereas in our experiments all data recorded
during a whole robot run is taken into account. Also
they only ran their algorithms in an almost static en-
vironment whereas we recorded our data in a realistic
dynamic scenario with many stationary and moving ob-
stacles that can block the robot’s sensors. Therefore the
results presented in this paper should give a better pic-
ture of how good the methods actually are in a dynamic
environment like RoboCup.

4.1 Noise Models

There are several kinds of noise typically observed when
robots operate in real-world environments. On one hand



there is a typical Gaussian noise in the odometry and
proximity sensors coming from the inherent inaccuracy
of the sensors. On the other hand there are non-Gaussian
errors arising from robot colliding with obstacles, e.g.
other robot players, or from interference with the sen-
Sors.

In this paper, odometry errors coming from wheel-
slippage, uneven floors, or different payloads are charac-
terized according to the following three parameters (see

left part of Figure 2).
y
&

Fig. 2. Effect of adding noise (As(d), Ay(a), Ay (d))
(left) and bump noise (z,y,a) (right) to the odometry.
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Range noise: the error As(d) in range when the robot
moves a certain distance 4.

Rotation noise: the error Ay(a) + Ay () in rotation
when the robot turns a certain angle a or moves a
certain distance 9.

There is another source of less frequent but much
larger odometry error coming from situations in which
the robot collides with obstacles. These abrupt errors
can be characterized by the following parameters (see
right part of Figure 2).

Error of the odometry: The error z, y, and «a is
added to the odometry information.

Frequency: Probability that a bump occurs if the robot
travels one meter. Throughout the experiments de-
scribed below, this probability was set to 0.2 per
meter travelled.

4.2 Run-Time Performance

For computing the run-time performance of the scan
matching techniques we measured the average time a
method needed for computing the pose update before
it is fused with the odometry estimate. In order to re-
ceive measurements that show the performance under
real game conditions we setup a realistic game scenario
in our RoboCup environment with stationary and mov-
ing objects (see Figure 3) and used our soccer robot as
a right defender where it moved over the entire field a
couple of times. In this run the robot moved a total
distance of approximately 41 meters, turned about a to-
tal of 11000 degrees (about 30 revolutions) and collected
over 3200 scans.

Figure 4 shows run-time results performed on the
robots on-board computer, a Pentium 120 MHz laptop
running the Linux operating system. As expected the
LINEMATCH algorithm outperforms the other competing
techniques. It is 8 times faster than the Cox algorithm
and about 20 times faster than the CSM method. The

Fig. 3. Experimental setup: several boxes were placed
in the RoboCup field to give a realistic game scenario.
Noisy sensor readings are caused by moving obstacles.

very low average run-time of only 2ms per scan match
allows the processing of all incoming range finder data
in real time.

Cox | CSM | LINEMATCH
16ms | 39ms 2ms

Fig. 4. Run-time results on a Pentium 120MHz laptop.

4.3 Performance in a Game Scenario

For showing the accuracy and robustness of the LINE-
MATCH algorithm we used the data collected in the
above run and added different kinds of noise to the odom-
etry information. In order to measure the accuracy of
the position estimates generated by the different match-
ing methods, a set of reference positions are needed. To
ease the determination of the reference positions we ran
the Cox method with the recorded data and used this
output as the set of reference positions.

For each set of noise values, 26 runs with differ-
ent seed values for initializing a random noise gener-
ator were performed. Figure 5 shows the trajectory
measured by the robots wheel encoders and a typical
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Fig. 5. Trajectory measured by the robot and typical
trajectory obtained by adding large Gaussian noise with
standard deviations (400, 100, 40) to these data.

trajectory when adding the maximum Gaussian noise



(400,100,40). The values correspond to the standard
deviation of the Gaussian noise (As(d), Ay(a), Ag(6))
with the units /mm?2/m, \/deg?/360°, and +/deg?/m.

For each scan matching method we computed the
number of times the robot position was lost and the dis-
tance and heading error to the reference pose in case the
position was not lost. We used a threshold of 0.5m for
the distance and 30° for the heading error for determin-
ing whether or not the position of the robot was lost.

