
General-Purpose Graphics Processing Units in
Service-Oriented Architectures

Marı́a del Carmen Calatrava Moreno
E-Commerce Group

Vienna University of Technology

Vienna, Austria

Email: mc.calatrava.moreno@ec.tuwien.ac.at

Thomas Auzinger
Institute of Computer Graphics and Algorithms

Vienna University of Technology

Vienna, Austria

Email: thomas.auzinger@cg.tuwien.ac.at

Abstract—Over the last decades, graphics processing units
have developed from special-purpose graphics accelerators to
general-purpose massively parallel co-processors. In recent years
they gained increased traction in high performance computing,
as they provide superior computational performance in terms of
runtime and energy consumption for a wide range of problems. In
this survey, we review their employment in distributed computing
for a broad range of application scenarios. Common charac-
teristics and a classification of the most relevant use cases are
described. Furthermore, we discuss possible future developments
of the use of general purpose graphics processing units in the
area of service-oriented architecture. The aim of this work is to
inspire future research in this field and to give guidelines on when
and how to incorporate this new hardware technology.

I. INTRODUCTION

As a model for enterprise IT architecture, service-oriented
architectures (SOAs) stayed relevant by adapting to several
technological advances over the last years. Currently, Web 2.0
and cloud computing are the dominating trends that impact
its future development [1]. This poses new parallelization
challenges on unprecedented scales. An ever growing amount
of users has to be served by increasingly parallel hardware
architectures that have to cope with huge amounts of data [2].

On the hardware level, the performance growth of single-
core microprocessors has become limited by both semiconduc-
tor scaling limits and the difficulty of increasing instruction-
level parallelism even further. Thus, microprocessor manufac-
turers turn to multicore chip architectures to provide continued
performance increases, even though software has to be explic-
itly designed to exploit these parallel computing capabilities.

Graphics processing units (GPUs) nicely fit this trend of
increased parallelism, as they provide hundreds of processing
elements together with high memory bandwidth. In the last
two decades, they developed from single-purpose accelerators
of 3D computer graphics to allow general-purpose computing
on this hardware, which is generally referred to as GPGPU [3],
[4]. For a wide range of application scenarios, they provide
superior performance in terms of computational efficiency,
runtime and power consumption (see Figure 1) and gain in-
creasing traction in diverse computation scenarios such as high
performance computing or mobile device architectures. The
back-end empowerment provided by GPGPU is the driving
force behind its application to service-oriented architectures.
Optimized for throughput-computing of large data- or task
parallel input, GPUs are well suited to accelerate business

20

30

50

100

200

300

P
ea

k
b
an

d
w

id
th

[G
B

/s
]

101

102

103

104

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

6800 Ultra

7800 GTX

8800 GTX

280 GTX

480 GTX

580 GTX

680 GTX

780 GTX

7041

X5355

X5482
X5492

W5590

X5680
X5690

E5-2690

Year

P
ea

k
th

ro
u
g
h
p
u
t

[G
F

L
O

P
S

]

Fig. 1. Hardware performance growth. The rapid increase of computational
performance of GPUs () has created a large gap in comparison to
CPUs (). The theoretical peak throughput in terms of single precision
floating point computations per second (FLOPS) is given according to the
logarithmic scale on the left. In this figure, we provide the performance values
for NVIDIA graphics cards and Intel processors of the last decade. Looking
at the latest hardware generation, the gap stands at a factor of ∼20 as a 780
GTX GPU provides nearly 4TFLOPS peak compute performance. A similar
picture arises from the memory bandwidth values of the same GPU ()
and CPU () models. The theoretical peak memory bandwidth of either
global device memory or system memory is given by the logarithmic scale
on the right in terms of GB per second. Both performance indicators show
the excellent suitability of graphics hardware for data intensive parallel
computations that become increasingly important in a wide range of business
applications.

informatics applications such as batch processing or data
mining, among many others.

In this survey we give an overview of this new exciting
field by relating current research and use cases of GPGPU to
SOA and by outlining future trends. Our aim is not only to
give a comprehensive introduction to GPUs but to stimulate
further research on the influences and possible applications of
massively parallel hardware in SOA.

The paper is structured as follows: As we do not assume
prior knowledge about GPUs, we give an introduction to
both their hardware and software aspects in the forthcoming
Section II. Related work is presented in Section III. After

2013 IEEE 6th International Conference on Service-Oriented Computing and Applications

978-1-4799-2701-2/13 $31.00 © 2013 IEEE

DOI 10.1109/SOCA.2013.15

260

2013 IEEE 6th International Conference on Service-Oriented Computing and Applications

978-1-4799-2701-2/13 $31.00 © 2013 IEEE

DOI 10.1109/SOCA.2013.15

260

Global device memory (1-10 GB | 400-1000 cycles | 100-300 GB/s)

L2 cache (~1 MB | 100-300 cycles | ?)

L1

cache

Shared

mem.

Instruction

scheduler

MultiprocessorInstructions

L1

cache

Shared

mem.

Instruction

scheduler

Multiprocessor

L1

cache

Shared

mem.

Instruction

scheduler

Multiprocessor

CPU / Main memoryThread (1-3×105 per GPU) SIMD unit (32-64 threads) Thread group On-chip memory (~100 kB | 20-40 cycles | ~1 TB/s)

Fig. 2. Hardware architecture of a GPU (cf. Section II-B). The program instructions (left) are executed in parallel by the SIMD units of the device. The
threads are furthermore assembled into programmer-specified thread groups which are assigned part of the fast on-chip memory of each multiprocessor. This
allows efficient local data sharing between the SIMD units. Each multiprocessor provides an L1 cache and interfaces with the global device memory via an L2
cache. The specifications of each memory type for current GPU models are given as (size | latency | bandwidth). Note that this figure provides a high-level
overview and does not cover all details of the hardware architecture.

summarizing current research and use cases in Section IV,
Section V outlines future trends of GPUs in conjunction with
SOA. We give a set of guidelines on GPU utilization and the
conclusion in Section VI.

