
Introduction to MPI

Steve Lantz
Senior Research Associate

Cornell CAC

Workshop: Introduction to Parallel Computing on Ranger, May 28, 2009
Based on materials developed by Luke Wilson and Byoung-Do Kim at TACC

6/5/2009 www.cac.cornell.edu 2

Outline of presentation

• Overview of message passing
• MPI: what is it and why should you learn it?
• Compiling and running MPI programs
• MPI API

– Point-to-point communication
– Collective communication and computation

• MPI references and documentation

6/5/2009 www.cac.cornell.edu 3

Message passing overview

• What is message passing?
– Sending and receiving messages between tasks or processes
– Capabilities can include performing operations on data in transit and

synchronizing tasks
• Memory model: distributed

– Each process has its own address space and no way to get at
another’s, so it is necessary to send/receive data

• Programming model: API
– Programmer makes use of an Application Programming Interface (API)

that specifies the functionality of high-level communication routines
– Functions give access to a low-level implementation that takes care of

sockets, buffering, data copying, message routing, etc.

6/5/2009 www.cac.cornell.edu 4

An API for distributed memory parallelism

• Assumption: processes do not see each other’s memory
• Communication speed is determined by some kind of network

– Typical network = switch + cables + adapters + software stack…
• Key: the implementation of a message passing API (like MPI) can

be optimized for any given network
– Program gets the benefit
– No code changes required
– Works in shared memory, too

6/5/2009 www.cac.cornell.edu 5

Pros and cons of the distributed memory model

• Advantages
– Parallelism in an application is explicitly identified (not a disadvantage!)
– Potential to scale very well to large numbers of processors
– Avoids problems associated with shared memory: e.g., no interference

or overhead due to maintaining cache coherency
– Cost-effective: can use commodity, off-the-shelf processors and

networking hardware
• Disadvantages

– The programmer is responsible for controlling the data movement
between processes, plus many associated details

– NUMA (Non-Uniform Memory Access: true of shared memory, too)
– It may be difficult to map an application’s global data structures and/or

data access patterns to this memory model

6/5/2009 www.cac.cornell.edu 6

Contrast with shared memory parallelism

• Assumption: processes have access to the same memory
– As usual, the compiler’s job is to translate program variables into virtual

memory addresses, which are global
– Therefore, the compiler itself can potentially be used to parallelize code,

perhaps with no need for a special API…

6/5/2009 www.cac.cornell.edu 7

Pros and cons of the shared memory model

• Advantages
– Programmer no longer needs to specify explicit communication of data

between tasks
– Tasks “communicate” via a common address space, into which they

read and write asynchronously
• Disadvantages

– Understanding performance and managing data locality become more
difficult (the downside of giving up explicit control!)

– Actual shared memory is usually limited to relatively few processors
– Much harder to implement a shared memory model on a distributed

memory machine, compared to the other way around!

6/5/2009 www.cac.cornell.edu 8

Alternatives to MPI using a shared memory model

• Multithreading (useful for actual shared memory only)
– OpenMP compiler directives
– Pthreads = POSIX threads, and similar APIs
– “The medium (i.e., memory) is the message”

• PGAS = Partitioned Global Address Space languages/extensions
– Make physically distributed memory appear to be shared memory
– UPC = Unified Parallel C
– Co-Array Fortran (due to be included in next Fortran standard)
– Fortress

• Higher-level Libraries/APIs
– Global Arrays from PNNL

• Hybrids of the above with MPI message passing are possible

6/5/2009 www.cac.cornell.edu 9

MPI-1

• MPI-1 - Message Passing Interface (v. 1.2)
– Library standard defined by committee of vendors, implementers, and

parallel programmers
– Used to create parallel SPMD codes based on explicit message passing

• Available on almost all parallel machines with C/C++ and Fortran
bindings (and occasionally with other bindings)

• About 125 routines, total
– 6 basic routines
– The rest include routines of increasing generality and specificity

6/5/2009 www.cac.cornell.edu 10

MPI-2

• Includes features left out of MPI-1
– One-sided communications
– Dynamic process control
– More complicated collectives
– Parallel I/O (MPI-IO)

• Implementations came along only gradually
– Not quickly undertaken after the reference document was released (in

1997)
– Now OpenMPI, MPICH2 (and its descendants), and the vendor

implemenations are nearly complete or fully complete
• Most applications still rely on MPI-1, plus maybe MPI-IO

6/5/2009 www.cac.cornell.edu 11

Why learn MPI?

