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Abstract — Intel® Xeon Phi™ coprocessor is based on the 
Intel® Many Integrated Core (Intel® MIC) architecture, 
which is an innovative new processor architecture that 
combines abundant thread parallelism with long SIMD vector 
units. Efficiently exploiting SIMD vector units is one of the 
most important aspects in achieving high performance of the 
application code running on Intel® Xeon Phi™ coprocessors. 
In this paper, we present several practical SIMD vectorization 
techniques such as less-than-full-vector loop vectorization, 
Intel® MIC specific alignment optimization, and small matrix 
transpose/multiplication 2-D vectorization implemented in the 
Intel® C/C++ and Fortran production compilers for Intel® 
Xeon Phi™ coprocessors. A set of workloads from several 
application domains is employed to conduct the performance 
study of our SIMD vectorization techniques. The performance 
results show that we achieved up to 12.5x performance gain on 
the Intel® Xeon Phi™ coprocessor.   

Keywords: SIMD vectorization, Intel® Xeon Phi™  coprocessor, 
Intel® MIC Architecture,  compiler optimization 

I.  INTRODUCTION 
The Intel® Xeon Phi™ coprocessor is based on the Intel® 
Many Integrated Core (Intel® MIC) architecture, which 
consists of many small, power efficient, in-order cores, each 
of which has a powerful 512-bit vector processing unit 
(SIMD unit) [9]. It is designed to serve the needs of 
applications that are highly parallel, make extensive use of 
SIMD vector operations, or are memory bandwidth bound. 
Hence, it is targeted for highly parallel, High Performance 
Computing (HPC) workloads [21] in a variety of fields such 
as computational physics, chemistry, biology, and financial 
services [19]. The Intel® Xeon Phi™ Coprocessor 5110P 
has the following key specifications: 

� 60 cores, 240 threads (4 threads/core) 
� 1.053GHz 
� 1TeraFLOP double precision theoretical peak performance 
� 8GB memory with 320GB/s bandwidth 
� 512bit wide SIMD vector engine 
� 32KB L1, 512KB L2 cache per core 
� Fused Multiply-Add (FMA) support 

    One Teraflop theoretical peak performance is computed 
as follows: 1.053GHz × 60 cores × 8 double-precision 
elements in SIMD vector × 2 flops per FMA. As such, any 
compute bound applications trying to achieve high 

performance on Intel® Xeon Phi™ coprocessors need to 
exploit a high degree of parallelism and wide SIMD vectors. 
Using a 512-bit vector unit, 16 single precision (or 8 double 
precision) floating point (FP) operations can be performed 
as a single vector operation. With the help of the fused 
multiply-add (FMA) instruction, up to 32 FP operations can 
be performed at each core at each cycle. In comparison to 
the current 128-bit SSE and 256-bit AVX vector extensions, 
this new coprocessor can pack up to 8x and 4x the number 
of operations into a single instruction, respectively.  

    Wider SIMD vector units cannot be effectively utilized by 
simply extending the vectorizer for Intel® SSE and Intel 
AVX® architectures. Consider the following simple 
example. There exists a scalar loop that executes N-
iterations. Using the vector length of VL, a vector loop would 
execute floor(N/VL) full vector iterations followed by N mod 
VL scalar remainder iterations. Unless N is sufficiently larger 
than VL, executing N mod VL scalar iterations can still be a 
significant portion of the vector execution of such a loop. In 
what follows, we will discuss two approaches in handling 
such “less than full vector” situations: The first technique is 
masked vectorization and the second technique is small 
matrix optimization and 2-dimentional (2-D) vectorization. 

    Furthermore, architectural/micro-architectural differences 
between Intel® Xeon Phi™ coprocessors and Intel® Xeon 
processors necessitates that new compiler techniques be 
developed. This paper focuses on three SIMD vectorization 
techniques and makes the following contributions. 

� We propose an extended compiler scheme to vectorize 
short trip-count loops, peeling and remainder loops, that 
are classified as “less than full vector” cases, with a 
masking capability supported by the Intel® MIC 
architecture.  

� We describe our specific data alignment strategies for 
achieving optimal performance through vectorization, 
as the Intel® MIC architecture is much more 
demanding on memory alignment than the Intel® AVX 
architecture [10]. 

� We describe our 2-Dimensional vectorization method 
which is beyond the conventional loop vectorization for 
small matrix transpose and multiplication operations by 
fully utilizing long SIMD vector units, swizzle, shuffle 
and masking support on the Intel® MIC architecture.  
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Figure 2.1. SIMD vector compilation infrastructure for function and loop vectorization 

    The rest of this paper is organized as follows: Section II 
provides a high-level overview of Intel® C/C++ and Fortran 
compilers. In Section III, the compiler details of “less than 
full vector” loop vectorization are described and discussed. 
Specific data alignment strategies for the Intel® Xeon Phi™ 
coprocessor and the schemes of performing data alignment 
optimization are discussed in Section IV. Section V presents 
the 2-D vectorization methods for small matrix transpose and 
multiplication. Section VI discusses related work. Section 
VII provides the performance results with a set of workloads 
and micro-benchmarks. Section VIII concludes the paper.   

II. COMPILER ARCHITECTURE FOR VECTORIZATION  
This section describes the Intel® C/C++ and Fortran 
compiler support for the Intel® Xeon Phi™ coprocessor at a 
high level with respect to loop vectorization, and the 
translation and optimization of SIMD vector extensions [3, 
4, 23]. The compiler translates serial C/C++ and Fortran 
code via automatic loop analysis or based on annotations 
using the simd pragma and vector attributes into SIMD 
instruction sequences. The compilation process is amenable 
to many optimizations such as loop parallelization, memory 
locality optimizations, classic loop transformations and 
optimizations, redundancy elimination, and dead code 
elimination before and after the loop/function vectorization. 
Figure 2.1 depicts the SIMD compilation infrastructure of 
the Intel® C/C++ and Fortran compilers for automatic loop 
vectorization and compiling SIMD pragma, vector function 
annotations and associated clauses. The framework consists 
of four major parts:  

� Perform automatic loop analysis, identify and analyze 
programmer annotated functions and loops by parsing 
and collecting function and loop vector properties. In 
addition, our compiler framework can apply inter-
procedural analysis and optimization with profiling and 
call-graph creation for automatic function vectorization.  