II. GENERAL-PURPOSE GRAPHICS PROCESSING UNITS

A. Overview

One of the characteristic hardware requirements for com-
puter assisted image generation is the ability to quickly execute
numerical operations on a large amount of independent picture
elements (pixels). Already in the 1980s the first graphics co-
processors entered the market and quickly became commodity
hardware that can be found in nearly all personal computers.
In the 1990s the increasing popularity of real-time 3D graphics
created a market for dedicated hardware accelerators and saw
the founding of todays major graphics card manufacturers,
NVIDIA and ATI Technologies (later acquired by Advanced
Micro Devices). Starting as fixed-function devices, 3D graph-
ics cards were soon augmented with programmable stages
and in 1999 the term graphics processing unit (GPU) was
popularized for the first graphics cards that supported all stages
of the 3D graphics pipeline, such as polygon transformations,
rasterization and surface shading. Graphics APIs, such as
OpenGL and DirectX, appeared during the same time frame
and provided the necessary tools to develop software for these
new hardware capabilities.

Due to the high memory bandwidth to the internal image-
array buffers, and due to a massively parallel hardware ar-
chitecture, these devices were orders of magnitude faster for
graphics operations than conventional CPUs. The trend to more
flexible hardware continued and culminated in 2006 with the
advent of fully programmable GPUs. While the first general-
purpose computations on GPUs were mapped to the specific
design of the graphics pipeline [5], [6], [7], this new capability
brought the convenience of software development close to the
levels found with CPUs.

Nowadays, two languages are used for the vast majority
of GPGPU programming: the Open Computing Language

(OpenCL) [8], [9] and the Compute Unified Device Ar-
chitecture (CUDA) [10], [11]. Both are extensions to the
programming language C bundled together with an API to
interact with the hardware driver to issue program executions
or memory transfers. OpenCL is designed as a cross-platform
framework to support heterogeneous (or hybrid) computing on
a wide range of CPUs and GPUs, and is managed by the
Khronos Group consortium. CUDA is a proprietary language
of NVIDIA tailored to their product range of GPUs.

Most graphics hardware can be found in one of three forms:
Dedicated GPUs (1) with their own global memory typically
interface with the CPU and system memory by means of
expansions slots such as PCI Express. This type makes up
the majority of the high-performance graphics card market
on both personal and portable computers. Integrated graphics
solutions (2) utilize system memory for their operation and
are usually employed for either low-performance graphics or
mobile devices. Motivated by the rise of GPGPU, a recent
third form (3) has entered the market, which offers the com-
putational power of graphics hardware with additional features,
such as error-correcting memory, but without graphics related
functions such as display outputs. This general-purpose GPU
variant is commonly used in high performance computing and
is the most relevant hardware for most of the applications that
we describe in this paper.

B. Hardware Architecture

GPUs can be classified as Single Program, Multiple Data
(SPMD) architectures according to an extended version of
Flynn’s taxonomy [12], [13] (see Figure 2). Each processing
element (PE) executes the same program but has its own
data and position in the instruction stream. Current models
have several hundreds PEs that can be active at the same
time. In each cycle, several schedulers issue instructions to
a small subset of these. This allows a high utilization of the
available computation units, since PEs, which execute high-
latency memory accesses, can idle until these operations are
completed. In the meantime, PEs, which are ready to perform

261261

actual computations, take their place in a process that is
commonly called latency hiding.

To maximize the number of PEs on a given GPU die area,
computations are executed in a Single Instruction, Multiple
Data (SIMD) fashion. Each SIMD unit consists of a fixed
number of threads that have their own data but operate in
lockstep. This means that all threads of a SIMD unit execute
the same instruction unless a number of threads stays idle.
This is the case if threads of the same SIMD unit follow
different code paths, which could lead to significant perfor-
mance penalties. However, the programmer does not need to
be aware of this SIMD architecture to write a correct program.
All threads of the GPU can be seen as independent entities that
execute in non-specified order but can be orchestrated with
synchronization operations.

A further architectural highlight of GPUs is their high
memory bandwidth to global device memory. Being an order of
magnitude larger as CPU memory bandwidth, it underlines the
throughput-orientated design of graphics hardware. To further
accelerate memory access operations, all processors of a GPU
interface with the global memory via a common L2 cache and
individual on-chip L1 caches. Furthermore, the threads (resp.
SIMD units) of a device are divided into equally sized groups
that reside on a single processor and share part of on-chip
memory for fast data exchange and storage. In contrast to the
large CPU caches, their GPU equivalents are not designed for
temporal data reuse but mainly for an efficient distribution of
the accessed cache lines to the threads of a given SIMD unit.

C. Software Architecture

Both current GPGPU programming frameworks – CUDA
and OpenCL – are extensions to the programming language C
and contain a compiler framework as well as APIs to interact
with the graphics hardware. In comparison to traditional CPU
programming, the hardware parallelism is directly exposed by
additional keywords which provide access to thread and thread
group indices. This allows the programmer to write a scalar
program, called kernel, that is executed by the device threads
in parallel. Both memory transfer to and from the GPU as well
as kernel launches are generally issued by the CPU; very recent
developments also enable this functionality for kernels. So far,
no general translation method between CPU and GPU code
exists and efficient programs have to be written specifically
for the GPGPU architecture.

D. Comparison with CPUs

In this section we outline the main differences between
CPUs and GPUs and their consequences. CPUs are designed
to provide a fast response time to a single task and employ
complex techniques such as branch prediction, out-of-order
execution or super-scalar computation. Coupled with large on-
die caches, these leave only space for a low amount of actual
processing cores. GPUs trade single-thread performance for
increased parallel processing using a hardware architecture as
described in Section II-B.

Thus, a computational problem has to exhibit a high degree
of data- or task parallelism to efficiently run on GPUs. Such
applications, also referred to as throughput computing, are be-
coming increasingly relevant as many application domains are

confronted with ever-growing amounts of data. A large body
of scientific literature as been generated on the comparison of
performance data from both CPUs and GPUs. Depending on
the employed metric, large discrepancies can be observed.