Figure 6 shows the average distance and Figure 7 the
average heading error to the reference positions for five
different levels of Gaussian noise. The value triples on
the z-axis correspond to the standard deviation of the
Gaussian noise (A5(d), Ay (a), Ay (6)). In these and all
following figures the error bars indicate the 95% confi-
dence interval of the average mean.
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Fig. 6. Distance error to reference positions in typical
game scenario for different levels of Gaussian noise.

60
40
20

o+

=]

o1

+

=]

A1

10:5:1

20:10:5

100:20:10 200:50:20 400:100:40
noise

However, the LINEMATCH method is much more ro-
bust than the other matching algorithms. Figure 8 shows
the number of times where the robot position was lost
for the same levels of Gaussian noise as in the previous
figures. Here the LINEMATCH algorithm shows a very
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Fig. 8. Number of times where position error was above
0.5m or above 30° in typical game scenario for different
levels of Gaussian noise.

good performance and keeps the robot localized even
under high odometry noise. Only for the maximum level
of noise, LINEMATCH also starts losing the position. We
believe that the higher robustness of LINEMATCH is due
to the larger search space it uses for finding matches.
In the same manner, we investigated how the methods
compare given simulated bump noise. For accuracy the
results were similar to the case of Gaussian noise. All
three methods had a similar accuracy for the distance
and heading error than in the Gaussian case. Figure 9
shows the average number of positions where the robot
was lost when bump noise was added to the odometry
information. The triples at the z-axis correspond to the
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Fig. 7. Heading error to reference positions in typical
game scenario for different levels of Gaussian noise.

From both figures it can be seen that all three methods
have a similar accuracy usually better than 5¢m and 2°.
Only the Cox method has a significant higher accuracy
than the others when only little Gaussian noise is present
but this is due to the fact that the reference positions
also have been generated by the Cox method.
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Fig. 9. Number of times where position error was above
0.5m or above 30° in typical game scenario for different
levels of bump noise.

bump noise values {z,y, @) used in this experiment. The
scale of these values is mm for z and y, and degrees for



a. In addition to these bumps occurring with probability
0.2 per meter, we applied a small Gaussian odometry
error using the parameters (100,5,2). As can be seen
in Figure 9 all scan matching approaches have problems
when bump noise is present. This is due to the fact that
the Gaussian distribution assumption when fusing the
observations with odometry in the Kalman filter does
not model bump noise well. However the LINEMATCH
method shows less failures than the other methods and
is thus again more robust than the other ones.

In a final set of experiments, which can not be covered
in this paper due to lack of space, we compared the scan
matching methods in “confusing game scenarios” where
a long wall was placed inside the RoboCup field. We
expected that under these conditions the LINEMATCH
algorithm gets irritated since the long wall is not filtered
out in its preprocessing step and thus LINEMATCH pro-
duces wrong matches or relies on dead-reckoning only for
the position estimation. Luckily the LINEMATCH algo-
rithm did not suffer too much from these conditions. We
suspect that this is due to the fact that there are a lot of
situations where the irritating wall is not present in the
range scans.

5 Conclusion and Future Work

In this paper we presented a new method for match-
ing range scans to an a priori model of line segments
which is well suited for localizing a mobile robot in a
polygonal-shaped, dynamic environment like RoboCup.
Experimental results confirm that the new method is
much faster and much more robust than other existing
scan matchers while retaining the accuracy of the com-
peting methods.

The proposed method has been developed as one of
the key components of the CS Freiburg robotic soccer
team and has been proven to be fast, reliable, precise
and robust. It never failed in any official or in-official
game and led the team to its success at RoboCup’98
where CS Freiburg won the competition in the middle
size league [1].

Although the method has been utilized for RoboCup
so far only, it is an obvious step to use it in other
polygonal-shaped environments, e.g. as a localization
method in our navigation system for office environments
[7]. Therefore we will extend the algorithm in various
ways, e.g. to allow for partial matches where not all
lines of a range scan are matched to model lines and to
explore several ways to optimize the algorithm in order
to deal with larger environments.

Finally we are going to explore the problem of coop-
erative self-localization in the RoboCup environment for
allowing the reorientation of disoriented group members.
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