� Generate vectorized function variants with properly 
constructed signatures via function cloning and vector 
signature generation.  

� Vectorize simd for-loops that are identified by the 
compiler or annotated using SIMD extensions (#pragma 
simd can be used to vectorize outer loops), and cloned 
vector function bodies and all arguments by leveraging 
and extending our automatic loop vectorizer.  

� Enable classical scalar, memory and loop optimizations, 
and parallelization effectively, before or after loop and 
function vectorization, for achieving good performance. 
 

III. LESS THAN FULL VECTOR LOOP VECTORIZATION 
WITH MASKING  

 

Intel® Xeon Phi™ coprocessor provides long (512-bit) 
SIMD vector hardware support for exploiting more 
vector-level parallelism. The long SIMD vector unit 
imposes the requirement of packing more scalar loop 
iterations into a single vector loop iteration, which also 
results in more iterations in the peeling loop, and/or in 
the remainder loop remaining non-vectorized, due to the 
fact that they don’t constitute the full SIMD vector (or 
less than full vector) unit of Intel® MIC Architecture. 
For example, consider the short trip-count loop below. 

float x, y[31];
for (k=0; k<31; k++) { 
    x = x + fsqrt(y[k]); 
}

 

    When the loop is vectorized for Intel® SSE2 with 
vector length=4 (128-bit), the remainder loop will have 
3 iterations. When the loop is vectorized for the Intel® 
MIC architecture with vector length=16 (512-bit), the 
remainder loop will have 15 iterations. In another 
situation, if the loop is unrolled by 16, then the 
remainder loop will have 15 iterations, leaving the 

Collect function annotations or function analysis information

Function cloning and vector signature generation  

Function vectorization  Identify and analyze functions by parsing annotations and 
profiling information to decide function cloning and 

signatures for matching caller&callee on target CPU/GPU  
Memory/Loop optimizations 

Loop Vectorization/Parallelization 

Scalar Optimization and Code Generation 

Phase-2: optimizing with program annotation 
or profiling feedback information 

Phase-1:  compile and execute with call graph and profiling 

vectorized and optimized binary code 
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remaining 15 iterations in a scalar execution form. 
Thus, vectorizing the peeling and remainder loops (i.e. 
short trip-count loop in general) is very important for 
the Intel® MIC Architecture. This section describes 
how to apply vectorization, with masking support, to 
peeling and remainder loops (i.e. short trip-count loop) 
with special guarding masks to prevent the SIMD code 
from exceeding original loop and memory access 
boundaries. At a high-level, the following steps describe 
our vectorization scheme without vectorization of 
peeling and remainder loops.   
� s0:�Select�alignment,�vector�length,�and�unroll�factor�
� s1:�Generate�alignment�setup�code�
� s2:�Compute�the�trip�count�of�the�peeling�loop�
� s3:�Emit�the�scalar�peeling�loop��
� s4:�Generate�the�vector�loop�initialization�code�
� s5:�Emit�the�main�vector�loop�
� s6:�Compute�the�trip�count�of�the�remainder�loop��
� s7:�Emit�the�scalar�remainder�loop��

     Given the simple example below, the loop trip-count 
‘n’ and the pointer ‘y’ (&y[0]) have a  memory 
alignment that is  unknown at compile time.  

float foo(float *y, int n)
{  int k; float x = 10.0f; 
   for (k = 0; k < n; k++) { 
     x = x + fsqrt(y[k])
   }
   return x; 
}

    On the Intel® MIC Architecture the vector length is 
512 bits, which requires 64-byte alignment for efficient 
memory accesses. To achieve 64-byte aligned memory 
loads/stores, we need to pack 16 float (32-bit) elements 
for each single vector iteration and generate a peeling 
loop. The following pseudo-code shows the vectorized 
loop based on the vectorization steps [s0, s1, …, s7] 
described above. The “less than full vector” loops, i.e. 
the peeling and remainder loops, are not vectorized.         

 
�������	
������������
�������������������������
����������

misalign = &y[0] & 63 
peeledTripCount = (63 – misalign)/sizeof(float) 
x = 10.0f; 
do k0 = 0, peeledTripCount-1  // peeling loop
   x = x + fsqrt(y[k0])
enddo
x1_v512 = (m512)0 
x2_v512 = (m512)0 
mainTripCount = n – ((n – peeledTripCount) & 31) 
do k1 = peeledTripCount, mainTripCount-1, 32 

x1_v512 = _mm512_add_ps( 
                _mm512_fsqrt(y[k1:16]),x1_v512) 
x2_v512 = _mm512_add_ps( 
                _mm512_fsqrt(y[k1+16:16]), x2_v512) 

enddo
// perform vector add on two vector x1_v512 and x2_v512 
x1_v512 = _mm512_add_ps(x1_v512, x2_512);

// perform horizontal add on all elements of x1_v512, and 
// the add x for using its value in the remainder loop
x = x + _mm512_hadd_ps(x1_512) 
do k2 = mainTripCount, n  // Remainder loop
   x = x + fsqrt(y[k2])
enddo

    Note that we performed loop unrolling for the main 
vectorized loop, which allows the hardware to issue 
more instructions per cycle by hiding memory access 
latency and reducing branching. To enable the “less 
than full vector” (i.e. peeling loop, remainder loop, or 
short trip-count loop) vectorization, the loop 
vectorization scheme is extended as below.   
� s0:�Select�alignment,�vector�length�and�unroll�factor�
� s1:�Generate�alignment�setup�code�
� s2:�Compute�the�trip�count�of�peeling�loop�

� create�a�vector�of�16�elements�with�value�<0,�…,�15>�
� create� a� vector� of� 16� elements� with� value�

<peeledTripCount,�…,�peeledTripCount>��
� s3:�Emit�the�vectorized�peeling�loop�with�masking�operations�
� s4:�Generate�the�main�vector�loop�initialization�code�
� s5:�Emit�the�main�vector�loop�
� s6:�Compute�the�trip�count�of�the�remainder�loop��

� create� a� vector� of� 16� elements� with� the� value�
<mainTripCount,�…,�mainTripCount+15>�

� create� a� vector� of� 16� elements� with� the� value�
<origTripCount,�…,�origTripCount>��

� s7:� Emit� the� vectorized� remainder� loop� with� masking�
operations��

   The following pseudo-code shows the vectorized 
loops based on the extended vectorization schemes [s0, 
s1, …, s7] described as above.          

������	
����������
�������������������������
����������������������

misalign = &y[0] & 63 
peeledTripCount = (63 – misalign) / sizeof(float) 
x = 10.0f; 
// create a vector: <0,1,2,…15>
k0_v512 = _mm512_series_pi(0, 1, 16)

// create vector: all 16 elements are peeledTripCount 
peeledTripCount_v512 =
               _mm512_broadcast_pi32(peeledTripCount) 
x1_v512 = (m512)0 
x2_v512 = (m512)0 
do k0 = 0, peeledTripCount-1, 16 
  // generate mask for vectorizing peeling loop 
  mask = _mm512_compare_pi32_mask_lt(k0_v512,
                                    peeledTriPCount_v512) 

x1_v512 = _mm512_add_ps_mask( 
                _mm512_fsqrt(y[k0:16]), x1_v512, mask) 

enddo

mainTripcount = n – ((n – peeledTripCount) & 31) 
do k1 = peeledTripCount, mainTripCount-1, 32 

x1_v512 = _mm512_add_ps( 
                _mm512_fsqrt(y[k1:16]),    x1_v512) 
x2_v512 = _mm512_add_ps( 
                _mm512_fsqrt(y[k1+16:16]), x2_v512) 

enddo
// create a vector: <mainTripCount,
                     mainTripCount+1 … mainTripCount+15> 
k2_v512   = _mm512_series_pi(mainTripCount, 1, 16)

// create a vector: all 16 elements has the same value n
n_v512    = _mm512_broadcast_pi32(n)
step_v512 = _mm512_broadcast_pi32(16)

do k2 = mainTripCount, n, 16 // vectorized remainder loop 
  mask    = _mm512_compare_pi32_mask_lt(k2_v512, n_v512)

x1_v512 = _mm512_add_ps_mask( 
                _mm512_fsqrt(y[k2:16]), x1_v512, mask) 
k2_v512 = _mm512_add_ps(k2_v512, step_v512) 

enddo

x1_v512 = _mm512_add_ps(x1_v512, x2_512);
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// perform horizontal add on 8 elements and final
// reduction sum to write the result back to x.
x = x + _mm512_hadd_ps(x1_512)

    In the cases of short trip-count loop vectorization of 
peeling and remainder loops with runtime trip-count and 
alignment checking, loops are vectorized as efficiently 
as possible. These loops are vectorized with optimal 
vector lengths and an optimal amount of profitable 
unrolling regardless of a known loop trip count. This 
provides better utilization of SIMD vector hardware 
without sacrificing the performance of short loops. This 
scheme allows us to completely eliminate scalar 
execution of the loop in favor of masked SIMD vector 
code generation. Special properties of the mask are used 
to match unmasked code generation in most cases. E.g., 
masked scalar memory loads that could be unsafe under 
an empty mask are considered safe under a remainder 
mask since it is never empty.  
 

Without adding the capability of short trip-count 
loop vectorization, the loops in the ConvolutionFFT2D 
benchmark with 7 iterations and double precision data 
type would end up as a fully scalar execution. Applying 
vectorization with masking to these short trip-count 
loops results in a ~2x to ~5x speedup for the 7-iteration 
short trip-count (or less than full vector) loops in the 
ConvolutionFFT2D benchmarks on the Intel® MIC 
Architecture. 

IV. ALIGNMENT STRATEGY AND OPTIMIZATION 
The Intel® Xeon Phi™ coprocessor is much more sensitive 
to data alignment than the Intel® Xeon E5 processor, so 
developing an Intel® MIC oriented alignment strategy and 
optimization schemes is one of the key aspects for achieving 
optimal performance.  
 

� Similar to Intel® SSE4.2, the SIMD load+op 
instructions require vector size alignment, which is 64 
byte alignment for the Intel® MIC architecture.  
However, simple load/store instructions require the 
alignment information to be known at compile time on 
the Intel® Xeon Phi™ coprocessor.   

� Different from prior Intel® SIMD extensions, all SIMD 
load/store instructions including gather/scatter require at 
least element size alignment. Misaligned elements will 
cause a fault. This necessitates the Intel® MIC 
architecture ABI [15] to require that all memory 
accesses be element-wise aligned.     

� There are no special unaligned load/store instructions in  
the Intel® Initial Many Core Instruction (Intel® IMCI) 
set. This is overcome by using unpacking loads and 
packing stores that are capable of dealing with unaligned 
(element-aligned) memory locations. Due to their 
unpacking and packing nature, these instructions cannot 
be directly used for masked loads/stores, except under 
special circumstances. 

� The faulting nature of masked memory access 
instructions in Intel® IMCI adds extra complexity to 
those instructions addressing data outside paged 
memory, and may fail even if actual data access is 
masked out.  The exceptions are gather/scatter 
instructions. 

