
CUDA-lite: Reducing GPU

Complexity

Sain-Zee Melvin Sara S. Baghsorkhi, and Wen-mei W. Hwu

Center for Reliable and

{ueng, mlathara,

Abstract. The computer industry has transitioned into multi-core and
many-core systems. The CUDA environment from
NVIDIA is an attempt to make many-core GPUs more
accessible to programmers. there are still many burdens
upon the programmer to maximize when using CUDA. One
such burden is with the memory Efficient and
correct usage of the various memories is
2-17x in Currently, the task of the appropriate
memory to use and the of data transfer between memories is still
left to the programmer. We believe that this task can be better
by automated tools. We present an enhancement to CUDA,
as one such tool. We programmer via annotations

"<>rhW'rn transformations and show results that indicate
code can have to hand

1 Introduction

In 2007, NVlDIA introduced the Compute Unified Device Architecture (CUDA)
an extended ANSI C model. Under Process-

consist of many processor cores, each of which can
memory. This allows for a much more flexible nuvrrc.n',

GPGPU models [11], and allows developers
to implement a wider of data-parallel kernels. As a result, CUDA has

acceptance in application domains where GPUs are used to exe­
cute compute data-parallel kernels.

While GPUs have been designed with memory bandwidth than CPUs,
the even higher compute throughput of GPUs can easily saturate their available
memory bandwidth. For example, the NVIDIA GeForce 8800 GTX comes with
86.4 memory ten times that of Intel CPUs on a
Front Side Bus. since the GeForce 8800 has a peak of 384
GFLOPS and each point operation on up to 12 bytes of source
data, the available memory bandwidth cannot sustain even a small fraction of
the if all of the source data are accessed from memory.

•
~)(\ l

, ctlll
Q

~y('4,1 (1D-Bfpd<JJ)

~t

~y~ (~Yt # .-f 'j d)- "<"

r/~ •
;..

;;)

t

••
<::ld

~ - ~QoctJ A~\'?{(f

\~ \N \ QQ. \} 'r '" QQ (fA

\ f:v<.\~i~
d(t~ ~

.) Fdi~
I

c..

0
onto the GPU. A

ward implementation of an application would be to utilize only global memory
as a proof of concept for parallelizing the algorithm on '-/'--'.IJ"~.

2 shows an code. The function main sets up the data
~) (.1:0- ~ ~) for on the CPU while the function kernel contains the code that
- \ . is executed on the GPU. Notice that variables that reside in the global

-\- I rv-r.>(j.., Aii1,.it memory of the like are allocated in main and data movement
~) is also there via API calls to

In the kernel each thread on the GPU traverses a different row 10") A,. the 2-D array a, each element by a thread value before storing
b~~'\'P~t' '\iiI \ Si'lf into the location in array b. Since each TB must have the same
'. • i1 number of threads, on the data size and program there
~ ~ M 	 may be excess threads that do not have data to operate on. The conditional check

on line 12 that exits the kernel function before the loop these cases. This
check becomes important as we attempt to utilize memory (Section
2.3).

2.2 Shared iV.L~aU!.Jl

Shared memory is a small (16KB per SM for the 8800) readable and
writable memory and as fast as access. Shared memory is unini­
tialized at the of and resident data is to each TB

AS"\'le:

blCt 13+

http:iV.L~aU!.Jl
http:Aii1,.it

3(c). The tile is first traversed
into a buffer in shared memory,
then operates on the data along the
to the next tile. The performance lmOr()V'€lmlent

memory m~es
V'\1...... 1\""",

3. Graphical View of Data Traversal: (a) Row (b) Column (c) Tiled

For example, the memory access to array a on line 18 of Figure 2 does not
coalesce because it violates rule number 2. For each iteration of the thread N
accesses a +; bki does not matter since the threads are in the same
thread block. This means that each thread is accessing data adjacent
to each as in Figure 3(a), which does not

4 shows the kernel code from Figure 2 rewritten by hand so the al­
is tiled and the memory accesses coalesced. The amount of code is
doubled. The loop has been tiled and additional code is in­

serted to data between and shared memory. The load from
array a on line 25 is coalesced since thread N accesses a + on each
iteration. The computation kernel now operates on the data in shared memory,
and the loop around it has included the check on line 12 of the original code as
an additional condition.' In other words, the excess threads we mentioned back
in Section 2.1 may be used to perform memory accesses, but must not
be allowed to actual computation.

This is a large additional burden on the programmer. Not only must
the programmer fulfill the memory requirements, the programmer also
has to maintain correctness. The this optimization

will be the or oracle, case for CUDA-lite.

Since the behavior of memory is understood, we believe
that such transformations are best undertaken by an automated tooL This would
reduce the potential for errors in writing memory coalescing and reduce the
burden upon programmers. In our programmers would a straight­

3

:~~(t \"e\"

\V\ $.\

(!. eOacW