Comparisons done by experts, who can ensure highly
optimized code for both platforms, report a 2-10 times per-
formance increase by employing GPUs for fundamental tasks
such as dense and sparse linear algebra, fast Fourier transform,
back propagation, k-means, etc. [14], [15], [16]. Programmers
of real world applications report much larger performance
increases by switching to GPUs [17], [18]. This can be
explained by a comparison with not fully optimized CPU code,
as such optimal programs can be considerably harder to obtain
on the CPU than on the GPU [19]. For dedicated GPUs, the
memory transfer time to and from the main system memory
can be substantial [20] but will become less problematic as the
last line of graphics hardware allows more autonomous GPU
computing by launching kernels through kernel code.

In terms of energy efficiency, the most recent publication,
which uses current hardware, reports GPUs as being ∼2-
20 times more efficient than CPUs on characteristic work-
loads [21] or by grouping many small non-optimal work-
loads [22]. As a next step, current research explores optimal
workload distribution on heterogeneous systems, which yields
additional power savings in the 10-30% range [23], [24].

Both runtime and energy efficiency data show the superior
performance of GPGPU for many data-intensive computing
problems. We move away from the actual algorithms and in
Section IV we show a wide variety of real-world applications
where GPU computing is already used to great effect

III. RELATED WORK

With the growing popularity of GPGPU, many are the
scientific papers that explain the general operating mechanisms
of graphics hardware for cloud and high performance comput-
ing [25], [26]. Others, instead, illustrate their utilization in a
very specific context, such as pricing of securities estimation
in financial analysis [27]. Such works generally show large
performance benefits but tend to have either a very low level of
abstraction focused on technical implementation details or are
designed for a very specific application. Literature discussing
the general application of GPGPUs to services is very scarce.
An exception to this is the very recent work of Hu et al. [28],
who presented a general scheme of a GPU-assisted cloud
system comprised of three layers (cloud, server and GPUs)
that maps tasks to hardware components.

With this paper we aim to fill the existing gap in the
literature using the broader perspective of SOA. We do not
restrict ourself to specific problems but give an overview of the
multitude of existing application examples and the promising
future employment of graphics hardware in SOAs. By classi-
fying the use cases into the layer of reference architecture, we
show which specific advantage of GPUs is most beneficial at
each layer.

IV. USE CASES IN DISTRIBUTED COMPUTING

In this section an overview of successful employments
of GPUs in different application domains is given. Since a

262262

TABLE I. CLASSIFICATION OF CURRENT GPGPU ACCORDING TO A SOA REFERENCE ARCHITECTURE [29].

Layer Advantages Techniques Application Examples

Presentation Advanced graphics 3D rendering
Local and remote

rendering, 3D video

Service
Increased computational performance

(partially virtualized) IaaS
Amazon Elastic Compute Cloud,

and/or power efficiency SoftLayer HPC servers

Service components Efficient hardware utilization Workload consolidation
Numerous small-scale simulations,

file and networking systems, encryption

Operational systems
Increased computational performance GPGPU programming or Simulation in sciences and

and/or power efficiency use of GPGPU libraries finance, data mining

complete listing of all GPU use cases exceeds the scope of
this survey, we distill the most relevant examples into a SOA
related classification. The organization is based on the layers
of a reference architecture for SOA [29] and given in Table I.
Our aim with this classification is to enable an overview of
the interrelation of heterogeneous hardware and SOA and to
efficiently communicate the potential benefits of using GPGPU
in related fields.

We cover example applications for four layers, which are
described in the following subsections. As the use of GPGPU
pioneered in the field of high performance computing, most
current examples can be found for the operational systems
layers. As the professional use of general-purpose graphics
hardware matures, we already see examples in the service and
service components layer, while the presentation layer is still
mainly influenced by graphics related processing.

A. Operational Systems Layer

The parallel nature and the large scale of many scientific
computational problems have lead to an early adoption of
graphics hardware. One of the earliest heavily publicized
applications was the massively distributed biophysics simu-
lation Folding@Home [30]. Processing during the idle time of
personal computers of voluntary participants, the whole system
reached a sustained performance level of five petaFLOPS
already in 2008. The first GPU-enabled client software was
released in 2006 and saw a 20-30 fold performance in-
crease compared to the CPU version. Nowadays, GPUs are
responsible for nearly 90% of the processed workload of
Folding@Home while constituting ∼10% of the processors.

Computational simulation and analysis in the natural
sciences was always at the forefront of high performance
computing. Traditional supercomputers still play a major role,
and the newest models, such as Oak Ridge’s Titan or NCSA’s
Blue Waters, extensively use GPGPU hardware. Additionally,
new trends such as grid or cloud computing emerged in the
last decade. The Worldwide LHC Compting Grid [31], for
example, comprises 170 computing facilities to process the
approximately 25 PB of measurement data per year that are
generated by the LHC particle collider of CERN.

Regarding the actual use cases, academic works and real-
world applications on this topic exist for all major scientific
fields. In biology, genomics research generates huge amounts
of microarray data and SOA has been used to facilitate data
access [32], to provide analysis platforms [33], and to automate

analysis method choice [34]. Many core subtasks achieved
major performance gains when being ported to the GPU, such
as protein database search [35] or short read alignment [36].
In the vast field of physics, particle physics, for example,
employs GPUs for supercomputing simulations [37] or real-
time filtering of experimental data [38]. Further use cases can
be found in astronomy [39], computational chemistry [40] or a
SOA-based tsunami mechanics tool [41] in geophysics. GPU
utilization in engineering is also widespread, e.g., for fluid [42]
or electromagnetical and thermal simulation [43].

