
Practical SIMD Vectorization Techniques for Intel® Xeon Phi™ Coprocessors
Xinmin Tian, Hideki Saito, Serguei V. Preis‡, Eric N. Garcia, Sergey S. Kozhukhov‡

Matt Masten, Aleksei G. Cherkasov‡ and Nikolay Panchenko‡

Mobile Computing and Compilers
Software and Service Group, Intel Corporation

Santa Clara, California, USA and ‡Novosibirsk, Russia
Email: {xinmin.tian, hideki.saito, serguei.v.preis, eric.n.garcia}@intel.com

Abstract — Intel® Xeon Phi™ coprocessor is based on the
Intel® Many Integrated Core (Intel® MIC) architecture,
which is an innovative new processor architecture that
combines abundant thread parallelism with long SIMD vector
units. Efficiently exploiting SIMD vector units is one of the
most important aspects in achieving high performance of the
application code running on Intel® Xeon Phi™ coprocessors.
In this paper, we present several practical SIMD vectorization
techniques such as less-than-full-vector loop vectorization,
Intel® MIC specific alignment optimization, and small matrix
transpose/multiplication 2-D vectorization implemented in the
Intel® C/C++ and Fortran production compilers for Intel®
Xeon Phi™ coprocessors. A set of workloads from several
application domains is employed to conduct the performance
study of our SIMD vectorization techniques. The performance
results show that we achieved up to 12.5x performance gain on
the Intel® Xeon Phi™ coprocessor.

Keywords: SIMD vectorization, Intel® Xeon Phi™ coprocessor,
Intel® MIC Architecture, compiler optimization

I. INTRODUCTION
The Intel® Xeon Phi™ coprocessor is based on the Intel®
Many Integrated Core (Intel® MIC) architecture, which
consists of many small, power efficient, in-order cores, each
of which has a powerful 512-bit vector processing unit
(SIMD unit) [9]. It is designed to serve the needs of
applications that are highly parallel, make extensive use of
SIMD vector operations, or are memory bandwidth bound.
Hence, it is targeted for highly parallel, High Performance
Computing (HPC) workloads [21] in a variety of fields such
as computational physics, chemistry, biology, and financial
services [19]. The Intel® Xeon Phi™ Coprocessor 5110P
has the following key specifications:

� 60 cores, 240 threads (4 threads/core)
� 1.053GHz
� 1TeraFLOP double precision theoretical peak performance
� 8GB memory with 320GB/s bandwidth
� 512bit wide SIMD vector engine
� 32KB L1, 512KB L2 cache per core
� Fused Multiply-Add (FMA) support

 One Teraflop theoretical peak performance is computed
as follows: 1.053GHz × 60 cores × 8 double-precision
elements in SIMD vector × 2 flops per FMA. As such, any
compute bound applications trying to achieve high

performance on Intel® Xeon Phi™ coprocessors need to
exploit a high degree of parallelism and wide SIMD vectors.
Using a 512-bit vector unit, 16 single precision (or 8 double
precision) floating point (FP) operations can be performed
as a single vector operation. With the help of the fused
multiply-add (FMA) instruction, up to 32 FP operations can
be performed at each core at each cycle. In comparison to
the current 128-bit SSE and 256-bit AVX vector extensions,
this new coprocessor can pack up to 8x and 4x the number
of operations into a single instruction, respectively.

 Wider SIMD vector units cannot be effectively utilized by
simply extending the vectorizer for Intel® SSE and Intel
AVX® architectures. Consider the following simple
example. There exists a scalar loop that executes N-
iterations. Using the vector length of VL, a vector loop would
execute floor(N/VL) full vector iterations followed by N mod
VL scalar remainder iterations. Unless N is sufficiently larger
than VL, executing N mod VL scalar iterations can still be a
significant portion of the vector execution of such a loop. In
what follows, we will discuss two approaches in handling
such “less than full vector” situations: The first technique is
masked vectorization and the second technique is small
matrix optimization and 2-dimentional (2-D) vectorization.

 Furthermore, architectural/micro-architectural differences
between Intel® Xeon Phi™ coprocessors and Intel® Xeon
processors necessitates that new compiler techniques be
developed. This paper focuses on three SIMD vectorization
techniques and makes the following contributions.

� We propose an extended compiler scheme to vectorize
short trip-count loops, peeling and remainder loops, that
are classified as “less than full vector” cases, with a
masking capability supported by the Intel® MIC
architecture.

� We describe our specific data alignment strategies for
achieving optimal performance through vectorization,
as the Intel® MIC architecture is much more
demanding on memory alignment than the Intel® AVX
architecture [10].

� We describe our 2-Dimensional vectorization method
which is beyond the conventional loop vectorization for
small matrix transpose and multiplication operations by
fully utilizing long SIMD vector units, swizzle, shuffle
and masking support on the Intel® MIC architecture.

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.245

1149

Figure 2.1. SIMD vector compilation infrastructure for function and loop vectorization

 The rest of this paper is organized as follows: Section II
provides a high-level overview of Intel® C/C++ and Fortran
compilers. In Section III, the compiler details of “less than
full vector” loop vectorization are described and discussed.
Specific data alignment strategies for the Intel® Xeon Phi™
coprocessor and the schemes of performing data alignment
optimization are discussed in Section IV. Section V presents
the 2-D vectorization methods for small matrix transpose and
multiplication. Section VI discusses related work. Section
VII provides the performance results with a set of workloads
and micro-benchmarks. Section VIII concludes the paper.

II. COMPILER ARCHITECTURE FOR VECTORIZATION
This section describes the Intel® C/C++ and Fortran
compiler support for the Intel® Xeon Phi™ coprocessor at a
high level with respect to loop vectorization, and the
translation and optimization of SIMD vector extensions [3,
4, 23]. The compiler translates serial C/C++ and Fortran
code via automatic loop analysis or based on annotations
using the simd pragma and vector attributes into SIMD
instruction sequences. The compilation process is amenable
to many optimizations such as loop parallelization, memory
locality optimizations, classic loop transformations and
optimizations, redundancy elimination, and dead code
elimination before and after the loop/function vectorization.
Figure 2.1 depicts the SIMD compilation infrastructure of
the Intel® C/C++ and Fortran compilers for automatic loop
vectorization and compiling SIMD pragma, vector function
annotations and associated clauses. The framework consists
of four major parts:

� Perform automatic loop analysis, identify and analyze
programmer annotated functions and loops by parsing
and collecting function and loop vector properties. In
addition, our compiler framework can apply inter-
procedural analysis and optimization with profiling and
call-graph creation for automatic function vectorization.