 

    Therefore, the compiler aggressively performs data 
alignment optimizations using traditional techniques such as 
alignment peeling and alignment multi-versioning.  

    Alignment peeling implies the creation of a pre-loop that 
executes several iterations on unaligned data in order to 
reach an aligned memory address. As a result, most of these 
iterations are executed using aligned SIMD operations. The 
pre-loop can be vectorized with masking as described in 
Section II. Unfortunately, this scheme works only for one set 
of co-aligned memory addresses, and the others are assumed 
to be unaligned. In addition, our multi-versioning 
optimization can be applied to the second set of co-aligned 
locations by examining them dynamically. Aligned or 
unaligned operations are used based on the results of the 
examination.  

    For unmasked unaligned (element-aligned) vector loads 
and stores, the compiler uses unpacking/packing load and 
store instructions. They are safe in this scenario and perform 
much better than gather/scatter instructions. If the compiler 
cannot prove the safety of the entire address range of a 
particular memory access, it inserts a zero-mask check in 
order to avoid a memory fault. All instructions with the same 
mask are emitted under a single check to avoid execution 
under the empty mask, and to eliminate multiple checks of 
the same condition.  

Unpacking and packing instructions may cause fault when 
they are used with a mask, as they may address masked-out 
invalid memory. On-the-fly data conversion may cause fault 
even without masking. Thus, for unaligned masked and/or 
converting loads/stores, the compiler uses gather/scatter 
instructions instead for safety, even though this degrades 
performance.  Memory faults would never happen if each 
memory access had at least one vector (64 bytes) of memory 
paged after its initial address. This can be achieved by 
padding each data section in the program and each 
dynamically allocated object with 64 bytes. For developers 
who are willing to do the padding to achieve optimal 
performance from masked code, the compiler knob –opt-
assume-safe-padding was introduced. Under this knob, 
unaligned masked and/or converting load/store operations 
are emitted as unpacking loads/packing stores: 
� In unmasked converting cases, as well as for cases with 

peel/remainder masks, the compiler emits loads/stores 
directly. The mask in this case will work since it is 
dense.  

� For an arbitrary masking scenario, an unmasked load 
unpack instruction is used, which is safe due to the 
padding assumption, followed by a masked move 
(blend). The ‘non-empty-mask’ check guarantees that 
the 64-byte padding is always enough for safety, that is, 
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at least one item within the vector is to be loaded. Thus, 
the tail end of the memory access is within 64 bytes 
from meaningful data. 

 

    The safe-padding optimization has provided notable 
improvements on a number of benchmarks, e.g. 10% gain on 
BlackScholes and selected Molecular Dynamics kernels.   

V. SMALL MATRIX OPERATIONS 2-D VECTORIZATION 

Frequently seen in HPC workloads, operations on small 
matrices are a growing, profitable set of calculations for 
vectorization on Intel® Xeon Phi™ coprocessors. With 
the wider SIMD unit support, the Intel® C/C++ and Fortran 
compilers are enhanced to vectorize common operations 
on small matrices along 2 dimensions. Small matrices 
are matrices whose data can reside entirely in one or 
two 512-bit SIMD registers. Consider the example 
Fortran loop nest with 32-bit float (or real) type below: 
 

real, dimension(4,4) :: A, B, C 
real sum 
integer  j, l, i 
do j = 1, 4 

     do l = 1, 4 
       sum = 0.0 
       do i = 1, 4 
         sum = sum + A(i,l) * B(i,j) 
       enddo 
       C(l,j) = sum 
     enddo 
   enddo 

Example 5.1: Small Matrix Multiplication Summation 
  
With non-unit stride references present in the inner loop 

of Example 5.1, the conventional inner loop vectorization 
will not provide the most efficient vectorization of the loop 
nest. The outer loop vectorization faces similar issues. The 
Intel® C/C++ and Fortran compiler employs the wider 
SIMD vector unit of the Intel® MIC architecture and 
vectorizes this example loop across all three loop nesting 
levels, named as 2-Dimentional (2-D) vectorization on small 
matrices.  

    The vectorization approach is detailed below with vector 
intrinsic pseudo-code.  For visualization, Figures 5.1 � 5.13 
depict a snapshot of the various vector unit contents after 
each corresponding instruction. The tables in each figure 
represent a vector unit, whose name is in the leftmost column 
and its contents in the rightmost four columns. Of the 
rightmost four columns, the lowest addressed element is in 
the top left corner and each consecutive element follows a 
row-major addressing order.  

    First, array data is loaded into a vector unit. With a wider 
SIMD vector unit, the compiler is able to load the entire A 
and B matrix each into a single vector unit. 

a) Matrix A and B are loaded into two SIMD registers. 
// Load A matrix from memory into vector register. 
A_v512 = <A[1][1], A[1][2], … … , A[4][3], A[4][4]> 

A_v512 

A[1][1] A[1][2] A[1][3] A[1][4] 

A[2][1] A[2][2] A[2][3] A[2][4] 

A[3][1] A[3][2] A[3][3] A[3][4] 

A[4][1] A[4][2] A[4][3] A[4][4] 

Figure 5.1: Contents of vector register A_v512 after load.  

// Load B matrix from memory into vector register. 
B_v512 = <B[1][1], B[1][2], … … , B[4][3], B[4][4]> 

B_v512 

B[1][1] B[1][2] B[1][3] B[1][4] 

B[2][1] B[2][2] B[2][3] B[2][4] 

B[3][1] B[3][2] B[3][3] B[3][4] 

B[4][1] B[4][2] B[4][3] B[4][4] 

Figure 5.2: Contents of vector register B_v512 after load.  

Next, the compiler optimizes the multiplication operation 
between matrix A and matrix B, through a series of data 
layout transformations and vector multiplication and 
addition operations. The compiler identifies a matrix 
multiplication in this loop and permutes the elements in 
matrix A and matrix B setting up simple vector 
multiplications and additions.    

b) We can simplify the multiplication needed through a 
transposition of the elements of A, followed a multiply and 
add of each row B and with each row of transposed A. We 
start by transposing the elements of A. 