Capital markets are facing increasingly complex and global
structured products. They require, among others, greater finan-
cial regulation as well as reliable internal risk management.
The former empowers organizations to monitor activities and
enforce actions (e.g., supervision of stock exchanges, listed
companies, investment management, etc.). While the later in-
volves operational and system contingency planning to respond
to and mitigate damaging events. The abundance of market-
data messages requires high performance financial computing
to deliver real-time results, which is a major concern of the
industry. Some of the most important computational tasks
(i) are hedging strategies, which require high-frequency algo-
rithmic trading to make gain opportunities; (ii) value at risk
calculation, which copes with a large number of sophisticated
assets to measure the risk of severe losses due to market events;
(iii) and high dimensional option pricing.

To meet the demand of high volume data loads and/or
real-time performance of the associated systems, GPGPU
is employed. Example applications are option pricing [44],
or value-at-risk estimations [45]. Industrial usage of GPUs
can be found in software for trade management by Murex
(www.murex.com) or for catastrophic risk evaluation by RMS
(www.rms.com).

Typical data mining applications are confronted with a
huge amount of information to process. The use of distributed
computing is the dominating approach to enable the handling
of the required compute and memory resources. Furthermore,
most of the existing distributed data mining projects solve
problems by composing a team of distributed specialized sys-
tems, each associated with a specific task (e.g., data cleansing,
data pre-processing, data mining, etc.). SOA is therefore a
logical fit for the overall system architecture [46].

Many of the subsystems exhibit a high degree of task-
or data parallelism and the efficient mapping to parallel
hardware architectures is an active field of research [47],
[48]. Naturally, GPUs are well suited for these tasks and

263263

their usefulness for clustering [49], graph traversals [50] and
database query processing [51] is already established. Typical
task sizes are usually orders of magnitude larger than the global
memory of common graphics hardware, and an efficient or-
chestration of memory transfers between the different systems
components is necessary for satisfactory overall performance.
GPUMiner [52], for example, provides this functionality as I/O
between storage, CPU and GPU is managed, as is CPU-GPU
co-processing.

B. Service Components Layer

In the previous section, we provided examples for the use
of GPGPU for a wide range of applications. Their realization
was achieved by replacing a CPU-based program with either
GPU or combined CPU-GPU computations. The achievable
speed-up due to increased computational performance or mem-
ory bandwidth of the graphics hardware, depends strongly on
the application at hand. In this section, we present examples of
GPU utilization that achieve performance gains by combining
a large amount of originally unsuited tasks. Small or sequential
workloads do not fit the computation model of GPUs and
cannot be accelerated by a change of the underlying hardware.
Thus, a change in the operational systems layer will not
provide speedups. In high-throughput computation, however,
it is possible that many of these tasks can be combined
into larger workloads and efficiently processed on the GPU.
This approach is commonly called workload consolidation and
constitutes the main topic of this section.

In different simulation scenarios, not one huge problem
has to be solved but a multitude of small tasks. Examples
of efficient parallel computations of such tasks on GPUs
were given for quantum molecular dynamics simulations [53],
where many small FFTs have to be solved, or for cellular
automata [54], where many small graph problems arise.

The main body of this recent research field, can be found in
the domain of data and network transfer. The parallel execution
of a large number of parity checks in software RAIDs [55]
is one example. The acceleration of encryption schemes such
as SSL [56], [57] or AES [58] are results of recent efforts
which triggered investigations into the security of GPUs. First
vulnaribilites were already identified [59] and will influence
future hardware designs.

C. Service Layer

The growing popularity of GPGPU made it commercially
viable to provide on-demand access to graphics hardware in
a cloud computing context (e.g., Amazon Elastic Compute
Cloud, SoftLayer HPC servers). Following the infrastructure
as a service model, these first generation services offer direct
access to the hardware. Currently, no solution offers effective
virtualization of GPU devices as they are transparently acces-
sible per node.

D. Presentation Layer

In this layer, GPUs are mainly used for image generation
and one exemplary architecture is remote rendering. The use
of graphics hardware on the server side enables it to efficiently
perform computations that are too demanding for the client.
The limits on power consumption of mobile devices and

their generally low computational performance make such an
approach especially attractive for mobile 3D graphics [60],
[61]. The output of server-side rendering is encoded and
transmitted to the mobile device in the form of a video stream.
However, constrained bandwidth and increased latency are a
problem for interactive application that use this technology.

The increased computational performance of today’s mo-
bile devices, however, allows local small-scale 3D rendering
which is the largest application of computer graphics when
ranked by user count. Current research tries to extend these ca-
pabilities by performing energy-aware runtime decisions [62]
or remote assistance by the architecture mentioned above [63].

V. FUTURE DEVELOPMENTS

After providing an overview of the current state-of-the-
art in GPGPU in conjunction with SOA, we outline our
predictions for future developments in this field. In this section,
we again use the layering of a SOA reference architecture in
Table II to provide a classification of the prospective influences
of graphics hardware in the next years.

A. Operational Layer

The trend in parallel architectures to move away from sym-
metric multiprocessors and to employ heterogeneous system
with different processors and memories will continue in the
next years. This is a direct consequence of the lasting efforts
to increase both computational power and energy efficiency
while reaching the semiconductor limits of single thread
performance. The efficient orchestration of diverse resources
will be subject to intensive research in the coming years.
For heterogeneous architectures, this is still mainly a manual
task done by software engineers and usually tailored to a
narrow range of hardware configurations. An automation of
this process is highly desired and the first research efforts
have already materialized. Learning the performance of cer-
tain tasks on different processors and memories enables the
most efficient mapping of programs to free system resources
at runtime [64]. Automated management of CPU-GPU data
transfers for regular data layouts [65] and recursive pointer-
based data structures [66] minimize waiting time for memory
transactions. To avoid underutilization of hardware due to sub-
optimal scheduling, automated workload balancing methods
allow efficient job distribution on heterogeneous systems [67].
In the end, this will enable convenient application development
by hiding the underlying complexities of the hardware while
still guaranteeing adequate resource utilization. Note that the
same holds for all future massively parallel devices, such as
the Intel Many Integrated Core Architecture (MIC), which
combines several dozens of CPUs into one multiprocessor.