� Generate vectorized function variants with properly
constructed signatures via function cloning and vector
signature generation.

� Vectorize simd for-loops that are identified by the
compiler or annotated using SIMD extensions (#pragma
simd can be used to vectorize outer loops), and cloned
vector function bodies and all arguments by leveraging
and extending our automatic loop vectorizer.

� Enable classical scalar, memory and loop optimizations,
and parallelization effectively, before or after loop and
function vectorization, for achieving good performance.

III. LESS THAN FULL VECTOR LOOP VECTORIZATION
WITH MASKING

Intel® Xeon Phi™ coprocessor provides long (512-bit)
SIMD vector hardware support for exploiting more
vector-level parallelism. The long SIMD vector unit
imposes the requirement of packing more scalar loop
iterations into a single vector loop iteration, which also
results in more iterations in the peeling loop, and/or in
the remainder loop remaining non-vectorized, due to the
fact that they don’t constitute the full SIMD vector (or
less than full vector) unit of Intel® MIC Architecture.
For example, consider the short trip-count loop below.

float x, y[31];
for (k=0; k<31; k++) {
 x = x + fsqrt(y[k]);
}

 When the loop is vectorized for Intel® SSE2 with
vector length=4 (128-bit), the remainder loop will have
3 iterations. When the loop is vectorized for the Intel®
MIC architecture with vector length=16 (512-bit), the
remainder loop will have 15 iterations. In another
situation, if the loop is unrolled by 16, then the
remainder loop will have 15 iterations, leaving the

Collect function annotations or function analysis information

Function cloning and vector signature generation

Function vectorization Identify and analyze functions by parsing annotations and
profiling information to decide function cloning and

signatures for matching caller&callee on target CPU/GPU
Memory/Loop optimizations

Loop Vectorization/Parallelization

Scalar Optimization and Code Generation

Phase-2: optimizing with program annotation
or profiling feedback information

Phase-1: compile and execute with call graph and profiling

vectorized and optimized binary code

1150

remaining 15 iterations in a scalar execution form.
Thus, vectorizing the peeling and remainder loops (i.e.
short trip-count loop in general) is very important for
the Intel® MIC Architecture. This section describes
how to apply vectorization, with masking support, to
peeling and remainder loops (i.e. short trip-count loop)
with special guarding masks to prevent the SIMD code
from exceeding original loop and memory access
boundaries. At a high-level, the following steps describe
our vectorization scheme without vectorization of
peeling and remainder loops.
� s0:�Select�alignment,�vector�length,�and�unroll�factor�
� s1:�Generate�alignment�setup�code�
� s2:�Compute�the�trip�count�of�the�peeling�loop�
� s3:�Emit�the�scalar�peeling�loop��
� s4:�Generate�the�vector�loop�initialization�code�
� s5:�Emit�the�main�vector�loop�
� s6:�Compute�the�trip�count�of�the�remainder�loop��
� s7:�Emit�the�scalar�remainder�loop��

 Given the simple example below, the loop trip-count
‘n’ and the pointer ‘y’ (&y[0]) have a memory
alignment that is unknown at compile time.

float foo(float *y, int n)
{ int k; float x = 10.0f;
 for (k = 0; k < n; k++) {
 x = x + fsqrt(y[k])
 }
 return x;
}

 On the Intel® MIC Architecture the vector length is
512 bits, which requires 64-byte alignment for efficient
memory accesses. To achieve 64-byte aligned memory
loads/stores, we need to pack 16 float (32-bit) elements
for each single vector iteration and generate a peeling
loop. The following pseudo-code shows the vectorized
loop based on the vectorization steps [s0, s1, …, s7]
described above. The “less than full vector” loops, i.e.
the peeling and remainder loops, are not vectorized.

�������	
������������
�������������������������
����������

misalign = &y[0] & 63
peeledTripCount = (63 – misalign)/sizeof(float)
x = 10.0f;
do k0 = 0, peeledTripCount-1 // peeling loop
 x = x + fsqrt(y[k0])
enddo
x1_v512 = (m512)0
x2_v512 = (m512)0
mainTripCount = n – ((n – peeledTripCount) & 31)
do k1 = peeledTripCount, mainTripCount-1, 32

x1_v512 = _mm512_add_ps(
 _mm512_fsqrt(y[k1:16]),x1_v512)
x2_v512 = _mm512_add_ps(
 _mm512_fsqrt(y[k1+16:16]), x2_v512)

enddo
// perform vector add on two vector x1_v512 and x2_v512
x1_v512 = _mm512_add_ps(x1_v512, x2_512);

// perform horizontal add on all elements of x1_v512, and
// the add x for using its value in the remainder loop
x = x + _mm512_hadd_ps(x1_512)
do k2 = mainTripCount, n // Remainder loop
 x = x + fsqrt(y[k2])
enddo

 Note that we performed loop unrolling for the main
vectorized loop, which allows the hardware to issue
more instructions per cycle by hiding memory access
latency and reducing branching. To enable the “less
than full vector” (i.e. peeling loop, remainder loop, or
short trip-count loop) vectorization, the loop
vectorization scheme is extended as below.
� s0:�Select�alignment,�vector�length�and�unroll�factor�
� s1:�Generate�alignment�setup�code�
� s2:�Compute�the�trip�count�of�peeling�loop�

� create�a�vector�of�16�elements�with�value�<0,�…,�15>�
� create� a� vector� of� 16� elements� with� value�

<peeledTripCount,�…,�peeledTripCount>��
� s3:�Emit�the�vectorized�peeling�loop�with�masking�operations�
� s4:�Generate�the�main�vector�loop�initialization�code�
� s5:�Emit�the�main�vector�loop�
� s6:�Compute�the�trip�count�of�the�remainder�loop��

� create� a� vector� of� 16� elements� with� the� value�
<mainTripCount,�…,�mainTripCount+15>�

� create� a� vector� of� 16� elements� with� the� value�
<origTripCount,�…,�origTripCount>��

� s7:� Emit� the� vectorized� remainder� loop� with� masking�
operations��

 The following pseudo-code shows the vectorized
loops based on the extended vectorization schemes [s0,
s1, …, s7] described as above.