 
// First, create a vector unit of zeros. 
A’_v512 = _mm512_setzero() 

A’_v512 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

Figure 5.3: A'_v512 after zero initialization.  

    For the transpose operation, we use a set of new Intel® 
MIC _mm512_mask_shuf128x32() intrinsic calls.  Similarly 
in classic architectures, this shuffle intrinsic is bound by 
four 128-bit “lanes” in each vector register. Thus, this 
intrinsic contains arguments for permute patterns for each of 
the four 128-bit lanes, as well as a permute pattern for each 
of the four 32 bit boundaries within each of those lanes. The 
arguments are as follows: 
 _m512 res = _mm512_mask_shuf128x32(_m512 v1,  
                              (I16) vmask, _m512 v2, (SI32)perm128, (SI32)perm32) 

� res : result vector unit.  
� v1: blend-to vector unit. The values in this vector unit will be blended 

with the shuffled elements of the v2, according to the write mask. 
� vmask : write mask. The write mask is a bit vector specifying which 

elements to overwrite in v1 with the shuffle elements of v2.  
� v2: incoming data vector unit. This vector unit holds the elements 

which are to be shuffled. 
� perm128: 128-bit lane permutation. This value specifies the 

permutation order of the vector unit’s 128-bit lanes.  
� perm32: element-wise permutation. This value specifies the 

permutation order of the each of the four 32 bit boundaries within 
each 128-bit lane. 

// Begin transpose operation by shuffling elements into 
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// desired order. Shuffle used to insert matrix diagonal 
// into transpose result vector unit. 
A’_v512 = _mm512_mask_shuf128x32(A’_v512, 0x8421, 

                 A_v512, _MM_PERM_DCBA, _MM_PERM_DCBA) 

A’_v512 

A[1][1] 0 0 0 

0 A[2][2] 0 0 

0 0 A[3][3] 0 

0 0 0 A[4][4] 

Figure 5.4: Vector register contents after first shuffle. 

// Shuffle the next four elements and blend-in with the 
// elements written from previous shuffle.  
A’_v512 = _mm512_mask_shuf128x32(A’_v512, 0x4218, 

             A_v512, _MM_PERM_CBAD, _MM_PERM_ADCB) 

A’_v512 

A[1][1] 0 0 A[4][1] 

A[1][2] A[2][2] 0 0 

0 A[2][3] A[3][3] 0 

0 0 A[3][4] A[4][4] 

Figure 5.5: Vector register contents after second shuffle.  

// Shuffle the next four elements and blend-in with the 
// elements written from previous shuffle.  
A’_v512 = _mm512_mask_shuf128x32(A’_v512, 0x2184, 

                 A_v512, _MM_PERM_BADC, _MM_PERM_BADC) 

A’_v512 

A[1][1] 0 A[3][1] A[4][1] 

A[1][2] A[2][2] 0 A[4][2] 

A[1][3] A[2][3] A[3][3] 0 

0 A[2][4] A[3][4] A[4][4] 

Figure 5.6: Vector register contents after third shuffle. 

// Shuffle the final four elements and blend-in with the 
// elements written from previous shuffle to obtain the 
// complete transpose. 
A’_v512 = _mm512_mask_shuf128x32(A’_v512, 0x1842,  

                 A_v512, _MM_PERM_ADCB, _MM_PERM_CBAD) 
     

A’_v512 

A[1][1] A[2][1] A[3][1] A[4][1] 

A[1][2] A[2][2] A[3][2] A[4][2] 

A[1][3] A[2][3] A[3][3] A[4][3] 

A[1][4] A[2][4] A[3][4] A[4][4] 

Figure 5.7: Vector register contents after the final shuffle.

    After the elements of matrix A have been permuted 
through transposition, each element of A and B is now in the 
correct position within each vector unit for a vector product, 
resulting in the same behavior as the dot product of rows and 
columns. 

c) Next, we perform the multiplication of each row of the 
transposed A with each row of B, maintaining a sum of the 
products from row to row. 
// Load the first row of A’_v512 and broadcast that row to 
// each of the remaining three rows  
t1_v512 = _mm512_extload_ps(A’_v512[0:4], 
                _MM_FULLUPC_NONE, _MM_BROADCAST_4X16, 0) 

t1_v512 

A[1][1] A[2][1] A[3][1] A[4][1] 

A[1][1] A[2][1] A[3][1] A[4][1] 

A[1][1] A[2][1] A[3][1] A[4][1] 

A[1][1] A[2][1] A[3][1] A[4][1] 

Figure 4.8: Vector register contents after load with broadcast  

     Another useful intrinsic used in this optimization is the Intel® 
MIC _mm512_swizzle_ps() intrinsic. This intrinsic is similar to that 

of the shuffle above except it only permutes each 128-bit lane and 
not each of the 32 boundaries within those lanes. The arguments are 
as follows:  
             _m512 res = _mm512_swizzle_ps(_mm512 v1, SI32 perm) 
� res : result vector unit.  
� v1 : incoming data vector unit to be permuted. 
� perm: permutation pattern  for each 128-bit lane. 
 
// Load the first row of B_v512 and broadcast that row to 
// each of the remaining three rows 
t2_v512 = _mm512_swizzle_ps(B_v512,_MM_SWIZ_REG_AAAA) 

t2_v512 

B[1][1] B[1][2] B[1][3] B[1][4] 

B[1][1] B[1][2] B[1][3] B[1][4] 

B[1][1] B[1][2] B[1][3] B[1][4] 

B[1][1] B[1][2] B[1][3] B[1][4] 

Figure 5.9: Vector register contents illustrating swizzle.