B. Service Components Layer

We also expect an increased effort to enable workload
consolidation on parallel hardware in the coming years. Many
problems of throughput computing exhibit a large amount of
small tasks that are processed similarly. While many areas
of application can be identified (e.g., file systems, network
transfers, database designs) and researched, an advanced topic
is the optimal linkage of different components. Depending
on the input data volume and the available system resources,

264264

TABLE II. CLASSIFICATION OF FUTURE GPGPU ACCORDING TO A SOA REFERENCE ARCHITECTURE [29].

Layer Advantages Techniques Application Examples

Presentation Advanced graphics
3D rendering, PCaaS, cloud gaming,

computer vision augmented reality

Service
Increased computational performance

(fully virtualized) IaaS NVIDIA GRID
and/or power efficiency

Service components Efficient hardware utilization
Workload consolidation, File systems, network transfers,

kernel linking databases, fully homomorphic encryption

Operational systems
Increased computational performance Automated code generation General-purpose

and/or power efficiency on heterogeneous hardware throughput computing

the optimal component configuration might be different. First
research efforts investigated the efficiencies of different GPU
kernel fusions in respect to runtime performance [68] and
energy efficiency [69], as well as the fair sharing of GPU
resources among multiple tenant applications on the same
system [70].

A further highlight will be the adoption of Fully Homomor-
phic Encryption (FHE) to remove one of the largest drawbacks
of cloud computing. Even when using encrypted data and
obfuscated programs for remote processing in the cloud, the
data has to be encrypted at one point, which raises significant
trust issues. FHE solves this issue by enabling encrypted
programs to operate on encrypted data without the requirement
of intermediate decryption [71]. Thus, even security sensitive
computations can be moved to the cloud. A drawback of this
method is its significant computational overhead due to the
large amount of big integer multiplications. First experiments
with GPU-aided acceleration methods [72] show promising
results and we expect this research path to be continued in
the next years.

C. Service Layer

We anticipate that the field of heterogeneous infrastructure
as a service will mature in the near future by overcoming one
of its main limitations [73]. Efficient sharing of underlying
graphics hardware is an essential element of this task and
will be enabled through full GPU virtualization. There are a
multitude of approaches to achieve this, such as rCUDA [74],
vCUDA [75] or gVirtus [76], among others. They all enable
full access of the GPU from applications executed on top of
the virtual machine but only gVirtus has so far succeeded in
enabling efficient GPU sharing [77]. The first fully virtualized
commercial product, the NVIDIA GRID [78], was recently
presented but is restricted to the graphics capabilities of their
GPUs. We present more information on it in the following
section.

D. Presentation Layer

An example of new advances for this layer is the NVIDIA
GRID [78] technology which is designed to deliver graphics-
intensive processing to concurrent users for virtual desktops,
visual computing and cloud gaming. The first use case enables
a conceptual return to mainframe computing by removing
the graphics bottleneck and constitutes a major step towards
a personal computer as a service. Cloud gaming claims to
revolutionize the multi-billion computer game industry by

providing remote gaming to arbitrary devices [79]. However,
it is heavily dependent on network performance and its actual
potential is not fully explored yet.

Another major trend in this area is augmented reality
where the a real-world camera stream is enhanced with virtual
computer graphics. GPGPU is highly relevant in this area,
as the processing not only includes graphics generation but
additional massively parallel tasks such as geo-locating, mul-
timedia retrieval and alignment with the camera stream has to
be performed.

VI. CONCLUSION

In this survey, we presented a comprehensive introduction
to the use of general-purpose graphics hardware in the field
of SOA. After an description of the hardware and software
architecture, we gave an outline of current use cases where
the parallel processing capabilities of this new hardware ar-
chitecture brought significant performance increase in terms of
runtime and/or energy efficiency. We employed a classification
along the layers of a SOA reference architecture to clearly
present the benefits of GPUs at different system levels. The
same was done for a selection of future developments which
we expect to have major impact on the use of SOA.

As GPGPU is becoming a major technology, development
for this hardware platform becomes increasingly convenient.
However, we advise the use of GPU-assisted libraries for
research in the near future or the cooperation with domain
experts. Especially for improvements in the field of workload
consolidation, a good knowledge of the underlying hardware
is required to design well-performing algorithms.

With the future proliferation of massively parallel hardware
we also expect a further increase of the relevance of SOA. As
low-level software design, development and optimization have
to respect vastly different processor architectures, an efficient
decoupling is necessary to hide the associated complexities
from high-level application developers. GPGPU can be seen
as the forerunner of service-oriented general-purpose hetero-
geneous computing.

ACKNOWLEDGMENT

The authors would like to thank Christian Huemer and
Amin Anjomshoaa for inspiring discussions. Thomas Auzinger
is supported by the Austrian Science Fund (FWF) grant
no. P23700-N23 (Modern Functional Analysis in Computer
Graphics – MOFA).

265265

REFERENCES

[1] G. Feuerlicht and S. Govardhan, “SOA: Trends and directions,” Systems
Integration, vol. 149, 2009.

[2] T. Hey, S. Tansley, and K. M. Tolle, Eds., The Fourth Paradigm: Data-
Intensive Scientific Discovery. Microsoft Research, 2009.

[3] D. Luebke, M. Harris, J. Krüger, T. Purcell, N. Govindaraju, I. Buck,
C. Woolley, and A. Lefohn, “GPGPU: general purpose computation on
graphics hardware,” in SIGGRAPH 2004 Course Notes. ACM, 2004.

[4] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU computing,” Proc. IEEE, vol. 96, no. 5, pp. 879–899,
2008.

[5] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: stream computing on graphics
hardware,” ACM Trans. Graph., vol. 23, no. 3, pp. 777–786, Aug. 2004.

[6] M. McCool and S. D. Toit, Metaprogramming GPUs with Sh. AK
Peters Ltd, 2004.

[7] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism
to program GPUs for general-purpose uses,” in Proc. of the 12th
int. conf. on Architectural support for programming languages and
operating systems, ser. ASPLOS XII. ACM, 2006, pp. 325–335.