������	
����������
�������������������������
����������������������

misalign = &y[0] & 63
peeledTripCount = (63 – misalign) / sizeof(float)
x = 10.0f;
// create a vector: <0,1,2,…15>
k0_v512 = _mm512_series_pi(0, 1, 16)

// create vector: all 16 elements are peeledTripCount
peeledTripCount_v512 =
 _mm512_broadcast_pi32(peeledTripCount)
x1_v512 = (m512)0
x2_v512 = (m512)0
do k0 = 0, peeledTripCount-1, 16
 // generate mask for vectorizing peeling loop
 mask = _mm512_compare_pi32_mask_lt(k0_v512,
 peeledTriPCount_v512)

x1_v512 = _mm512_add_ps_mask(
 _mm512_fsqrt(y[k0:16]), x1_v512, mask)

enddo

mainTripcount = n – ((n – peeledTripCount) & 31)
do k1 = peeledTripCount, mainTripCount-1, 32

x1_v512 = _mm512_add_ps(
 _mm512_fsqrt(y[k1:16]), x1_v512)
x2_v512 = _mm512_add_ps(
 _mm512_fsqrt(y[k1+16:16]), x2_v512)

enddo
// create a vector: <mainTripCount,
 mainTripCount+1 … mainTripCount+15>
k2_v512 = _mm512_series_pi(mainTripCount, 1, 16)

// create a vector: all 16 elements has the same value n
n_v512 = _mm512_broadcast_pi32(n)
step_v512 = _mm512_broadcast_pi32(16)

do k2 = mainTripCount, n, 16 // vectorized remainder loop
 mask = _mm512_compare_pi32_mask_lt(k2_v512, n_v512)

x1_v512 = _mm512_add_ps_mask(
 _mm512_fsqrt(y[k2:16]), x1_v512, mask)
k2_v512 = _mm512_add_ps(k2_v512, step_v512)

enddo

x1_v512 = _mm512_add_ps(x1_v512, x2_512);

1151

// perform horizontal add on 8 elements and final
// reduction sum to write the result back to x.
x = x + _mm512_hadd_ps(x1_512)

 In the cases of short trip-count loop vectorization of
peeling and remainder loops with runtime trip-count and
alignment checking, loops are vectorized as efficiently
as possible. These loops are vectorized with optimal
vector lengths and an optimal amount of profitable
unrolling regardless of a known loop trip count. This
provides better utilization of SIMD vector hardware
without sacrificing the performance of short loops. This
scheme allows us to completely eliminate scalar
execution of the loop in favor of masked SIMD vector
code generation. Special properties of the mask are used
to match unmasked code generation in most cases. E.g.,
masked scalar memory loads that could be unsafe under
an empty mask are considered safe under a remainder
mask since it is never empty.

Without adding the capability of short trip-count
loop vectorization, the loops in the ConvolutionFFT2D
benchmark with 7 iterations and double precision data
type would end up as a fully scalar execution. Applying
vectorization with masking to these short trip-count
loops results in a ~2x to ~5x speedup for the 7-iteration
short trip-count (or less than full vector) loops in the
ConvolutionFFT2D benchmarks on the Intel® MIC
Architecture.

IV. ALIGNMENT STRATEGY AND OPTIMIZATION
The Intel® Xeon Phi™ coprocessor is much more sensitive
to data alignment than the Intel® Xeon E5 processor, so
developing an Intel® MIC oriented alignment strategy and
optimization schemes is one of the key aspects for achieving
optimal performance.

� Similar to Intel® SSE4.2, the SIMD load+op
instructions require vector size alignment, which is 64
byte alignment for the Intel® MIC architecture.
However, simple load/store instructions require the
alignment information to be known at compile time on
the Intel® Xeon Phi™ coprocessor.

� Different from prior Intel® SIMD extensions, all SIMD
load/store instructions including gather/scatter require at
least element size alignment. Misaligned elements will
cause a fault. This necessitates the Intel® MIC
architecture ABI [15] to require that all memory
accesses be element-wise aligned.

� There are no special unaligned load/store instructions in
the Intel® Initial Many Core Instruction (Intel® IMCI)
set. This is overcome by using unpacking loads and
packing stores that are capable of dealing with unaligned
(element-aligned) memory locations. Due to their
unpacking and packing nature, these instructions cannot
be directly used for masked loads/stores, except under
special circumstances.

� The faulting nature of masked memory access
instructions in Intel® IMCI adds extra complexity to
those instructions addressing data outside paged
memory, and may fail even if actual data access is
masked out. The exceptions are gather/scatter
instructions.

 Therefore, the compiler aggressively performs data
alignment optimizations using traditional techniques such as
alignment peeling and alignment multi-versioning.

 Alignment peeling implies the creation of a pre-loop that
executes several iterations on unaligned data in order to
reach an aligned memory address. As a result, most of these
iterations are executed using aligned SIMD operations. The
pre-loop can be vectorized with masking as described in
Section II. Unfortunately, this scheme works only for one set
of co-aligned memory addresses, and the others are assumed
to be unaligned. In addition, our multi-versioning
optimization can be applied to the second set of co-aligned
locations by examining them dynamically. Aligned or
unaligned operations are used based on the results of the
examination.

 For unmasked unaligned (element-aligned) vector loads
and stores, the compiler uses unpacking/packing load and
store instructions. They are safe in this scenario and perform
much better than gather/scatter instructions. If the compiler
cannot prove the safety of the entire address range of a
particular memory access, it inserts a zero-mask check in
order to avoid a memory fault. All instructions with the same
mask are emitted under a single check to avoid execution
under the empty mask, and to eliminate multiple checks of
the same condition.

Unpacking and packing instructions may cause fault when
they are used with a mask, as they may address masked-out
invalid memory. On-the-fly data conversion may cause fault
even without masking. Thus, for unaligned masked and/or
converting loads/stores, the compiler uses gather/scatter
instructions instead for safety, even though this degrades
performance. Memory faults would never happen if each
memory access had at least one vector (64 bytes) of memory
paged after its initial address. This can be achieved by
padding each data section in the program and each
dynamically allocated object with 64 bytes. For developers
who are willing to do the padding to achieve optimal
performance from masked code, the compiler knob –opt-
assume-safe-padding was introduced. Under this knob,
unaligned masked and/or converting load/store operations
are emitted as unpacking loads/packing stores:
� In unmasked converting cases, as well as for cases with

peel/remainder masks, the compiler emits loads/stores
directly. The mask in this case will work since it is
dense.