• MPI is a de facto standard
– Public domain versions are easy to install
– Vendor-optimized version are available on most hardware

• MPI is “tried and true”
– MPI-1 was released in 1994, MPI-2 in 1996

• MPI applications can be fairly portable
• MPI is a good way to learn parallel programming
• MPI is expressive: it can be used for many different models of

computation, therefore can be used with many different applications
• MPI code is efficient (though some think of it as the “assembly

language of parallel processing”)

6/5/2009 www.cac.cornell.edu 12

Message passing with MPI

• Typically use SPMD-style coding:
Single Program, Multiple Data
– Each process will run a copy of the

same code, but with different data
• Embed calls to MPI functions or

subroutines in the source code
– Data transfer is usually cooperative;

both sender and receiver call an MPI
function (see figure)

• Link the appropriate MPI library to
the compiled application

• Run using “mpiexec” or equivalent

memorymemory

CPU CPU

Network

data data
original

copy

task 1task 0
data data

send receive

Machine A Machine B

network

message

6/5/2009 www.cac.cornell.edu 13

Compiling MPI programs

• Generally use a special compiler or compiler wrapper script
– Not defined by the standard
– Consult your implementation
– Correctly handles include path, library path, and libraries

• MPICH-style (the most common)
mpicc -o foo foo.c
mpif90 -o foo foo.f (also mpif77)

• Some MPI specific compiler options
-mpilog -- Generate log files of MPI calls
-mpitrace -- Trace execution of MPI calls
-mpianim -- Real-time animation of MPI (not available on all systems)

• Note: compiler/linker names are specific to MPICH. On IBM Power
systems, they are mpcc_r and mpxlf_r respectively

6/5/2009 www.cac.cornell.edu 14

Running MPI programs

• To run a simple MPI program using MPICH
mpirun -np 2 ./foo

mpiexec -np 2 ./foo

• Some MPI specific running options
-t -- shows the commands that mpirun would execute
-help -- shows all options for mpirun

• To run over Ranger’s InfiniBand (as part of an SGE script)
ibrun ./foo

– The scheduler handles the rest
• Note: mpirun and mpiexec are not part of MPI, but a similar

command can be found in nearly all implementations
– There are exceptions: on the IBM SP, for example, it is poe

6/5/2009 www.cac.cornell.edu 15

Basic MPI

• It is possible to parallelize an entire application with just a few MPI
functions
– Initialization and termination
– Point-to-point communication
– Maybe a couple of types of collective communication/computation

• In principle this subset is enough for many applications
• However, “advanced” MPI functions can be more efficient and easier

to use in the situations for which they were designed

6/5/2009 www.cac.cornell.edu 16

• All processes must initialize and finalize MPI
– These are collective calls

• All processes must include the MPI header file
– Provides basic MPI definitions and types
– Implementation-specific, so don’t copy these from system to system

Initialization and termination

#include <mpi.h>
main(int argc char**&argv){
int ierr;
ierr = MPI_Init(&argc, &argv);

:
ierr = MPI_Finalize();
}

program init_finalize
include ‘mpif.h’
integer ierr
call mpi_init(ierr)

:
call mpi_finalize(ierr)
end program

6/5/2009 www.cac.cornell.edu 17

Fortran and C differences…

• Header files

– Optionally, in Fortran 90/95, one can compile an mpif.f90 file to create
the MPI module, then “use MPI” in the calling scope

• Format of MPI calls

Fortran include file C include file

include ‘mpif.h’ #include “mpi.h”

Fortran Binding C Binding

CALL MPI_XXX(parameters,…,ierr) rc = MPI_Xxxx(parameters,…)

6/5/2009 www.cac.cornell.edu 18

MPI communicators

• Communicators
– Collections of processes that can communicate with each other
– Most MPI routines require a communicator as an argument
– Predefined communicator MPI_COMM_WORLD encompasses all tasks
– New communicators can be defined; any number can co-exist

• Each communicator must be able to answer two questions
– How many processes exist in this communicator?
– MPI_Comm_size returns the answer, say, Np