[8] Khronos Group. (2013, Aug.) OpenCL Standard. [Online]. Available:
http://www.khronos.org/opencl/

[9] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” Computing in Science
& Engineering, vol. 12, no. 3, p. 66, 2010.

[10] NVIDIA. (2013, Aug.) CUDA. [Online]. Available: http://www.nvidia.
com/cuda/

[11] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008.

[12] M. Flynn, “Some computer organizations and their effectiveness,” IEEE
Trans. Comput., vol. C-21, no. 9, pp. 948–960, 1972.

[13] F. Darema, D. George, V. Norton, and G. Pfister, “A single-program-
multiple-data computational model for EPEX/FORTRAN,” Parallel
Computing, vol. 7, no. 1, pp. 11–24, 1988.

[14] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey, “Debunking the 100x GPU vs. CPU myth: an evaluation
of throughput computing on CPU and GPU,” in Proc. of the 37th annu.
int. symp. on Computer architecture (ISCA). ACM, 2010, pp. 451–460.

[15] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli,
“High performance discrete fourier transforms on graphics processors,”
in Proc. of the 2008 ACM/IEEE conf. on Supercomputing, ser. SC ’08.
IEEE Press, 2008, pp. 2:1–2:12.

[16] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron,
“A performance study of general-purpose applications on graphics
processors using CUDA,” J. Parallel Distrib. Comput., vol. 68, no. 10,
pp. 1370–1380, 2008.

[17] Q. Fang and D. A. Boas, “Monte carlo simulation of photon migration in
3d turbid media accelerated by graphics processing units,” Opt. Express,
vol. 17, no. 22, pp. 20 178–20 190, Oct 2009.

[18] P. Lu, H. Oki, C. Frey, G. Chamitoff, L. Chiao, E. Fincke,
C. Foale, S. Magnus, J. McArthur, WilliamS., D. Tani, P. Whitson,
J. Williams, W. Meyer, R. Sicker, B. Au, M. Christiansen, A. Schofield,
and D. Weitz, “Orders-of-magnitude performance increases in GPU-
accelerated correlation of images from the international space station,”
J. of Real-Time Image Processing, vol. 5, no. 3, pp. 179–193, 2010.

[19] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyan-
skiy, M. Girkar, and P. Dubey, “Can traditional programming bridge the
ninja performance gap for parallel computing applications?” in Proc.
of the 39th annu. Int. Symp. on Computer Architecture, ser. ISCA ’12.
IEEE Computer Society, 2012, pp. 440–451.

[20] C. Gregg and K. Hazelwood, “Where is the data? why you cannot
debate CPU vs. GPU performance without the answer,” in Performance
Analysis of Systems and Software, 2011 IEEE Int. Symp. on, ser. ISPASS
’11, 2011, pp. 134–144.

[21] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong,
“Effects of dynamic voltage and frequency scaling on a K20 GPU,” in
Proc. of the 2nd Int. Workshop on Power-aware Algorithms, Systems,
and Architectures, ser. PASA ’13, Oct. 2013.

[22] D. Li, S. Byna, and S. Chakradhar, “Energy-aware workload consolida-
tion on GPU,” in Parallel Processing Workshops, 2011 40th Int. Conf.
on, ser. ICPPW ’11, 2011, pp. 389–398.

[23] S. Hong and H. Kim, “An integrated GPU power and performance
model,” in Proc. of the 37th annu. int. symp. on Computer architecture,
ser. ISCA ’10. ACM, 2010, pp. 280–289.

[24] K. Ma, X. Li, W. Chen, C. Zhang, and X. Wang, “GreenGPU: A
holistic approach to energy efficiency in GPU-CPU heterogeneous
architectures,” in Parallel Processing, 2012 41st Int. Conf. on, ser. ICPP
’12, 2012, pp. 48–57.

[25] S. Crago, K. Dunn, P. Eads, L. Hochstein, D.-I. Kang, M. Kang,
D. Modium, K. Singh, J. Suh, and J. P. Walters, “Heterogeneous
cloud computing,” in Cluster Computing, 2011 IEEE Int. Conf. on, ser.
CLUSTER ’11. IEEE, 2011, pp. 378–385.

[26] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W. Arnold,
J. E. Stone, J. C. Phillips, and W.-m. Hwu, “GPU clusters for high-
performance computing,” in Cluster Computing and Workshops, 2009.
CLUSTER’09. IEEE Int. Conf. on. IEEE, 2009, pp. 1–8.

[27] G.-H. King, Z.-Y. Cai, Y.-Y. Lu, J.-J. Wu, H.-P. Shih, and C.-R.
Chang, “A high-performance multi-user service system for financial
analytics based on web service and GPU computation,” in Parallel and
Distributed Processing with Applications, 2010 Int. Symp. on, ser. ISPA
’10. IEEE, 2010, pp. 327–333.

[28] L. Hu, X. Che, and Z. Xie, “GPGPU cloud: A paradigm for general
purpose computing,” Tsinghua Science and Technology, vol. 18, no. 1,
pp. 22–23, 2013.

[29] The Open Group, “SOA reference architecture,” Dec. 2011.

[30] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and V. S.
Pande, “Folding@home: Lessons from eight years of volunteer dis-
tributed computing,” in Proc. of the 2009 IEEE Int. Symp. on Paral-
lel&Distributed Processing, ser. IPDPS ’09. IEEE Comput. Soc., 2009,
pp. 1–8.

[31] I. Bird, “Computing for the large hadron collider,” annu. Review of
Nuclear and Particle Science, vol. 61, no. 1, pp. 99–118, 2011.

[32] D. Habich, S. Richly, W. Lehner, U. Assmann, M. Grasselt, A. Maier,
and C. Pilarsky, “Data-aware soa for gene expression analysis pro-
cesses,” in Proc. of the IEEE Congress on Services, 2007.