// Multiply each element of t1_v512 with each element of 
// t2_v512 and store result in C_v512 
C_v512 = _mm512_mul_ps(t1_v512, t2_v512)

C_v512 t1_v512 * t2_v512 

Figure 5.10: C_v512 vector unit contains element-wise  
product of t1_v512 and t2_v512 

// Load the second row of A’_v512 and broadcast that row 
// to each of the remaining three rows 
t1_v512 = _mm512_extload_ps(A’_v512[4:8], 

          _MM_FULLUPC_NONE, _MM_BROADCAST_4X16, 0) 

// Load the second row of B_v512 and broadcast that row to 
// each of the remaining three rows 
t2_v512 = _mm512_swizzle_ps(B_v512,_MM_SWIZ_REG_BBBB) 

    Each subsequent multiplication must be accumulated for 
each row.  These multiplies and adds are the corresponding 
dot product of rows and columns found in matrix 
multiplication, but because of the earlier transpose, no 
further permuting is required. 
// Add the existing values of C_v512 with the product of 
// t1_v512 and t2_v512 and store result in C_v512 
C_v512 = _mm512_madd213_ps(t2_v512, t1_v512, C_v512)

// Load the third row of A’_v512 and broadcast that row to 
// each of the remaining three rows 
t1_v512 = _mm512_extload_ps(A’_v512[8:12], 

          _MM_FULLUPC_NONE, _MM_BROADCAST_4X16, 0) 

// Load the third row of B_v512 and broadcast that row to 
// each of the remaining three rows 
t2_v512 = _m512_swizzle_ps(B_v512, _MM_SWIZ_REG_CCCC) 
    
// Add the existing values of C_v512 with the product of 
// t1_v512 and t2_v512 and store result in C_v512 
C_v512 = _mm512_madd213_ps(t2_v512, t1_v512,C_v512)

// Load the fourth row of A’_v512 and broadcast that row 
// to each of the remaining three rows        
t1_v512 = _mm512_extload_ps(A’_v512[12:16],      

            _MM_FULLUPC_NONE, _MM_BROADCAST_4X16, 0) 

t1_v512 

A[1][4] A[2][4] A[3][4] A[4][4] 

A[1][4] A[2][4] A[3][4] A[4][4] 

A[1][4] A[2][4] A[3][4] A[4][4] 

A[1][4] A[2][4] A[3][4] A[4][4] 

Figure 5.11: t1_v512 vector register contents illustrating  
final load with broadcast. 

// Load the fourth row of B_v512 and broadcast that row to 
// each of the remaining three rows 
t2_v512 = _mm512_swizzle_ps(B_v512, _MM_SWIZ_REG_DDDD) 
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t2_v512 

B[4][1] B[4][2] B[4][3] B[4][4] 

B[4][1] B[4][2] B[4][3] B[4][4] 

B[4][1] B[4][2] B[4][3] B[4][4] 

B[4][1] B[4][2] B[4][3] B[4][4] 

Figure 5.12: t2_v512 vector register contents illustrating final swizzle.

// Add the existing values of C_v512 with the product of 
// t1_v512 and t2_v512 and store result in C_v512 
C_v512 = _mm512_madd213_ps(t2_v512, t1_v512, C_v512)

C_v512 t2_v512 * t1_v512 + C_v512

Figure 5.13: Final C_v512 vector unit contains sum of existing values of 
C_v512 and element-wise products t2_v512 and t_v512 

    After the simplified matrix multiplication, the loop 
further requires that results be stored in the C matrix. With 
all elements correctly computed and residing in vector unit 
only one store operation is generated. 
  
d) Finally, the result vector unit of values is stored to the C 
array.

// The elements of vector register C_v512 are then stored 
// to memory at &C[1][1] 
       <C[1][1], C[1][2], … C[4][3], C[4][4]> = C_v512 

 
    The 512-bit long SIMD vector unit of the Intel® MIC 
architecture supports consumption of both matrix dimensions 
for 2-D vectorization, fitting an entire small matrix (4x4 float 
type) into one 512-bit SIMD vector register. This enables 
more efficient flexible vectorization and optimizations for 
small matrix operations.  For example, the scalar version of 
single precision 4x4 matrix multiply computation naively 
executes 128 memory loads, 64 multiplies, 64 additions, and 
16 memory stores. The small matrix 2-D vectorization 
reduces instructions to 2 vector loads from memory, 4 
multiplies, 4 shuffles, 4 swizzles, 3 additions,  and 1 vector 
store to memory for a reduction of approximately 15x in 
number of instructions.  

VI. PERFORMANCE EVALUATION 
This section presents the performance results measured on 
an Intel® Xeon Phi™ coprocessor system using a set of 
workloads and micro-benchmarks.  

A. Workloads 
    We have selected a set of workloads to demonstrate the 
performance benefits and importance of SIMD vectorization 
on the Intel® MIC Architecture. These workloads exhibit 
a wide range of application behavior that can be found in 
areas such as high performance computing, financial 
services, databases, image processing, searching, and other 
domains.  These workloads include: 

NBody: NBody computations are used in many scientific 
applications such as astrophysics [1] and statistical learning 
algorithms [8]. The main computation involves two loops 
that iterate over the bodies and computes a pair-wise 
interaction between them. 

2D 5x5 Convolution: Convolution is a common image 
filtering computation used to apply effects such as blur and 
sharpen. For a given 2D image and a 5x5 spatial filter 
containing weights, this convolution computes the weighted 
sum for the neighborhood of the 5x5 set of pixels. 

Back Projection: Back projection is commonly used for 
performing cone-beam image reconstruction of CT 
projection values [11]. The input consists of a set of 2D 
images that are "back-projected" onto a 3D volume in order 
to construct a 3D grid of density values. 

Radar (1D Convolution): The 1D convolution is widely 
used in applications such as radar tracking, graphics, image 
processing, etc. 

