
2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing

Exploration of Automatic Optimization for eUDA Programming

Mayez AI-Mouhamed and Ayaz ul Hassan Khan

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

{mayez, ahkhan}@kfupm,edu,sa

Abstract-Graphic processing Units (GPUs) are gaining

ground in high-performance computing. CUDA (an extension

to C) is most widely used parallel programming framework

for general purpose GPU computations. However, the task of

writing optimized CUDA program is complex even for

experts. We present a method for restructuring loops into an

optimized CUDA kernels based on a 3-step algorithm which

are loop tiling, coalesced memory access, and resource

optimization. We also establish the relationships between the

influencing parameters and propose a method for finding

possible tiling solutions with coalesced memory access that

best meets the identified constraints. We also present a

simplified algorithm for restructuring loops and rewrite them

as an efficient CUDA Kernel. The execution model of

synthesized kernel consists of uniformly distributing the

kernel threads to keep all cores busy while transferring a

tailored data locality which is accessed using coalesced

pattern to amortize the long latency of the secondary memory.

In the evaluation, we implement some simple applications

using the proposed restructuring strategy and evaluate the

performance in terms of execution time and GPU throughput.

Keywords: CUDA, GPU, Parallel Programming, Compiler

Transformations, directive-based language, source-to-source

compiler, GPGPU

I. INTRODUCTION

Massively parallel computing has obtained prominence
through advances in implementing massive multithreading
and recent improvements in its programming [1, 2, 3],
Recent development in Graphic Processing Units (GPUs)
has opened a new challenge in harnessing their computing
power as a new general purpose computing paradigm,
Strong implications are expected on computational science
and engineering, especially in the area of discrete numerical
simulation [4],

Modern GPUs use multiple streaming multiprocessors
(SMs) with potentially hundreds of cores that run multiple
threads in parallel and provide memory latency hiding by
overlapping long-latency loads in stalled threads with useful
computation in other threads [5], The Compute Unified
Device Architecture (CUDA) is an extension to C
programming for NVIDIA GPUs. However, porting
applications to CUDA remains a non-trivial task even for
expert programmers. CUDA programmers have to write
GPU code in separate functions with explicit management
of data transfer between the host and GPU memories and
manual optimization of the GPU memory hierarchy [3].

Performance study of general-purpose GPU
programming have been reported [11] for applications such
as SRAD structured grid, back-propagation unstructured
grid, data encryptions standard, Needleman - Wunsch

978-1-4673-2925-5/12/$31.00 ©2012 IEEE 55

dynamic programming, and k-means data mining. A CUDA
implementation for the gravitational N-body simulations
using GPU is reported [12], The GPU performs force
calculation and updating, while the host CPU performs the
predictor, corrector, and integration steps. Implementation is
based on two direct N-body integration codes, using the 4th

order predictor-corrector Hermite integrator with block
time-steps, and one Barnes-Hut tree-code, which uses a
second order leapfrog integration.

Software tuning of high-performance kernels [6] for
GPUs is critical for efficiently running linear solver
algorithms such as the Basic Linear Algebra Subprograms
(BLAS) kernels. Optimizing programs using the Vector
blocking techniques [7] over hybrid architectures
(multicore and GPU) proved to be useful for improving
performance of the matrix multiply routine (GEMM).
Orders of magnitude acceleration is reported compared to
multicore without GPU accelerators when architecture and
algorithm-specific optimizations are used for implementing
dense linear algebra solvers such as the MAGMA library
[8]. A three-step optimization is proposed for the QR
factorization [9]. QR is factorized as a sequence of tasks
with chosen granularity. The kernel for each task is
designed. Finally, static scheduling is used when a priori
knowledge is available. Otherwise, dynamic scheduling is
used by managing data availability and coherency. The
reported performance is very close to that obtained using
Linear Programming with some limited portability. The
implementation complements kernels already available in
the MAGMA library.