� For an arbitrary masking scenario, an unmasked load
unpack instruction is used, which is safe due to the
padding assumption, followed by a masked move
(blend). The ‘non-empty-mask’ check guarantees that
the 64-byte padding is always enough for safety, that is,

1152

at least one item within the vector is to be loaded. Thus,
the tail end of the memory access is within 64 bytes
from meaningful data.

 The safe-padding optimization has provided notable
improvements on a number of benchmarks, e.g. 10% gain on
BlackScholes and selected Molecular Dynamics kernels.

V. SMALL MATRIX OPERATIONS 2-D VECTORIZATION

Frequently seen in HPC workloads, operations on small
matrices are a growing, profitable set of calculations for
vectorization on Intel® Xeon Phi™ coprocessors. With
the wider SIMD unit support, the Intel® C/C++ and Fortran
compilers are enhanced to vectorize common operations
on small matrices along 2 dimensions. Small matrices
are matrices whose data can reside entirely in one or
two 512-bit SIMD registers. Consider the example
Fortran loop nest with 32-bit float (or real) type below:

real, dimension(4,4) :: A, B, C
real sum
integer j, l, i
do j = 1, 4

 do l = 1, 4
 sum = 0.0
 do i = 1, 4
 sum = sum + A(i,l) * B(i,j)
 enddo
 C(l,j) = sum
 enddo
 enddo

Example 5.1: Small Matrix Multiplication Summation

With non-unit stride references present in the inner loop

of Example 5.1, the conventional inner loop vectorization
will not provide the most efficient vectorization of the loop
nest. The outer loop vectorization faces similar issues. The
Intel® C/C++ and Fortran compiler employs the wider
SIMD vector unit of the Intel® MIC architecture and
vectorizes this example loop across all three loop nesting
levels, named as 2-Dimentional (2-D) vectorization on small
matrices.

 The vectorization approach is detailed below with vector
intrinsic pseudo-code. For visualization, Figures 5.1 � 5.13
depict a snapshot of the various vector unit contents after
each corresponding instruction. The tables in each figure
represent a vector unit, whose name is in the leftmost column
and its contents in the rightmost four columns. Of the
rightmost four columns, the lowest addressed element is in
the top left corner and each consecutive element follows a
row-major addressing order.

 First, array data is loaded into a vector unit. With a wider
SIMD vector unit, the compiler is able to load the entire A
and B matrix each into a single vector unit.

a) Matrix A and B are loaded into two SIMD registers.
// Load A matrix from memory into vector register.
A_v512 = <A[1][1], A[1][2], … … , A[4][3], A[4][4]>

A_v512

A[1][1] A[1][2] A[1][3] A[1][4]

A[2][1] A[2][2] A[2][3] A[2][4]

A[3][1] A[3][2] A[3][3] A[3][4]

A[4][1] A[4][2] A[4][3] A[4][4]

Figure 5.1: Contents of vector register A_v512 after load.

// Load B matrix from memory into vector register.
B_v512 = <B[1][1], B[1][2], … … , B[4][3], B[4][4]>

B_v512

B[1][1] B[1][2] B[1][3] B[1][4]

B[2][1] B[2][2] B[2][3] B[2][4]

B[3][1] B[3][2] B[3][3] B[3][4]

B[4][1] B[4][2] B[4][3] B[4][4]

Figure 5.2: Contents of vector register B_v512 after load.

Next, the compiler optimizes the multiplication operation
between matrix A and matrix B, through a series of data
layout transformations and vector multiplication and
addition operations. The compiler identifies a matrix
multiplication in this loop and permutes the elements in
matrix A and matrix B setting up simple vector
multiplications and additions.

b) We can simplify the multiplication needed through a
transposition of the elements of A, followed a multiply and
add of each row B and with each row of transposed A. We
start by transposing the elements of A.

// First, create a vector unit of zeros.
A’_v512 = _mm512_setzero()

A’_v512

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Figure 5.3: A'_v512 after zero initialization.

 For the transpose operation, we use a set of new Intel®
MIC _mm512_mask_shuf128x32() intrinsic calls. Similarly
in classic architectures, this shuffle intrinsic is bound by
four 128-bit “lanes” in each vector register. Thus, this
intrinsic contains arguments for permute patterns for each of
the four 128-bit lanes, as well as a permute pattern for each
of the four 32 bit boundaries within each of those lanes. The
arguments are as follows:
 _m512 res = _mm512_mask_shuf128x32(_m512 v1,
 (I16) vmask, _m512 v2, (SI32)perm128, (SI32)perm32)

� res : result vector unit.
� v1: blend-to vector unit. The values in this vector unit will be blended

with the shuffled elements of the v2, according to the write mask.
� vmask : write mask. The write mask is a bit vector specifying which

elements to overwrite in v1 with the shuffle elements of v2.
� v2: incoming data vector unit. This vector unit holds the elements

which are to be shuffled.
� perm128: 128-bit lane permutation. This value specifies the

permutation order of the vector unit’s 128-bit lanes.
� perm32: element-wise permutation. This value specifies the

permutation order of the each of the four 32 bit boundaries within
each 128-bit lane.

// Begin transpose operation by shuffling elements into

1153

// desired order. Shuffle used to insert matrix diagonal
// into transpose result vector unit.
A’_v512 = _mm512_mask_shuf128x32(A’_v512, 0x8421,

 A_v512, _MM_PERM_DCBA, _MM_PERM_DCBA)

A’_v512

A[1][1] 0 0 0

0 A[2][2] 0 0

0 0 A[3][3] 0

0 0 0 A[4][4]

Figure 5.4: Vector register contents after first shuffle.

// Shuffle the next four elements and blend-in with the
// elements written from previous shuffle.
A’_v512 = _mm512_mask_shuf128x32(A’_v512, 0x4218,

 A_v512, _MM_PERM_CBAD, _MM_PERM_ADCB)

A’_v512

A[1][1] 0 0 A[4][1]

A[1][2] A[2][2] 0 0

0 A[2][3] A[3][3] 0

0 0 A[3][4] A[4][4]

Figure 5.5: Vector register contents after second shuffle.