Tree Search: In-memory tree structured index search is a 
commonly used operation in database applications. This 
benchmark consists of multiple parallel searches over a tree 
with different queries, where the path through the tree is 
determined based on the comparison of results of the query 
and node value at each tree level. 

B. System Configuration 
The detailed information on the configuration of the Intel® 
Xeon Phi™ Coprocessor used for the performance study and 
for evaluating the effectiveness of SIMD vectorization 
techniques is provided in Table 6.1.  

System Parameters Intel® Xeon Phi™ Processor 
Chips  1 
Cores/Threads 61 and 244 
Frequency  1 GHz 
Data caches 32 KB L1, 512 KB L2 per core 
Power Budget 300 W 
Memory Capacity 7936 MB 
Memory Technology GDDR5 
Memory Speed 2.75 (GHz) (5.5 GT/s) 
Memory Channels  16 
Memory Data Width 32 bits 
Peak Memory Bandwidth  352 GB/s 
SIMD vector length  512 bits  

TABLE 6.1 TARGET SYSTEM CONFIGURATION 

C. Performance Results 
 

All benchmarks were compiled as native executables using 
the Intel® 13.0 product compilers and run on the Intel® 
Xeon Phi™ coprocessor system specified in Table 6.1. To 
demonstrate the performance gains obtained through the 
SIMD vectorization, two versions of the binaries were 
generated for each workload. The baseline version was 
compiled with OpenMP parallelization only (-mmic -
openmp -novec), the vectorized version is compiled with 
vectorization (default ON) and OpenMP parallelization (-
mmic –openmp).   

    The performance scaling is derived from the OpenMP –
only execution and OpenMP with 512-bit SIMD vector 
execution on the Intel® Xeon Phi™ coprocessor system we 
described at beginning of this section. That is, when the 
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workload contains 32-bit single-precision computations, 16-
way vectorization may be achieved. When the workload 
contains 64-bit double-precision computations, 8-way 
vectorization is achieved. 

 

FIGURE 6.1. PERFORMANCE RESULTS OF WORKLOADS 

    Figure 6.1 shows the normalized SIMD performance 
speedups of five workloads. The generated SIMD code of 
these workloads achieved SIMD speedups ranging from 
2.25x to 12.45x. Besides those classical HPC applications 
with regular array accesses and computations, the workload 
with a large amount of branching codes, such as Tree Search 
used in database applications, achieves 2.25x speedup as 
well with SIMD vectorzation based on the masking support 
in the Intel® MIC architecture.    
 

D. Impact of Less-Than-Full-Vector Loop Vectorization 
To examine the impact of the less-than-full-vector loop 

vectorization, a simple micro-benchmark was written with 
three small kernel functions: intAdd, floatAdd, and 
doubleAdd. Each of them has a short trip-count loop that 
takes 3 arrays, a, b, c of size 31 and does an element-wise 
addition with respect to int, float and double data 
types. The vector length is 16 iterations for loops in the 
intAdd and floatAdd kernels, and 8 iterations for the 
loop in the doubleAdd kernel function. This experimental  
setup ensures the intAdd and floatAdd loops contain a 
15-iteration remainder loops, and the doubleAdd loop 
contains a 7-iteration remainder loop which can be 
vectorized with the “less�than�full�vector” loop SIMD 
vectorization technique using masking support described in 
the Section II.   

 Figure 6.2 shows performance gains from vectorization 
without “less�than�full�vector” loop vectorization and with 
“less�than�full�vector” loop vectorization for three short 
trip-count loops in the intAdd, floatAdd and doubleAdd 
kernel functions. The generated SIMD code of these loops 
achieves a speedup ranging from 2.89x to 3.32x without 
“less�than�full�vector” loop vectorization. With “less�than�
full�vector” loop vectorization, the performance speedup is 
improved significantly, and ranges from 3.28x to 7.68x. 
Note that in this measurement, all data are 64-byte aligned, 

there are no peeling loops generated, and the aligned 
memory load/store instructions such as vmovaps and 
vmovapd [9] are generated to achieve optimal performance. 
The next sub-section shows the data alignment impact on 
the Intel® MIC architecture.  

 

FIGURE 6.2. PERFORMANCE GAIN WITH “LESS-THAN-FULL-VECTOR” 
 LOOP VECTORIZATION 

E. Impact of Data Alignment 

These kernel loops used in Sub-section D are re-used for 
this measurement. In this study, the difference is that we 
don’t provide alignment information of the array a, b, and 
c. Without alignment information, given these loops are 
short trip-count loops with constant trip count, the compiler 
generates SIMD instructions:  
� vloadunpackld and vloadunpackhd to load data 

from unaligned memory locations, vpackstoreld 
and vpackstorehd [9] to store data to unaligned 
memory locations for the vectorized main loop.

� vgatherdps and vscatterdps instructions [9] to 
load and store for the vectorized remainder  loop with 
write-mask.    

   

 
FIGURE 6.3. PERFORMANCE GAIN WITH DATA ALIGNMENT 

As shown in Figure 6.3, with data alignment information, 
the performance of SIMD execution is 1.45x, 1.41x and 
1.32x better than unaligned cases w.r.t int, float, and 
double types of three kernel functions. The alignment 
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optimization described in Section III is critical to achieving 
optimal performance on Intel® MIC architecture. 

F. Impact of Small Matrix 2-D Vectorization 
Small matrix operations such as addition and multiply 

have served as important parts of many HPC applications. A 
number of classic compiler optimizations such as loop 
complete unrolling, partial redundancy elimination (PRE), 
scalar replacement, and partial summation have been 
developed to achieve optimal vector execution performance. 
The conventional inner or outer loop vectorization for 3-
level loop nests of 4x4 matrix operations is not performing 
well on Intel® Xeon Phi™ coprocessor due to:  

� Less effective use of 512-bit long SIMD unit, e.g. for 
32-bit float data type, when either inner loop or outer 
loop is vectorized. In this case 4-way vectorization is 
used instead of 16-way vectorization.   