– Of these processes, which process (numerical rank) am I?
– MPI_Comm_rank returns the rank of the current process within the

communicator, an integer between 0 and Np-1 inclusive
– Typically these functions are called just after MPI_Init

6/5/2009 www.cac.cornell.edu 19

MPI_COMM_WORLD: C example

#include <mpi.h>
main(int argc, char **argv){

int np, mype, ierr;

ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm_size(MPI_COMM_WORLD, &np);
ierr = MPI_Comm_rank(MPI_COMM_WORLD, &mype);

:
MPI_Finalize();

}

6/5/2009 www.cac.cornell.edu 20

MPI_COMM_WORLD: C++ example
#include “mpif.h”
[other includes]
int main(int argc, char *argv[]){

int np, mype, ierr;
[other declarations]

:
MPI::Init(argc, argv);

np = MPI::COMM_WORLD.Get_size();
mype = MPI::COMM_WORLD.Get_rank();

:
[actual work goes here]

:
MPI::Finalize();

}

6/5/2009 www.cac.cornell.edu 21

MPI_COMM_WORLD: Fortran example

program param
include ‘mpif.h’
integer ierr, np, mype

call mpi_init(ierr)
call mpi_comm_size(MPI_COMM_WORLD, np , ierr)
call mpi_comm_rank(MPI_COMM_WORLD, mype, ierr)

:
call mpi_finalize(ierr)

end program

6/5/2009 www.cac.cornell.edu 22

How size and rank are used during MPI execution

• Typically, every process will be an exact duplicate of the same MPI
executable: Single Program, Multiple Data (SPMD).

• However, the runtime environment of each process is not identical; it
includes an environment variable that holds the unique rank of that
particular process within MPI_COMM_WORLD

• Each process can therefore check its own rank to determine which
part of the problem to work on

• Once execution starts, processes work completely independently
of each other, except when communicating

6/5/2009 www.cac.cornell.edu 23

Topics in point-to-point communication

• MPI_SEND and MPI_RECV
• Synchronous vs. buffered (asynchronous) communication
• Blocking send and receive
• Non-blocking send and receive
• Combined send/receive
• Deadlock, and how to avoid it

6/5/2009 www.cac.cornell.edu 24

Point-to-point communication

• Sending data from one point (process/task) to another point
(process/task)

• One task sends while another recives

6/5/2009 www.cac.cornell.edu 25

mpi_send (data, count, type, dest, tag, comm, ierr)
mpi_recv (data, count, type, src, tag, comm, status, ierr)

MPI_Send (data, count, type, dest, tag, comm)
MPI_Recv (data, count, type, src, tag, comm, status)

MPI_Send and MPI_Recv

• MPI_Send(): A blocking call which returns only when data has been
sent from its buffer

• MPI_Recv(): A blocking receive which returns only when data has
been received onto its buffer

6/5/2009 www.cac.cornell.edu 26

An MPI message travels in an envelope

• When MPI sends a message, it doesn’t just send the contents; it
also sends an “envelope” describing the contents
– void* data: actual data being passed (via pointer to first element)
– int count: number of type values in data
– MPI_Datatype type: type of data
– int dest/src: rank of the receiving/sending process
– int tag: simple identifier that must match between sender/receiver
– MPI_Comm comm: communicator (must match – no wildcards)
– MPI_Status* status: returns information on the message received

MPI_Send (data, count, type, dest, tag, comm)
MPI_Recv (data, count, type, src, tag, comm, status)

6/5/2009 www.cac.cornell.edu 27

Notes on the MPI envelope

• A few Fortran particulars
– All Fortran arguments are passed by reference
– INTEGER ierr: variable to store the error code (in C/C++ this is the

return value of the function call)
• Wildcards are allowed

– src can be the wildcard MPI_ANY_SOURCE
– tag can be the wildcard MPI_ANY_TAG
– status returns information on the source and tag, useful in conjunction

with the above wildcards (receiving only)

mpi_send (data, count, type, dest, tag, comm, ierr)
mpi_recv (data, count, type, src, tag, comm, status, ierr)

6/5/2009 www.cac.cornell.edu 28

Assigning roles in point-to-point code

MPI_Comm_rank(comm,&mytid);

if (mytid==0) {
MPI_Send (buffer_A, /* target= */ 1, /* tag= */ 0, comm);

} else if (mytid==1) {
MPI_Recv(buffer_B, /* source= */ 2, /* tag= */ 6, comm);