// Shuffle the next four elements and blend-in with the
// elements written from previous shuffle.
A’_v512 = _mm512_mask_shuf128x32(A’_v512, 0x2184,

 A_v512, _MM_PERM_BADC, _MM_PERM_BADC)

A’_v512

A[1][1] 0 A[3][1] A[4][1]

A[1][2] A[2][2] 0 A[4][2]

A[1][3] A[2][3] A[3][3] 0

0 A[2][4] A[3][4] A[4][4]

Figure 5.6: Vector register contents after third shuffle.

// Shuffle the final four elements and blend-in with the
// elements written from previous shuffle to obtain the
// complete transpose.
A’_v512 = _mm512_mask_shuf128x32(A’_v512, 0x1842,

 A_v512, _MM_PERM_ADCB, _MM_PERM_CBAD)

A’_v512

A[1][1] A[2][1] A[3][1] A[4][1]

A[1][2] A[2][2] A[3][2] A[4][2]

A[1][3] A[2][3] A[3][3] A[4][3]

A[1][4] A[2][4] A[3][4] A[4][4]

Figure 5.7: Vector register contents after the final shuffle.

 After the elements of matrix A have been permuted
through transposition, each element of A and B is now in the
correct position within each vector unit for a vector product,
resulting in the same behavior as the dot product of rows and
columns.

c) Next, we perform the multiplication of each row of the
transposed A with each row of B, maintaining a sum of the
products from row to row.
// Load the first row of A’_v512 and broadcast that row to
// each of the remaining three rows
t1_v512 = _mm512_extload_ps(A’_v512[0:4],
 _MM_FULLUPC_NONE, _MM_BROADCAST_4X16, 0)

t1_v512

A[1][1] A[2][1] A[3][1] A[4][1]

A[1][1] A[2][1] A[3][1] A[4][1]

A[1][1] A[2][1] A[3][1] A[4][1]

A[1][1] A[2][1] A[3][1] A[4][1]

Figure 4.8: Vector register contents after load with broadcast

 Another useful intrinsic used in this optimization is the Intel®
MIC _mm512_swizzle_ps() intrinsic. This intrinsic is similar to that

of the shuffle above except it only permutes each 128-bit lane and
not each of the 32 boundaries within those lanes. The arguments are
as follows:
 _m512 res = _mm512_swizzle_ps(_mm512 v1, SI32 perm)
� res : result vector unit.
� v1 : incoming data vector unit to be permuted.
� perm: permutation pattern for each 128-bit lane.

// Load the first row of B_v512 and broadcast that row to
// each of the remaining three rows
t2_v512 = _mm512_swizzle_ps(B_v512,_MM_SWIZ_REG_AAAA)

t2_v512

B[1][1] B[1][2] B[1][3] B[1][4]

B[1][1] B[1][2] B[1][3] B[1][4]

B[1][1] B[1][2] B[1][3] B[1][4]

B[1][1] B[1][2] B[1][3] B[1][4]

Figure 5.9: Vector register contents illustrating swizzle.

// Multiply each element of t1_v512 with each element of
// t2_v512 and store result in C_v512
C_v512 = _mm512_mul_ps(t1_v512, t2_v512)

C_v512 t1_v512 * t2_v512

Figure 5.10: C_v512 vector unit contains element-wise
product of t1_v512 and t2_v512

// Load the second row of A’_v512 and broadcast that row
// to each of the remaining three rows
t1_v512 = _mm512_extload_ps(A’_v512[4:8],

 _MM_FULLUPC_NONE, _MM_BROADCAST_4X16, 0)

// Load the second row of B_v512 and broadcast that row to
// each of the remaining three rows
t2_v512 = _mm512_swizzle_ps(B_v512,_MM_SWIZ_REG_BBBB)

 Each subsequent multiplication must be accumulated for
each row. These multiplies and adds are the corresponding
dot product of rows and columns found in matrix
multiplication, but because of the earlier transpose, no
further permuting is required.
// Add the existing values of C_v512 with the product of
// t1_v512 and t2_v512 and store result in C_v512
C_v512 = _mm512_madd213_ps(t2_v512, t1_v512, C_v512)

// Load the third row of A’_v512 and broadcast that row to
// each of the remaining three rows
t1_v512 = _mm512_extload_ps(A’_v512[8:12],

 _MM_FULLUPC_NONE, _MM_BROADCAST_4X16, 0)

// Load the third row of B_v512 and broadcast that row to
// each of the remaining three rows
t2_v512 = _m512_swizzle_ps(B_v512, _MM_SWIZ_REG_CCCC)

// Add the existing values of C_v512 with the product of
// t1_v512 and t2_v512 and store result in C_v512
C_v512 = _mm512_madd213_ps(t2_v512, t1_v512,C_v512)

// Load the fourth row of A’_v512 and broadcast that row
// to each of the remaining three rows
t1_v512 = _mm512_extload_ps(A’_v512[12:16],

 _MM_FULLUPC_NONE, _MM_BROADCAST_4X16, 0)

t1_v512

A[1][4] A[2][4] A[3][4] A[4][4]

A[1][4] A[2][4] A[3][4] A[4][4]

A[1][4] A[2][4] A[3][4] A[4][4]

A[1][4] A[2][4] A[3][4] A[4][4]

Figure 5.11: t1_v512 vector register contents illustrating
final load with broadcast.

// Load the fourth row of B_v512 and broadcast that row to
// each of the remaining three rows
t2_v512 = _mm512_swizzle_ps(B_v512, _MM_SWIZ_REG_DDDD)

1154

t2_v512

B[4][1] B[4][2] B[4][3] B[4][4]

B[4][1] B[4][2] B[4][3] B[4][4]

B[4][1] B[4][2] B[4][3] B[4][4]

B[4][1] B[4][2] B[4][3] B[4][4]

Figure 5.12: t2_v512 vector register contents illustrating final swizzle.