� Side-effects on classic optimizations, e.g. the partial 
redundancy elimination, partial summation, operator 
strength reduction, etc. when the loop is vectorized. 

As shown in Figure 6.4, the convention loop vectorization 
on small matrix (4x4) operations does cause performance 
degradation. For both cases of single-precision and double-
precision matrix (4x4) multiplications, the performance 
degradation is ~50% when comparing against cases without 
vectorization, which are used as the baseline performance.          

 
FIGURE 6.4. PERFORMANCE GAIN/LOSS WITH SIMD VECTORIZATION 

     In the case of the paired matrix multiplication, there are 
two matrix (4x4) multiplications are done in a single loop 
nest, and matrixB is transposed for computing sumy.      
   do j = 1, 4 
     do k = 1, 4 
       sumx = 0.0 
       sumy = 0.0 
       do i = 1, 4 
         sumx = sumx + matrixA(i,k) * matrixB(i,j) 
         sumy = sumy + matrixA(i,k) * matrixB(j,i) 
       enddo 
       matrixC(k,j) = sumx
       matirxD(j,k) = sumy
     enddo 
   enddo 

    The classical loop optimizations are not as effective as for 
the single matrix multiplication case due to the transpose 
operation of matrixB and paired matrix multiplications in 
the loop. Thus, the performance achieved with classical loop 
optimization is on-par with applying conventional loop 
vectorization, and no notable performance difference is 
observed as shown in Figure 6.4. Promisingly, applying the 
small matrix 2-D vectorization we proposed in Section IV, 
we achieved a performance speedup 1.15x / 1.04x for single 
matrix (4x4 float/double type) multiplication, and a speedup 
5.42x / 4.18x for paired matrix (4x4 float/double type) 
transpose and multiplication, which demonstrates the 
effectiveness of small matrix 2-D vectorization using long 
SIMD vector unit supported by Intel® Xeon Phi™ 
coprocessor.    

VII. RELATED WORK 

The compiler vectorization technology [2] had been one of 
the key loop transformations for traditional vector machine 
decades ago. However, the recent proliferation of modern 
SIMD architectures [9, 10] poses new constraints such as 
data alignment, masking for control flow, non-unit stride 
access to memory, and the fixed-length nature of SIMD 
vectors, that shall demand more advanced vectorization 
technologies and vectorization friendly programming 
language extensions  [23].  

     In the past three plus decades, the rich body of SIMD 
vectorization capabilities has been incorporated in a number 
of industry and research compilers [2, 3, 4, 7, 12, 14, 24]. 
These include works based on ICC (the Intel compiler) [3, 
4], XLC (the IBM compiler) [7, 24], VAST [6], GCC [16, 
17], and the SUIF compiler [5]. However, there are many 
unknown program factors such as loop trip count, memory 
access stride and patterns, alignment and control flow 
complexity at compile-time, that pose challenges to the 
modern optimizing compiler’s ability to apply advanced and 
practical vectorization techniques, and fulfill the semantic 
gap between application programs and the modern 
processors such as Intel® Xeon Phi™ coprocessor for 
harnessing its computational power.  

     Compared to the conventional loop vectorization[2,3,5], 
the “less-than-full-vector” vectorization technique brings 
extra performance benefits for those vectorizable short trip-
count  loops, especially when the processor provides the 
long SIMD unit masking capability like the Intel® Xeon 
Phi™ coprocessor. Our alignment optimizations are built on 
top of existing dynamic alignment optimizations as 
presented in [3, 4]. However, the alignment strategy 
described in this paper is designed to satisfy the requirement 
of Intel® MIC architecture with optimal SIMD instruction 
selection and mask utilization for safe and optimal 
performance. Beyond traditional single-level loop 
vectorization [2, 3, 16, 17, 22, 24] , the small matrix 
operation 2-D vectorization increases vector-parallelism and 
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improves the utilization efficiency of the long SIMD vector 
unit, swizzle, shuffle, broadcast and mask support in Intel® 
MIC architecture significantly. 

   

 In addition, Programming language extensions such as 
OpenMP* SIMD extensions [13, 18] and Cilk™ Plus [19, 
23] function vectorization and loop vectorization through 
the compiler has been paving the way to enable more 
effective vector–level parallelism [13, 23] in both C/C++ 
and Fortran programming languages. To support these 
SIMD vector programming models on the Intel® Xeon 
Phi™ coprocessor effectively, the practical vectorization 
techniques described in this paper are essential for achieving 
optimal performance and ensuring SIMD code execution 
safety on an Intel® Xeon Phi™ coprocessor system.   

VIII. CONCLUSIONS 

Driven by the increasing prevalence of SIMD architectures 
in the Intel® Xeon Phi coprocessor, we proposed and 
implemented new vectorization techniques to explore the 
effective use of its long SIMD units. This paper presented 
several practical SIMD vectorization techniques such as 
less-than-full-vector loop vectorization, Intel® MIC specific 
data alignment optimizations, and small matrix operations 
2-D vectorization for the Intel® Xeon Phi™ coprocessor. A 
set of workloads from several domains was employed to 
evaluate the benefits of our SIMD vectorization techniques. 
The results show that we achieved up to 12.5x performance 
gain on Intel® Xeon Phi™ coprocessor.   

     Intel® C/C++ and Fortran compilers are highly enhanced 
for programmers to harness the computational power of 
Intel® Xeon Phi™ coprocessors for accelerating highly 
parallel applications found in chemistry, visual computing, 
computational physics, biology, financial services, pixel, 
multimedia, graphics and HPC applications by effectively  
exploiting the use of the Intel® MIC architecture SIMD 
vector unit beyond traditional loop SIMD vectorization.  
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