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Abstract. The computer industry has transitioned into multi-core and
many-core parallel systems. The CUDA programming environment from
NVIDIA is an attempt to make programming many-core GPUs more
accessible to programmers. However, there are still many burdens placed
upon the programimer to maximize performance when using CUDA. One
such burden is dealing with the complex memory hierarchy. Efficient and
correct usage of the various memories is essential, making a difference of
2-17x in performance. Currently, the task of determining the appropriate
memory to use and the coding of data transfer between memories is still
left to the programmer. We believe that this task can be better performed
by automated tools. We present CUDA-lite, an enhancement to CUDA,
as one such tool. We leverage programumer knowledge via annotations
to perform transformations and show preliminary results that indicate
auto-generated code can have performance comparable to hand coding.

1 Introduction

In 2007, NVIDIA introduced the Compute Unified Device Architecture (CUDA)
[9], an extended ANSI C programming model. Under CUDA, Graphics Process-
ing Units (GPUs) consist of many processor cores, each of which can directly
address into a global memory. This allows for a much more flexible programming
model than previous GPGPU programming models {11}, and allows developers
to implement a wider variety of data-parallel kernels. As a result; CUDA has
rapidly gained acceptance in application domains where GPUs are used to exe-
cute compute intensive, data~parallel application kernels.

While GPUs have been designed with higher memory bandwidth than CPUs,
the even higher compute throughput of GPUs can easily saturate their available
memory bandwidth. For example, the NVIDIA GeForce 8800 GTX comes with
86.4 GB/s memory bandwidth, approximately ten times that of Intel CPUs on a
Front Side Bus. However, since the GeForce 8800 has a peak performance of 384
GFLOPS and each floating point operation operates on up to 12 bytes of source
data, the available memory bandwidth cannot sustain even a small fraction of
the peak performance if all of the source data are accessed from global memory.
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Fig. 2 Exa.mple Code: Base Case

' % } general-purpose applications to be ported easily onto the GPU. A straightfor-
3! ’”‘T“”" i ward implementation of an application would be to utilize only global memory
B as a proof of concept for parallelizing the algorithm on CUDA.

/ , Figure 2 shows an example CUDA code. The function main sets up the data
?/> AD- B eac}l? é> for computation on the CPU while the function kernel contains the code that
- : is actually executed on the GPU. Notice that variables that reside in the global
4 W@ 5 }5‘5}39 memory of the GPU, like a_device, are allocated in main and data movement

is also performed there via API calls to cudaMemcpy.
‘-:I> In the kernel function, each thread on the GPU traverses a different row of
the 2-D array a, scaling each element by a thread specific value before storing
T?@f"&\) AS 1%+ into the corresponding location in array b. Since each TB must have the same

N ﬁ number of threads, depending on the data size and program parallelization there ;
A = g may be excess threads that do not have data to operate on. The conditional check
on line 12 that exits the kernel function before the loop handles these cases. This /
check becomes important as we attempt to utilize memory coalescing (Section /
mw‘# 2.3).
. /
b M& ¢WB “)‘1’@1 2.2 Shared Memory ;
S y’"‘*“wm-"’ ' Shared memory is a small (16KB per SM for the GeForce 8800) readable and -
’ yy writable on-chip memory and as fast as register access. Shared memory is unini- 57‘;?’
, ‘g tialized at the beginning of execution, and resident data is private to each TB Y
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3(c). The tile is first traversed along the column and data is coalesced loaded
into a buffer in shared memory, indicated by the grayed arrows. The algorithm
then operates on the data along the row from shared memory before moving
to the next tile. The performance improyement from doing coalesced loads and
us.iil_%shaﬁ% miimory m;ﬁes this worthwhile despite the instruction overhead.
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Fig. 3. Graphical View of Data Traversal: (a) Row (b) Column (c) Tiled

For example, the memory access to array a on line 18 of Figure 2 does not
coalesce because it violates rule number 2. For each iteration of the loop, thread N
accesses a [N*ASIZE + i]; bki does not matter since the threads are in the same
thread block. This means that each thread is accessing data vertically adjacent
to each other, as in Figure 3(a), which does not trigger coalescing.

Figure 4 shows the kernel code from Figure 2 rewritten by hand so the al-
gorithm is tiled and the memory accesses coalesced. The amount of code is
roughly doubled. The original loop has been tiled and additional code is in-
serted to load/store data between global and shared memory. The load from
array a on line 25 is coalesced since thread N accesses a[k*ASIZE + NJ on each
iteration. The computation kernel now operates on the data in shared memory,
and the loop around it has included the check on line 12 of the original code as
an additional condition. In other words, the excess threads we mentioned back
in Section 2.1 may be used to perform memory coalescing accesses, but must not
be allowed to perform actual computation.

This rewriting is a large additional burden on the programmer. Not only must
the programmer fulfill the memory cosalescing requirements, the programmer also
has to maintain correctness. The performance improvement this optimization
provides will be the ideal, or oracle, case for CUDA-lite.

3 CUDA-lite

Since the behavior of memory coalescing is complex yet understood, we believe
that such transformations are best undertaken by an automated tool. This would
reduce the potential for errors in writing mermory coalescing code, and reduce the
burden upon programmers. In our vision, programmers would provide a straight-
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“Fig. 5. CUDA-lite Annotations -