}

• Recall that all tasks execute the same code
• Thus, conditionals based on communicator rank are often needed
• Tags must match on sender and receiver for a message to succeed

6/5/2009 www.cac.cornell.edu 29

#include "mpi.h"
main(int argc, char **argv){
int ipe, ierr; double a[2];
MPI_Status status;
MPI_Comm icomm = MPI_COMM_WORLD;
ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm_rank(icomm, &ipe);
ierr = MPI_Comm_size(icomm, &myworld);
if(ipe == 0){

a[0] = mype; a[1] = mype+1;
ierr = MPI_Send(a,2,MPI_DOUBLE, 1,9, icomm);

}
else if (ipe == 1){

ierr = MPI_Recv(a,2,MPI_DOUBLE, 0,9,icomm,&status);
printf("PE %d, A array= %f %f\n",mype,a[0],a[1]);

}
MPI_Finalize();

}

Complete point-to-point code: C example

6/5/2009 www.cac.cornell.edu 30

program sr
include "mpif.h"
real*8, dimension(2) :: A
integer, dimension(MPI_STATUS_SIZE) :: istat
icomm = MPI_COMM_WORLD
call mpi_init(ierr)
call mpi_comm_rank(icomm,mype,ierr)
call mpi_comm_size(icomm,np ,ierr);

if(mype.eq.0) then
a(1) = real(ipe); a(2) = real(ipe+1)
call mpi_send(A,2,MPI_REAL8, 1,9,icomm, ierr)
else if (mype.eq.1) then
call mpi_recv(A,2,MPI_REAL8, 0,9,icomm, istat,ierr)
print*,"PE ",mype,"received A array =",A
endif

call mpi_finalize(ierr)
end program

Complete point-to-point code: Fortran example

6/5/2009 www.cac.cornell.edu 31

Synchronous send, MPI_Ssend

source
[0]

dest
[1]

request to send

ready to receive

message

• Process 0 waits until process 1 is ready
• “Handshake” occurs to confirm a safe send
• Blocking send on 0 takes place along with a blocking receive on 1
• Rarely useful in the real world

– Need to be able to proceed when multiple tasks are out of sync
– Better to copy to a temporary buffer somewhere so tasks can move on

6/5/2009 www.cac.cornell.edu 32

Buffered send, MPI_Bsend

CPU 1 CPU 2

data

datadata

Process 0 Process 1

system buffer

receivesend

• Message contents are sent to a system-controlled block of memory
• Process 0 continues executing other tasks; when process 1 is ready

to receive, the system simply copies the message from the system
buffer into the appropriate memory location controlled by process

• Must be preceded with a call to MPI_Buffer_attach

6/5/2009 www.cac.cornell.edu 33

Blocking vs. non-blocking communication

• Blocking
– A blocking routine will only return when it is safe to use the buffer again
– On the sender, “safe” means only that modification will not affect the

data to be sent, and it does not imply that the data was actually received
– A blocking call can be either synchronous or asynchronous (buffered)

• Non-blocking
– Non-blocking send and receive routines are simply requests; they return

immediately without waiting for the communication events to complete
– It is therefore unsafe to modify the buffer until you know the requested

operation has completed: pair each non-blocking operation with an
MPI_Wait to make sure (this will also clear the request handle)

– The aim of non-blocking calls is to overlap computation with
communication for possible performance gains

6/5/2009 www.cac.cornell.edu 34

Blocking and non-blocking routines

Blocking send MPI_Send(buf, count, datatype, dest, tag, comm)

Non-blocking
send

MPI_Isend(buf, count, datatype, dest, tag, comm,
request)

Blocking
receive

MPI_Recv(buf, count, datatype, source, tag, comm,
status)

Non-blocking
receive

MPI_Irecv(buf, count, datatype, source, tag, comm,
request)

Notes
1. request: unique handle passed to a non-blocking send or receive operation
2. MPI_Wait blocks until a specified non-blocking send or receive operation

has completed: MPI_Wait(request, status)
3. Buffered and synchronous calls can be non-blocking: Ibsend, Issend

6/5/2009 www.cac.cornell.edu 35

MPI_Sendrecv

• Useful for communication patterns where each of a pair of nodes
both sends and receives a message (two-way communication).