[33] S. Richly, D. Habich, M. Thiele, S. Götz, and S. Hartung, “Supporting
gene expression analysis processes by a service-oriented platform,” in
Proc. of the IEEE Int. Conf. on Services Computing, 2007.

[34] P. H.-M. Chang, V.-W. Soo, T.-Y. Chen, W.-S. Lai, S.-C. Su, and
Y.-L. Huang, “Automating the determination of open reading frames
in genomic sequences using the web service techniques - a case
study using sars coronavirus,” in Proc. of the 4th IEEE Symp. on
Bioinformatics and Bioengineering, 2004.

[35] Y. Liu, B. Schmidt, and D. L. Maskell, “CUDASW++2.0: enhanced
Smith-Waterman protein database search on CUDA-enabled GPUs
based on SIMT and virtualized SIMD abstractions,” BMC Res Notes,
vol. 3, p. 93, 2010.

[36] C.-M. Liu, T. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang, C. Yu,
X. Chu, K. Zhao, R. Li, and T.-W. Lam, “SOAP3: ultra-fast GPU-based
parallel alignment tool for short reads,” Bioinformatics, vol. 28, no. 6,
pp. 878–879, 2012.

[37] M. Clark, R. Babich, K. Barros, R. Brower, and C. Rebbi, “Solving
lattice QCD systems of equations using mixed precision solvers on
GPUs,” Comput. Phys. Commun., vol. 181, no. 9, pp. 1517–1528, 2010.

[38] G. Collazuol, G. Lamanna, J. Pinzino, and M. Sozzi, “Fast online
triggering in high-energy physics experiments using GPUs,” Nucl.
Instrum. Meth. A, vol. 662, no. 1, pp. 49–54, 2012.

[39] A. Hassan, C. J. Fluke, and D. G. Barnes, “Unleashing the power of
distributed CPU/GPU architectures: Massive astronomical data analysis
and visualization case study,” arXiv preprint arXiv:1111.6661, 2011.

[40] A. Shkurti, M. Orsi, E. Macii, E. Ficarra, and A. Acquaviva, “Accelera-
tion of coarse grain molecular dynamics on GPU architectures,” Journal
of Computational Chemistry, vol. 34, no. 10, pp. 803–818, 2013.

[41] A. Vazhenin, K. Hayashi, and A. Romanenko, “Service-oriented
tsunami wave propagation modeling tools,” in Proc. of the 2012 Joint
Int. Conf. on Human-Centered Computer Environments. ACM, 2012,
pp. 131–136.

266266

[42] R. Di Lauro, F. Giannone, L. Ambrosio, and R. Montella, “Virtualizing
general purpose GPUs for high performance cloud computing: an
application to a fluid simulator,” in Parallel and Distributed Processing
with Applications, 2012 IEEE 10th Int. Symp. on, ser. ISPA ’12. IEEE,
2012, pp. 863–864.

[43] C. Richter, S. Schops, and M. Clemens, “GPU acceleration of finite
difference schemes used in coupled electromagnetic/thermal field sim-
ulations,” IEEE Trans. Magn., vol. 49, no. 5, pp. 1649–1652, 2013.

[44] M. Benguigui and F. Baude, “Towards parallel and distributed com-
puting on GPU for american basket option pricing,” in IEEE 4th Int.
Conf. on Cloud Computing Technology and Science, ser. CloudCom
’12. IEEE, 2012, pp. 723–728.

[45] M. Dixon, J. Chong, and K. Keutzer, “Acceleration of market value-at-
risk estimation,” in Proc. of the 2nd Workshop on High Performance
Computational Finance. ACM, 2009, p. 5.

[46] W. K. Cheung, X.-F. Zhang, H.-F. Wong, J. Liu, Z.-W. Luo, and F. C.
Tong, “Service-oriented distributed data mining,” Internet Computing,
IEEE, vol. 10, no. 4, pp. 44–54, 2006.

[47] D. W. Cheung and Y. Xiao, “Effect of data distribution in parallel
mining of associations,” Data Mining and Knowledge Discovery, vol. 3,
no. 3, pp. 291–314, 1999.

[48] E.-H. Han, G. Karypis, and V. Kumar, “Scalable parallel data mining
for association rules,” IEEE Trans. Knowl. Data Eng., vol. 12, no. 3,
pp. 337–352, 2000.

[49] R. Wu, B. Zhang, and M. Hsu, “Clustering billions of data points
using GPUs,” in Proc. of the combined workshops on UnConventional
high performance computing workshop plus memory access workshop.
ACM, 2009, pp. 1–6.

[50] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph
traversal,” in Proc. of the 17th ACM SIGPLAN symp. on Principles
and Practice of Parallel Programming, ser. PPoPP ’12. ACM, 2012,
pp. 117–128.

[51] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk, “GPU join processing
revisited,” in Proc. of the 8th Int. Workshop on Data Management on
New Hardware, ser. DaMoN ’12. ACM, 2012, pp. 55–62.

[52] W. Fang, K. K. Lau, M. Lu, X. Xiao, P. Yang Yang, B. He,
Q. Luo, P. V. Sander, and K. Yand, “Parallel data mining on graphics
processors,” HKUST and Microsoft China, Tech. Rep., 2008. [Online].
Available: http://code.google.com/p/gpuminer/

[53] S. Mitra and A. Srinivasan, “Small discrete fourier transforms on
GPUs,” in Proc. of the 2011 11th IEEE/ACM Int. Symp. on Cluster,
Cloud and Grid Computing, ser. CCGRID ’11. IEEE Computer
Society, 2011, pp. 33–42.

[54] D. Arendt and Y. Cao, “GPU acceleration of many independent mid-
sized simulations on graphs,” in Proc. of the 4th Cellular Automata,
Theory and Applications Workshop, ser. *A-CSC ’12, 2012.

[55] A. Khasymski, M. Rafique, A. Butt, S. Vazhkudai, and D. Nikolopoulos,
“On the use of GPUs in realizing cost-effective distributed RAID,”
in Modeling, Analysis Simulation of Computer and Telecommunication
Systems, 2012 IEEE 20th Int. Symp. on, ser. MASCOTS ’12, 2012, pp.
469–478.