CUDA programming requires an expert level
understanding of the memory hierarchy and execution
model to reach peak performance. Even for experts,
rewriting a program to exploit the architecture in achieving
high speedups can be tedious and error prone. Several high
level interfaces [1, 2, 3] has been proposed to perform
source-to-source translation based on programmer defmed
"pragmas" or annotations to generate CUDA programs
with less burden to the programmers. Most execution of a
scientific program is spent on loops. Compiler analysis and
compiler optimizations have been proposed to make the
execution of loops faster. CUDA-lite [1], an experimental
enhancement to CUDA, allows programmers to write
CUDA kernels by using only global memory and
automatically transform it in an optimize CUDA kernel to
leverage the complex memory hierarchy. Authors claim the
tool produces code with performance comparable to hand
coded versions.

Lee et. al have proposed a framework for source-to
source translation of standard OpenMP applications into

2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing

CUDA-based code [2]. It has two phases: (1) a compile
time optimization techniques which applied parallel loop
swap and loop-collapsing, and (2) an OpenMP to GPGPU
translation system. It is reported a performance
improvements of up to 50x over the un-optimized
translation (up to 328x over serial on a CPU.

A high-level directive-based compiler (hiCUDA) [3] is
proposed to ease the task of writing CUDA programs. The
compiler translates a hiCUDA program to a CUDA
program using a computation model and a data model in
which programmers allocate and de-allocate memory on the
GPU and move data between the host memory and the GPU
memory. Evaluation of five CUDA benchmarks (MM, CP,
SAD, TPACF, RPES) shows that the provided simplicity
and flexibility come at no expense to performance as
execution times is within 2% of that of the hand-written
CUDA version. A source-to-source compiler transformation
(CUDACHiLL) [13] aims at alleviating the need for
understanding memory hierarchy and execution model in
writing optimized CUDA programs. It proposes a source-to
source transformation based on the polyhedral program
transformation and ChiLL framework which is capable of
composing transformations while preserving the correctness
of the program at each step.

In this paper we present a method for restructuring loops
into an optimized CUDA kernels based on a 3-step
algorithm which are loop tiling, coalesced memory access,
and resource optimization. For this we identify the GPU
constraints for maximum performance such that the
memory usage (global memory and shared memory),
number of blocks, and number of threads per block. In
addition we identify the condition for maximizing
utilization of the GPU resources. We also establish the
relationships between the influencing parameters and
propose a method for finding possible tiling solutions with
coalesced memory access that best meets the identified
constraints. The execution model of synthesized kernel
consists of uniformly distributing the kernel threads to keep
all cores busy while transferring a tailored data locality
which is accessed using coalesced pattern to amortize the
long latency of the secondary memory. In the evaluation,
we implement some simple applications using the proposed
restructuring strategy and evaluate the performance in terms
of execution time and GPU throughput.

This paper is organized as follows. Section II presents a
proposed approach for restructuring algorithm for CUDA.
Section III presents an example of applying the proposed
strategy to develop and optimized kernel for matrix
multiplication. Section IV presents the comparison of
proposed strategy with other approaches. Finally, Section V
concludes about this work.

II. A RESTRUCTURING ALGORITHM FOR CUDA

In this section we proposed a CUDA kernel
restructuring algorithm, a general strategy to achieve
maximum possible performance by better utilization of the
machine. In CUDA, the worker threads are identified by
thread ID and being organized by blocks which are
identified by block ID. This identification is used in a kernel
to define a mapping of computations to threads (workers).

56

The proposed restructuring algorithm aimed at generating
efficient CUDA kernels. It is based on the three key
concepts that are explained in detail in following
subsections.

A. Tiling

In CUDA the programmer has to explicitly transfer data
from slow low-level GM which is visible by all SMs to a
fast high-level shared memory ShM within each SM. Tiling
the code is to account for the small ShM capacity. The
execution style is based on transferring small amount of
data followed by data processing. While transforming the
code, it is required to perform proper calculation of
effective address of array elements (results) based on the
workers identifiers which are the block ID and thread ID. It
is required to design an algorithm/mechanism that can be
used to apply loop tiling on any CUDA program with
proper memory hierarchy optimizations. Tiling is guided by
the following steps:

1. Identification of proper tile size to be stored in shared
memory based on the limited capacity of ShM per
CUDA kernel block based on determining the tile size
and matching overall tile data locality with ShM
capacity.