• Executes a blocking send and a blocking receive operation
• Both operations use the same communicator, but have distinct tag

arguments

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag,
recvbuf, recvcount, recvtype, source, recvtag, comm,
status)

6/5/2009 www.cac.cornell.edu 36

One-way blocking/non-blocking combinations

• Blocking send, blocking recv

IF (rank==0) THEN
CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ie)

ELSEIF (rank==1) THEN
CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ie)

ENDIF

• Non-blocking send, blocking recv

IF (rank==0) THEN
CALL MPI_ISEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,req,ie)
CALL MPI_WAIT(req,status,ie)

ELSEIF (rank==1) THEN
CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ie)

ENDIF

6/5/2009 www.cac.cornell.edu 37

More one-way blocking/non-blocking combos

• Blocking send, non-blocking recv

IF (rank==0) THEN
CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ie)

ELSEIF (rank==1) THEN
CALL MPI_IRECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,req,ie)
CALL MPI_WAIT(req,status,ie)

ENDIF

• Non-blocking send, non-blocking recv

IF (rank==0) THEN
CALL MPI_ISEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,req,ie)

ELSEIF (rank==1) THEN
CALL MPI_IRECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,req,ie)

ENDIF
CALL MPI_WAIT(req,status,ie)

6/5/2009 www.cac.cornell.edu 38

Two-way communication: deadlock!

• Deadlock 1
IF (rank==0) THEN

CALL MPI_RECV(recvbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,status,ie)
CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ie)

ELSEIF (rank==1) THEN
CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ie)
CALL MPI_SEND(sendbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,ie)

ENDIF

• Deadlock 2
IF (rank==0) THEN

CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ie)
CALL MPI_RECV(recvbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,status,ie)

ELSEIF (rank==1) THEN
CALL MPI_SEND(sendbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,ie)
CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ie)

ENDIF

6/5/2009 www.cac.cornell.edu 39

Two-way communication: solutions

• Solution 1
IF (rank==0) THEN

CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ie)
CALL MPI_RECV(recvbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,status,ie)

ELSEIF (rank==1) THEN
CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ie)
CALL MPI_SEND(sendbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,ie)

ENDIF

• Solution 2
IF (rank==0) THEN

CALL MPI_SENDRECV(sendbuf,count,MPI_REAL,1,tag, &
recvbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,status,ie)

ELSEIF (rank==1) THEN
CALL MPI_SENDRECV(sendbuf,count,MPI_REAL,0,tag, &

recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ie)
ENDIF

6/5/2009 www.cac.cornell.edu 40

Two-way communication: more solutions

• Solution 3
IF (rank==0) THEN

CALL MPI_IRECV(recvbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,req,ie)
CALL MPI_SEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ie)

ELSEIF (rank==1) THEN
CALL MPI_IRECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,req,ie)
CALL MPI_SEND(sendbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,ie)

ENDIF
CALL MPI_WAIT(req,status)

• Solution 4
IF (rank==0) THEN

CALL MPI_BSEND(sendbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,ie)
CALL MPI_RECV(recvbuf,count,MPI_REAL,1,tag,MPI_COMM_WORLD,status,ie)

ELSEIF (rank==1) THEN
CALL MPI_BSEND(sendbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,ie)
CALL MPI_RECV(recvbuf,count,MPI_REAL,0,tag,MPI_COMM_WORLD,status,ie)

ENDIF

6/5/2009 www.cac.cornell.edu 41

Two-way communications: summary

CPU 0 CPU 1

Deadlock1 Recv/Send Recv/Send

Deadlock2 Send/Recv Send/Recv

Solution1 Send/Recv Recv/Send

Solution2 SendRecv SendRecv

Solution3 IRecv/Send, Wait IRecv/Send, Wait

Solution4 BSend/Recv BSend/Recv

6/5/2009 www.cac.cornell.edu 42

Need for collective communication: broadcast

if (mytid == 0) {
for (tid=1; tid<ntids; tid++) {
MPI_Send((void*)a, /* target= */ tid, …);

}
} else {
MPI_Recv((void*)a, 0, …);

}

• What if one processor wants to send to everyone else?