[56] K. Jang, S. Han, S. Han, S. Moon, and K. Park, “SSLShader: cheap SSL
acceleration with commodity processors,” in Proc. of the 8th USENIX
conf. on Networked systems design and implementation, ser. NSDI’11.
USENIX Association, 2011.

[57] J. Gilger, J. Barnickel, and U. Meyer, “GPU-acceleration of block
ciphers in the OpenSSL cryptographic library,” in Proc. of the 15th
int. conf. on Information Security, ser. ISC’12. Springer-Verlag, 2012,
pp. 338–353.

[58] G. Schönberger and J. Fuß, “GPU-assisted AES encryption using
GCM,” in Proc. of the 12th IFIP TC 6/TC 11 int. conf. on Communi-
cations and multimedia security, ser. CMS’11. Springer-Verlag, 2011,
pp. 178–185.

[59] R. Di Pietro, F. Lombardi, and A. Villani, “CUDA Leaks: Information
Leakage in GPU Architectures,” ArXiv e-prints, May 2013.

[60] W. Yoo, S. Shi, W. J. Jeon, K. Nahrstedt, and R. H. Campbell,
“Real-time parallel remote rendering for mobile devices using graphics
processing units,” in Multimedia and Expo, 2010 IEEE Int. Conf. on,
ser. ICME ’10. IEEE, 2010, pp. 902–907.

[61] M. E. Fathy, A. S. Hussein, S. H. Hamad, A. H. Abdelaziz, S. H.
Abdelaziz, and H. El-Bery, “Parallel remote rendering of large 3D
point-based models on mobile clients,” in Computational Intelligence,
Modelling and Simulation, 2010 2nd Int. Conf. on, ser. CIMSiM ’10.
IEEE, 2010, pp. 419–426.

[62] M. Hosseini, A. Fedorova, J. Peters, and S. Shirmohammadi, “Energy-
aware adaptations in mobile 3d graphics,” in Proc. of the 20th ACM
int. conf. on Multimedia, ser. MM ’12. ACM, 2012, pp. 1017–1020.

[63] S. Shi, K. Nahrstedt, and R. Campbell, “A real-time remote render-
ing system for interactive mobile graphics,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 8, no. 3s, pp. 46:1–46:20, Oct. 2012.

[64] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S. Amarasinghe,
“Portable performance on heterogeneous architectures,” in Proc. of the
18th int. conf. on Architectural support for programming languages and
operating systems, ser. ASPLOS ’13. ACM, 2013, pp. 431–444.

[65] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and
D. I. August, “Automatic CPU-GPU communication management and
optimization,” ACM SIGPLAN Notices, vol. 46, no. 6, pp. 142–151,
2011.

[66] T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I. August,
“Dynamically managed data for CPU-GPU architectures,” in Proc. of
the 10th Int. Symp. on Code Generation and Optimization. ACM,
2012, pp. 165–174.

[67] M. E. Belviranli, L. N. Bhuyan, and R. Gupta, “A dynamic self-
scheduling scheme for heterogeneous multiprocessor architectures,”
ACM Trans. Archit. Code Optim., vol. 9, no. 4, pp. 57:1–57:20, Jan.
2013.

[68] S. Sarkar, S. Mitra, and A. Srinivasan, “Reuse and refactoring of GPU
kernels to design complex applications,” in Proc. of the 2012 IEEE 10th
Int. Symp. on Parallel and Distributed Processing with Applications, ser.
ISPA ’12. IEEE Computer Society, 2012, pp. 134–141.

[69] G. Wang, Y. Lin, and W. Yi, “Kernel fusion: An effective method for
better power efficiency on multithreaded GPU,” in Proc. of the 2010
IEEE/ACM Int. Conf. on Green Computing and Communications & Int.
Conf. on Cyber, Physical and Social Computing, ser. GREENCOM-
CPSCOM ’10. IEEE Computer Society, 2010, pp. 344–350.

[70] D. Sengupta, R. Belapure, and K. Schwan, “Multi-tenancy on GPGPU-
based servers,” in Proc. of the 7th int. workshop on Virtualization
technologies in distributed computing, ser. VTDC ’13. ACM, 2013,
pp. 3–10.

[71] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
of the 41st annu. ACM symp. on Theory of computing. ACM, 2009,
pp. 169–178.

[72] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Accelerating fully
homomorphic encryption using GPU,” in High Performance Extreme
Computing, 2012 IEEE Conf. on, ser. HPEC ’12. IEEE, pp. 1–5.

[73] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P. Nolan,
“Computational solutions to large-scale data management and analysis,”
Nature Reviews Genetics, vol. 11, no. 9, pp. 647–657, 2010.

[74] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Orti,
“rCUDA: Reducing the number of GPU-based accelerators in high
performance clusters,” in High Performance Computing and Simulation,
2010 Int. Conf. on, ser. HPCS ’10. IEEE, 2010, pp. 224–231.

[75] L. Shi, H. Chen, J. Sun, and K. Li, “vCUDA: GPU-accelerated high-
performance computing in virtual machines,” IEEE Trans. Comput.,
vol. 61, no. 6, pp. 804–816, 2012.

[76] G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “A GPGPU
transparent virtualization component for high performance computing
clouds,” in Euro-Par 2010-Parallel Processing. Springer, 2010, pp.
379–391.

[77] V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar, “Supporting
GPU sharing in cloud environments with a transparent runtime consoli-
dation framework,” in Proc. of the 20th int. symp. on High performance
distributed computing. ACM, 2011, pp. 217–228.

[78] NVIDIA. (2013, Aug.) GRID. [Online]. Available: http://www.nvidia.
com/object/nvidia-grid.html

[79] A. Ojala and P. Tyrvainen, “Developing cloud business models: A case
study on cloud gaming,” IEEE Softw., vol. 28, no. 4, pp. 42–47, Jul.
2011.

267267