// Add the existing values of C_v512 with the product of
// t1_v512 and t2_v512 and store result in C_v512
C_v512 = _mm512_madd213_ps(t2_v512, t1_v512, C_v512)

C_v512 t2_v512 * t1_v512 + C_v512

Figure 5.13: Final C_v512 vector unit contains sum of existing values of
C_v512 and element-wise products t2_v512 and t_v512

 After the simplified matrix multiplication, the loop
further requires that results be stored in the C matrix. With
all elements correctly computed and residing in vector unit
only one store operation is generated.

d) Finally, the result vector unit of values is stored to the C
array.

// The elements of vector register C_v512 are then stored
// to memory at &C[1][1]
 <C[1][1], C[1][2], … C[4][3], C[4][4]> = C_v512

 The 512-bit long SIMD vector unit of the Intel® MIC
architecture supports consumption of both matrix dimensions
for 2-D vectorization, fitting an entire small matrix (4x4 float
type) into one 512-bit SIMD vector register. This enables
more efficient flexible vectorization and optimizations for
small matrix operations. For example, the scalar version of
single precision 4x4 matrix multiply computation naively
executes 128 memory loads, 64 multiplies, 64 additions, and
16 memory stores. The small matrix 2-D vectorization
reduces instructions to 2 vector loads from memory, 4
multiplies, 4 shuffles, 4 swizzles, 3 additions, and 1 vector
store to memory for a reduction of approximately 15x in
number of instructions.

VI. PERFORMANCE EVALUATION
This section presents the performance results measured on
an Intel® Xeon Phi™ coprocessor system using a set of
workloads and micro-benchmarks.

A. Workloads
 We have selected a set of workloads to demonstrate the
performance benefits and importance of SIMD vectorization
on the Intel® MIC Architecture. These workloads exhibit
a wide range of application behavior that can be found in
areas such as high performance computing, financial
services, databases, image processing, searching, and other
domains. These workloads include:

NBody: NBody computations are used in many scientific
applications such as astrophysics [1] and statistical learning
algorithms [8]. The main computation involves two loops
that iterate over the bodies and computes a pair-wise
interaction between them.

2D 5x5 Convolution: Convolution is a common image
filtering computation used to apply effects such as blur and
sharpen. For a given 2D image and a 5x5 spatial filter
containing weights, this convolution computes the weighted
sum for the neighborhood of the 5x5 set of pixels.

Back Projection: Back projection is commonly used for
performing cone-beam image reconstruction of CT
projection values [11]. The input consists of a set of 2D
images that are "back-projected" onto a 3D volume in order
to construct a 3D grid of density values.

Radar (1D Convolution): The 1D convolution is widely
used in applications such as radar tracking, graphics, image
processing, etc.

Tree Search: In-memory tree structured index search is a
commonly used operation in database applications. This
benchmark consists of multiple parallel searches over a tree
with different queries, where the path through the tree is
determined based on the comparison of results of the query
and node value at each tree level.

B. System Configuration
The detailed information on the configuration of the Intel®
Xeon Phi™ Coprocessor used for the performance study and
for evaluating the effectiveness of SIMD vectorization
techniques is provided in Table 6.1.

System Parameters Intel® Xeon Phi™ Processor
Chips 1
Cores/Threads 61 and 244
Frequency 1 GHz
Data caches 32 KB L1, 512 KB L2 per core
Power Budget 300 W
Memory Capacity 7936 MB
Memory Technology GDDR5
Memory Speed 2.75 (GHz) (5.5 GT/s)
Memory Channels 16
Memory Data Width 32 bits
Peak Memory Bandwidth 352 GB/s
SIMD vector length 512 bits

TABLE 6.1 TARGET SYSTEM CONFIGURATION

C. Performance Results

All benchmarks were compiled as native executables using
the Intel® 13.0 product compilers and run on the Intel®
Xeon Phi™ coprocessor system specified in Table 6.1. To
demonstrate the performance gains obtained through the
SIMD vectorization, two versions of the binaries were
generated for each workload. The baseline version was
compiled with OpenMP parallelization only (-mmic -
openmp -novec), the vectorized version is compiled with
vectorization (default ON) and OpenMP parallelization (-
mmic –openmp).

 The performance scaling is derived from the OpenMP –
only execution and OpenMP with 512-bit SIMD vector
execution on the Intel® Xeon Phi™ coprocessor system we
described at beginning of this section. That is, when the

1155

workload contains 32-bit single-precision computations, 16-
way vectorization may be achieved. When the workload
contains 64-bit double-precision computations, 8-way
vectorization is achieved.

FIGURE 6.1. PERFORMANCE RESULTS OF WORKLOADS

 Figure 6.1 shows the normalized SIMD performance
speedups of five workloads. The generated SIMD code of
these workloads achieved SIMD speedups ranging from
2.25x to 12.45x. Besides those classical HPC applications
with regular array accesses and computations, the workload
with a large amount of branching codes, such as Tree Search
used in database applications, achieves 2.25x speedup as
well with SIMD vectorzation based on the masking support
in the Intel® MIC architecture.

D. Impact of Less-Than-Full-Vector Loop Vectorization
To examine the impact of the less-than-full-vector loop

vectorization, a simple micro-benchmark was written with
three small kernel functions: intAdd, floatAdd, and
doubleAdd. Each of them has a short trip-count loop that
takes 3 arrays, a, b, c of size 31 and does an element-wise
addition with respect to int, float and double data
types. The vector length is 16 iterations for loops in the
intAdd and floatAdd kernels, and 8 iterations for the
loop in the doubleAdd kernel function. This experimental
setup ensures the intAdd and floatAdd loops contain a
15-iteration remainder loops, and the doubleAdd loop
contains a 7-iteration remainder loop which can be
vectorized with the “less�than�full�vector” loop SIMD
vectorization technique using masking support described in
the Section II.

 Figure 6.2 shows performance gains from vectorization
without “less�than�full�vector” loop vectorization and with
“less�than�full�vector” loop vectorization for three short
trip-count loops in the intAdd, floatAdd and doubleAdd
kernel functions. The generated SIMD code of these loops
achieves a speedup ranging from 2.89x to 3.32x without
“less�than�full�vector” loop vectorization. With “less�than�
full�vector” loop vectorization, the performance speedup is
improved significantly, and ranges from 3.28x to 7.68x.
Note that in this measurement, all data are 64-byte aligned,

there are no peeling loops generated, and the aligned
memory load/store instructions such as vmovaps and
vmovapd [9] are generated to achieve optimal performance.
The next sub-section shows the data alignment impact on
the Intel® MIC architecture.