2. Loop transformations and proper identification of range
of outer and inner loops.

3. Effective address calculations of the array elements to
be accessed within the loop iterations (see coalesced
access).

4. Boundary check for avoiding the out of bound array
index access.

5. Synchronization among loading of data into ShM,
execution of operations, and storing the results back
into GM.

B. Coalesced Global Memory Access

In this section, the objective is to restructure the code so
that at execution warps access to GM is done according to
a coalesced access pattern to amortize the excessive access
cost. Fetching a group of data elements which are stored in
distinct memories (coalesced access) is critical to amortize
the high cost of accessing GM compared to the speed of the
logic. The key idea is to determine all possible mapping

In CUDA a I-D kernel having NW threads is
represented as a set of N blocks each has W elements. To
assign some work to each individual thread, each kernel
thread is identified by the block b to which it belongs to
and some offset t, i.e. thid = b. W + t or as a vector thid = (b,
t)N,W ,where O:::;b:::;N-l and O:::;t:::;W-i. Suppose we have
a 2-D array of U.V computation results which are stored
using row-major scheme as U rows and V columns, the
address of the element in row r and column c is EA=
(r,c)u,v = r. U + c, where 0:::; r:::; U-l and 0:::; c:::; V-I.
Assigning a thread (worker) to compute a result requires
defining a mapping from the thread IDs onto the results so
that when the SPMD program is run, each thread uses its
own ID in the code to determine the result that it must

2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing

compute. The mapping of threads IDs onto the result
address admits a few possible mapping solutions for EA =
(r,c)u.v as computes:

1. EA = « b, t)N,W , C)u,v I N. W=U, each thread has one
loop to compute V results, no coalesced access,

2. EA = (r, (b, t)N,W)U,V I N.W=V, each thread has one
compute U results, coalesced access,

3. EA = « b, t')N,W , (b', t)N,W)U,V I N.W'=U and
N'.W=V, each thread has two loops (denoted by ') to
computes (u. V)/(N. W) results, coalesced access,

4. EA = « b', t)N',W, (b, t')N,W)u,v IN'. W=U and
N.W'=V, each thread has two loops (denoted by ') to
computes (U.V)/(W.N) results, coalesced access.

Note that a coalesced access takes place only when the
offset, or second component of EA, is mapped to the thread
index, i.e. identified by offset t. The reason is that warps
are formed by successive thread IDs for any dimension, i.e.
according to row major organization. Table 1 shows the
possible mappings of CUDA for I-D and 2-D kernels
(blocks and threads) to a 2-D array of results of size space
N.W with corresponding tile size (upper parameter) and
coalesced (Yes) or non-coalesced (No) accesses. Similar
approach is used for higher dimension kernels.