• Implements a very naive, serial broadcast
• Too primitive

– leaves no room for the OS / switch to optimize
– leaves no room for more efficient algorithms

• Too slow: most receive calls will have a long wait for completion

6/5/2009 www.cac.cornell.edu 43

• Involve ALL processes within a communicator
• There are three basic types of collective communications:

– Synchronization (MPI_Barrier)
– Data movement (MPI_Bcast/Scatter/Gather/Allgather/AlltoAll)
– Collective computation (MPI_Reduce/Allreduce/Scan)

• Programming considerations & restrictions
– Blocking operation
– No use of message tag argument
– Collective operation within subsets of processes require separate

grouping and new communicator
– Can only be used with MPI predefined datatypes

MPI collective communications

6/5/2009 www.cac.cornell.edu 44

• Barrier blocks until all processes in comm have called it
• Useful when measuring communication/computation time

– mpi_barrier(comm, ierr)
– MPI_Barrier(comm)

• Broadcast sends data from root to all processes in comm
– mpi_bcast(data, count, type, root, comm, ierr)
– MPI_Bcast(data, count, type, root, comm)

Barrier synchronization and broadcast

6/5/2009 www.cac.cornell.edu 45

MPI_Scatter

• Distributes distinct messages from a single source task to each task
in the communicator

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, root, comm)

IN
IN
IN
OUT
IN
IN
IN
IN

sendbuf
sendcount
sendtype
recvbuf
recvcount
recvtype
root
comm

starting address of send buffer
number of elements sent to each process
data type of send buffer elements
address of receive buffer
number of elements in receive buffer
data type of receive buffer elements
rank of sending process
communicator

6/5/2009 www.cac.cornell.edu 46

MPI_Gather

• Gathers distinct messages from each task in the group to a single
destination task

• Inverse operation of MPI_Scatter

MPI_Gather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, root, comm)

IN
IN
IN
OUT
IN
IN
IN
IN

sendbuf
sendcount
sendtype
recvbuf
recvcount
recvtype
root
comm

address of send buffer
number of elements in send buffer
data type of send buffer elements
starting address of receive buffer
number of elements for any single receive
data type of receive buffer elements
rank of receiving process
communicator

6/5/2009 www.cac.cornell.edu 47

MPI_Allgather

• Concatenation of data to all tasks in a group
• In effect, each task performs a broadcast operation to the other

tasks in the communicator

MPI_Allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

IN
IN
IN
OUT
IN
IN
IN

sendbuf
sendcount
sendtype
recvbuf
recvcount
recvtype
comm

address of send buffer
number of elements in send buffer
data type of send buffer elements
starting address of receive buffer
number of elements received from any process
data type of receive buffer elements
communicator

6/5/2009 www.cac.cornell.edu 48

MPI_Alltoall

• Each task in a group performs a scatter operation, sending a distinct
message to all the tasks in the group in order by index

MPI_Alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

IN
IN
IN
OUT
IN
IN
IN

sendbuf
sendcount
sendtype
recvbuf
recvcount
recvtype
Comm

starting address of send buffer
number of elements sent to each process
data type of send buffer elements
starting address of receive buffer
number of elements received from any process
data type of receive buffer elements
communicator

6/5/2009 www.cac.cornell.edu 49

Data movement…

• Broadcast

• Scatter/gather

• Allgather

• Alltoall

6/5/2009 www.cac.cornell.edu 50

MPI_Reduce

• Applies a reduction operation on all tasks in the communicator and
places the result in one task

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm)

IN
OUT
IN
IN
IN
IN
IN

sendbuf
recvbuf
count
datatype
op
root
comm

address of send buffer
address of receive buffer
number of elements in send buffer
data type of elements of send buffer
reduce operation
rank of root process
communicator

6/5/2009 www.cac.cornell.edu 51

MPI_Allreduce

• Applies a reduction operation and places the result in all tasks in the
communicator

• Equivalent to an MPI_Reduce followed by MPI_Bcast

MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)

IN
OUT
IN
IN
IN
IN

sendbuf
recvbuf
count
datatype
op
comm

address of send buffer
address of receive buffer
number of elements in send buffer
data type of elements of send buffer
operation
communicator

6/5/2009 www.cac.cornell.edu 52

Name Meaning

MPI_MAX
MPI_MIN
MPI_SUM
MPI_PROD
MPI_LAND
MPI_BAND
MPI_LOR
MPI_BOR
MPI_LXOR
MPI_BXOR
MPI_MAXLOC
MPI_MINLOC

Maximum
Minimum
Sum
Product
Logical and
Bit-wise and
Logical or
Bit-wise or
Logical xor
Logical xor
Max value and location
Min value and location