FIGURE 6.2. PERFORMANCE GAIN WITH “LESS-THAN-FULL-VECTOR”
 LOOP VECTORIZATION

E. Impact of Data Alignment

These kernel loops used in Sub-section D are re-used for
this measurement. In this study, the difference is that we
don’t provide alignment information of the array a, b, and
c. Without alignment information, given these loops are
short trip-count loops with constant trip count, the compiler
generates SIMD instructions:
� vloadunpackld and vloadunpackhd to load data

from unaligned memory locations, vpackstoreld
and vpackstorehd [9] to store data to unaligned
memory locations for the vectorized main loop.

� vgatherdps and vscatterdps instructions [9] to
load and store for the vectorized remainder loop with
write-mask.

FIGURE 6.3. PERFORMANCE GAIN WITH DATA ALIGNMENT

As shown in Figure 6.3, with data alignment information,
the performance of SIMD execution is 1.45x, 1.41x and
1.32x better than unaligned cases w.r.t int, float, and
double types of three kernel functions. The alignment

1156

optimization described in Section III is critical to achieving
optimal performance on Intel® MIC architecture.

F. Impact of Small Matrix 2-D Vectorization
Small matrix operations such as addition and multiply

have served as important parts of many HPC applications. A
number of classic compiler optimizations such as loop
complete unrolling, partial redundancy elimination (PRE),
scalar replacement, and partial summation have been
developed to achieve optimal vector execution performance.
The conventional inner or outer loop vectorization for 3-
level loop nests of 4x4 matrix operations is not performing
well on Intel® Xeon Phi™ coprocessor due to:

� Less effective use of 512-bit long SIMD unit, e.g. for
32-bit float data type, when either inner loop or outer
loop is vectorized. In this case 4-way vectorization is
used instead of 16-way vectorization.

� Side-effects on classic optimizations, e.g. the partial
redundancy elimination, partial summation, operator
strength reduction, etc. when the loop is vectorized.

As shown in Figure 6.4, the convention loop vectorization
on small matrix (4x4) operations does cause performance
degradation. For both cases of single-precision and double-
precision matrix (4x4) multiplications, the performance
degradation is ~50% when comparing against cases without
vectorization, which are used as the baseline performance.

FIGURE 6.4. PERFORMANCE GAIN/LOSS WITH SIMD VECTORIZATION

 In the case of the paired matrix multiplication, there are
two matrix (4x4) multiplications are done in a single loop
nest, and matrixB is transposed for computing sumy.
 do j = 1, 4
 do k = 1, 4
 sumx = 0.0
 sumy = 0.0
 do i = 1, 4
 sumx = sumx + matrixA(i,k) * matrixB(i,j)
 sumy = sumy + matrixA(i,k) * matrixB(j,i)
 enddo
 matrixC(k,j) = sumx
 matirxD(j,k) = sumy
 enddo
 enddo

 The classical loop optimizations are not as effective as for
the single matrix multiplication case due to the transpose
operation of matrixB and paired matrix multiplications in
the loop. Thus, the performance achieved with classical loop
optimization is on-par with applying conventional loop
vectorization, and no notable performance difference is
observed as shown in Figure 6.4. Promisingly, applying the
small matrix 2-D vectorization we proposed in Section IV,
we achieved a performance speedup 1.15x / 1.04x for single
matrix (4x4 float/double type) multiplication, and a speedup
5.42x / 4.18x for paired matrix (4x4 float/double type)
transpose and multiplication, which demonstrates the
effectiveness of small matrix 2-D vectorization using long
SIMD vector unit supported by Intel® Xeon Phi™
coprocessor.

VII. RELATED WORK

The compiler vectorization technology [2] had been one of
the key loop transformations for traditional vector machine
decades ago. However, the recent proliferation of modern
SIMD architectures [9, 10] poses new constraints such as
data alignment, masking for control flow, non-unit stride
access to memory, and the fixed-length nature of SIMD
vectors, that shall demand more advanced vectorization
technologies and vectorization friendly programming
language extensions [23].

 In the past three plus decades, the rich body of SIMD
vectorization capabilities has been incorporated in a number
of industry and research compilers [2, 3, 4, 7, 12, 14, 24].
These include works based on ICC (the Intel compiler) [3,
4], XLC (the IBM compiler) [7, 24], VAST [6], GCC [16,
17], and the SUIF compiler [5]. However, there are many
unknown program factors such as loop trip count, memory
access stride and patterns, alignment and control flow
complexity at compile-time, that pose challenges to the
modern optimizing compiler’s ability to apply advanced and
practical vectorization techniques, and fulfill the semantic
gap between application programs and the modern
processors such as Intel® Xeon Phi™ coprocessor for
harnessing its computational power.

 Compared to the conventional loop vectorization[2,3,5],
the “less-than-full-vector” vectorization technique brings
extra performance benefits for those vectorizable short trip-
count loops, especially when the processor provides the
long SIMD unit masking capability like the Intel® Xeon
Phi™ coprocessor. Our alignment optimizations are built on
top of existing dynamic alignment optimizations as
presented in [3, 4]. However, the alignment strategy
described in this paper is designed to satisfy the requirement
of Intel® MIC architecture with optimal SIMD instruction
selection and mask utilization for safe and optimal
performance. Beyond traditional single-level loop
vectorization [2, 3, 16, 17, 22, 24] , the small matrix
operation 2-D vectorization increases vector-parallelism and

1157

improves the utilization efficiency of the long SIMD vector
unit, swizzle, shuffle, broadcast and mask support in Intel®
MIC architecture significantly.

 In addition, Programming language extensions such as
OpenMP* SIMD extensions [13, 18] and Cilk™ Plus [19,
23] function vectorization and loop vectorization through
the compiler has been paving the way to enable more
effective vector–level parallelism [13, 23] in both C/C++
and Fortran programming languages. To support these
SIMD vector programming models on the Intel® Xeon
Phi™ coprocessor effectively, the practical vectorization
techniques described in this paper are essential for achieving
optimal performance and ensuring SIMD code execution
safety on an Intel® Xeon Phi™ coprocessor system.