Reduction operations

6/5/2009 www.cac.cornell.edu 53

• Reduce

• Scan

Collective computation patterns

6/5/2009 www.cac.cornell.edu 54

#include <mpi.h>
#define WCOMM MPI_COMM_WORLD
main(int argc, char **argv){
int npes, mype, ierr;
double sum, val; int calc, knt=1;
ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm_size(WCOMM, &npes);
ierr = MPI_Comm_rank(WCOMM, &mype);

val = (double) mype;

ierr=MPI_Allreduce(&val,&sum,knt,MPI_DOUBLE,MPI_SUM,WCOMM);

calc=(npes-1 +npes%2)*(npes/2);
printf(" PE: %d sum=%5.0f calc=%d\n",mype,sum,calc);
ierr = MPI_Finalize();

}

Collective Computation: C Example

6/5/2009 www.cac.cornell.edu 55

program sum2all
include 'mpif.h'

icomm = MPI_COMM_WORLD
knt = 1
call mpi_init(ierr)
call mpi_comm_rank(icomm,mype,ierr)
call mpi_comm_size(icomm,npes,ierr)
val = dble(mype)

call mpi_allreduce(val,sum,knt,MPI_REAL8,MPI_SUM,icomm,ierr)

ncalc=(npes-1 + mod(npes,2))*(npes/2)
print*,' pe#, sum, calc. sum = ',mype,sum,ncalc
call mpi_finalize(ierr)

end program

Collective Computation: Fortran Example

6/5/2009 www.cac.cornell.edu 56

The MPI
Collective
Collection!

6/5/2009 www.cac.cornell.edu 57

References

• MPI-1 and MPI-2 standards
– http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
– http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.htm
– http://www.mcs.anl.gov/mpi/ (other mirror sites)

• Freely available implementations
– MPICH, http://www.mcs.anl.gov/mpi/mpich
– LAM-MPI, http://www.lam-mpi.org/

• Books
– Using MPI, by Gropp, Lusk, and Skjellum
– MPI Annotated Reference Manual, by Marc Snir, et al
– Parallel Programming with MPI, by Peter Pacheco
– Using MPI-2, by Gropp, Lusk and Thakur

• Newsgroup: comp.parallel.mpi

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.htm
http://www.mcs.anl.gov/mpi/mpich
http://www.mcs.anl.gov/mpi/mpich

	Introduction to MPI
	Outline of presentation
	Message passing overview
	An API for distributed memory parallelism
	Pros and cons of the distributed memory model
	Contrast with shared memory parallelism
	Pros and cons of the shared memory model
	Alternatives to MPI using a shared memory model
	MPI-1
	MPI-2
	Why learn MPI?
	Message passing with MPI
	Compiling MPI programs
	Running MPI programs
	Basic MPI
	Initialization and termination
	Fortran and C differences…
	MPI communicators
	MPI_COMM_WORLD: C example
	MPI_COMM_WORLD: C++ example
	MPI_COMM_WORLD: Fortran example
	How size and rank are used during MPI execution
	Topics in point-to-point communication
	Point-to-point communication
	MPI_Send and MPI_Recv
	An MPI message travels in an envelope
	Notes on the MPI envelope
	Assigning roles in point-to-point code
	Complete point-to-point code: C example
	Complete point-to-point code: Fortran example
	Synchronous send, MPI_Ssend
	Buffered send, MPI_Bsend
	Blocking vs. non-blocking communication
	Blocking and non-blocking routines
	MPI_Sendrecv
	One-way blocking/non-blocking combinations
	More one-way blocking/non-blocking combos
	Two-way communication: deadlock!
	Two-way communication: solutions
	Two-way communication: more solutions
	Two-way communications: summary
	Need for collective communication: broadcast
	MPI collective communications
	Barrier synchronization and broadcast
	MPI_Scatter
	MPI_Gather
	MPI_Allgather
	MPI_Alltoall
	Data movement…
	MPI_Reduce
	MPI_Allreduce
	Slide Number 52
	Collective computation patterns
	Collective Computation: C Example
	Collective Computation: Fortran Example
	The MPI�Collective�Collection!
	References