VIII. CONCLUSIONS

Driven by the increasing prevalence of SIMD architectures
in the Intel® Xeon Phi coprocessor, we proposed and
implemented new vectorization techniques to explore the
effective use of its long SIMD units. This paper presented
several practical SIMD vectorization techniques such as
less-than-full-vector loop vectorization, Intel® MIC specific
data alignment optimizations, and small matrix operations
2-D vectorization for the Intel® Xeon Phi™ coprocessor. A
set of workloads from several domains was employed to
evaluate the benefits of our SIMD vectorization techniques.
The results show that we achieved up to 12.5x performance
gain on Intel® Xeon Phi™ coprocessor.

 Intel® C/C++ and Fortran compilers are highly enhanced
for programmers to harness the computational power of
Intel® Xeon Phi™ coprocessors for accelerating highly
parallel applications found in chemistry, visual computing,
computational physics, biology, financial services, pixel,
multimedia, graphics and HPC applications by effectively
exploiting the use of the Intel® MIC architecture SIMD
vector unit beyond traditional loop SIMD vectorization.

REFERENCES
[1] Aarseth,S.J., Gravitational n-body Simulations Tools and Algorithms.

2003.

[2] Allen, R. and K. Kennedy, K., “Automatic translation of FORTRAN
programs to vector form,” ACM Trans. Program. Lang. Syst., vol. 9,
no. 4, pp. 491–542, 1987.

[3] Bik, A. J., Girkar, M., Grey, P. M., and Tian, X., .Automatic Intra-
Register Vectorization for the Intel Architecture. International
Journal of Parallel Programming, (2):65-98, April 2002.

[4] Bik, A. J. C, Kreitzer, D., Tian, X.: A Case Study on Compiler
Optimizations for the Intel® CoreTM 2 Duo Processor. International
Journal of Parallel Programming 36 (6): 571-591, 2008

[5] Cheong, G., and Lam, M. S., An Optimizer for Multimedia
Instruction Sets, In Second SUIF Compiler Workshop, August 1997

[6] Crescent Bay Software. VAST-F/AltiVec: Automatic Fortran
Vectorizer for PowerPC Vector Unit. http://www.psrv.com/vast
altivec.html, 2004.

[7] Eichenberger, A., O’Brien, K., , Wu, P., Chen, T., el.al,. Optimizing
Compiler for the CELL Processor. In Proceedings of the 14th
international Conference on Parallel Architectures and Compilation
Techniques, 2005.

[8] Gray, A.G. and A. W. Moore, A. W., ‘N-Body’ Problems in
Statistical Learning. In NIPS, pages 521-527, 2000..

[9] Intel Corporation, “Intel® Xeon Phi™ Coprocessor System Software
Developers Guide,” November 2012, http://software.intel.com/en-
us/mic-developer.

[10] Intel Corporation. Intel® Advanced Vector Extensions Programming
Reference, Document number 319433-011, June 2011.

[11] Kachelrieb, M., Knaup, M., Bockenbach, O., Hyperfast perspective
cone-beam backprojection. IEEE Nuclear Sci., pp. 1679-1683, 2006.

[12] Karrenberg, R., Hack, S.: Whole-Function Vectorization. In: Proc. of
the 9th Intl. Ann. IEEE/ACM Symp. on Code Generation and
Optimization,, Charmonix, France, pp. 141–150 April 2011

[13] Klemm, M. Duran, A., Tian, X., Saito, H., Caballero, D., Martorell,
X.: Extending OpenMP* with Vector Constructs for Modern
Multicore SIMD Architectures. IWOMP 2012: pp.59-72.

[14] Larsen, S. and Amarasinghe, S., Exploiting Superword Level
Parallelism with Multimedia Instruction Sets. In Proceedings of the
SIGPLAN Conference on Programming Language Design and
Implementation, pages 145{156, June 2000.

[15] Lu, H.J., Garkar, M., Matz, M., Hubicka, J., Jaeger, A., Mitchell, M.
“System V Application Binary Interface K1OM Architecture
Processor Supplement”, Version 1.0, http://software.intel.com/en-
us/forums/topic/278102, April 26, 2012,

[16] Nuzman, D., Zaks, A.: Outer-loop Vectorization: Revisited for Short
SIMD Architectures. In: Proc. of the 17th Intl. Conf. on Parallel
Architectures and Compilation Techniques, Toronto, ON, Canada, pp.
2–11, October 2008

[17] Nuzman, D., Henderson, R.: Multi-platform Auto-vectorization. In:
Proc. of the 4th Ann. IEEE/ACM Intl. Symp. on Code Generation and
Optimization, New York, pp. 281–294, March 2006

[18] OpenMP Architecture Review Board, “OpenMP Application Program
Interface,” Version 4.0 (Release Candidate RC1), Novmeber 2012,
http://www.openmp.org

[19] Reinders, J., “An Overview of Programming for Intel® Xeon
processor and Intel® Xeon Phi™ Coprocessor,” 2012,
http://software.intel.com/enus/mic-developer

[20] Ren, G., Wu, P. and Padua, D., A preliminary study on the
Vectorization of multimedia applications for multimedia extensions.
In 16th International Workshop of Languages and Compilers for
Parallel Computing, October 2003.

[21] Satish, N., Kim, C., J. Chhugani, J., H. Saito, H., Krishnaiyer, R., M.
Smelyanskiy, M., Girkar, M., and Dubey, P.“Can traditional
programming bridge the ninja performance gap for parallel
computing applications?” in Proceedings of the 39th Annual
International Symposium on Computer Architecture, ser. ISCA, 2012

[22] Shin, J., Hall, M. and Chame, J. “Superword-Level Parallelism in the
Presence of Control Flow,” in CGO. IEEE Computer Society, 2005,
pp. 165–175, 2005

[23] Tian, X., Saito, H., Girkar M., Preis, S.V., Kozhukhov, S.S.,
Cherkasov, A.G., Nelson, C., Panchenko, N., Geva, R. Compiling
C/C++ SIMD Extensions for Function and Loop Vectorization on
Multicore-SIMD Processors. In proc. of IEEE 26th International
Parallel and Distributed Processing Symposium - Multicore and GPU
Prog. Models, Lang. and Compilers Workshop, pp.2349 – 2358, 2012

[24] Wu, P., Eichenberger, A. E. and Wang, A., Efficient SIMD Code
Generation for Runtime Alignment. In Proceedings of CGO, 2005.

1158