ID Kernel

thid= b.W + 1= (b, tlN.wl OS bSN-l
andOStSW-l

EA= (r,c)u.v = r. U + c,
OSrSU-l andOScSV-1

Note: X' is a local loop within the
Ihread

« b, tlN.w, c)u.v U
N.W=U No

(r, (b, t),.w)u.v I V
N.W=V Yes

« b, I'),.w, (b', t),.w)u.v (U.V)/(N.W)
N.W'=U Yes

« b', t),·.w, (b, I'),.w)u.v (U.V)/(N.W)
N'.W=U No

2D Kernel
thid (bx.Wx + tx, by.Wy + ty)
= « bx, Ix)".w, , (by, ty)'y.Wy) I

Os bxS Nx-I, Os byS Ny-l
OS txS Wx-l, Os tyS Wy-l

EA= (r,c)u.v = r. U + c,
OSrSU-1 andOScSV-1

« bx, Ix)".w, , (by, ty)'y.w,.) I
Nx.Wx=U, Ny.Wy=V No

« by, ty),y.wy , « bx, Ix)".w,) 1
Nx.Wx=U, Ny.Wy=V Yes

« by, IX),y.w, , (bx, ty)".Wy) I
Ny.Wx=U, Nx.Wy=V No

« bx, ty),.,.w,. , (by, Ix),y.w,) 1
Nx.Wy=U, Ny.Wx=V Yes

Table 1: PossIble 1-D and 2-D Kernel mappmg to a 2-D Array of results

For example, assume a 2-D(U,U) array res() of results,
and TxT as being the tile size. Let's use a ID kernel defined
by thid= (b, t)N.W . For I-D kernel, we may use the solut!on
shown in the third row of Table 1. The correspondmg
constraints leads to N=U/T blocks and each block has each
W=T threads. The effective address of a result resO is EA =
(b*T+t')*U + b'*T+t. Each kernel thread consists of a
double nested loop, where the outer loop (t': U/T iterations)
and inner loop (b': T iterations). It is clear that access is
coalesced because t is in the least significant position.

C. Resource Optimization

Within each SM, ShM is partitioned among active
blocks which are assigned to SM for simultaneous
execution. Therefore the tile sizes must be selected such that
the tile data locality that must be loaded into ShM does not
constrain the maximum number of active blocks which can
be assigned to an SM at a time.

57

(I Warp perSM l
J

min ,Max. Blocks per SM
Warp per Block

Aclive Blocks = min

Here,

(I Shared Memory per SM l
S

J
min , Max. Blocks per M

Shared Memory per Block

Threads Per Block
� (1 1) Warps Per Block � .

Threads Per Warp

Shared MemoryPer Block = Tile Si:ex Dala Element Size

--7(1)

x Number of Data Eiemenlstoload for one result --7 (12)

256
Warps Per Block=-=S

32
:::�:

B

����:�

B

I::[r::F]2 -2M8

mi{i l63S4l s

min [S.S]
=min ;] =4

Tolal Kernel Blocks
Average Kernel Blocks per SM(AKBPSM)

Total SMs

Here, Total Kernel Blocks = Application SpaceSize / Tile Size

(Active Blocks x Threads Per Block)
S - Cycles = -+ (3)

SPs per SM

-+ (2)

The block size must be chosen less than or equal to tile
size such that each thread in a block loads one or more
elements of a tile into ShM. This will reduce instruction
fetch and processing overhead of load instruction since the
device perfonn one instruction fetch for a block of threads
which is in SIMT manner. On the other hand, too large
block sizes must be avoided limiting the number of active
blocks per SM due to large number of warps per block. The
number of active warps must be no less than the maximum
warps per SM (for full occupancy) in any given SM to
avoid limiting the number of active threads per SM. Active
Blocks can be calculated using equation (1).

For example, if Threads per Block is 256, Tile Size is
256, Data Element Size is 4 bytes, and Number of Data
Elements to load for one result is 2, then the Active Blocks
is 4. Suppose Warps Per SM is 32, Shared Memory Per SM
is 16384, and Max. Blocks Per SM is 8. Therefore the
number of active blocks that can be handled by an SM at a
given time can be calculated using eq. (1).

To expose to peak performance, the application threads
must be massively and uniformly spread over the SMs so
that the only perfonnance saturation comes from mapping
the application to the GPu. Furthermore, peak performance
will be expected because all the SM and SPs are involved
in the execution. Since, there are two levels of kernel block
and threads scheduling in the device. The blocks are first
scheduled to be executed on each SM and then each SM

2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing

schedules the individual threads within a block to mUltiple
SPs within the SM based on selecting one warp at a time.
The repetitions due to first scheduling can be analyzed as
average kernel blocks per SM and the repetitions due to
second scheduling as small cycles (S-Cycles) which occur
due to limited number of SPs (Thread Processors) that can
execute one thread at a time.

These repetitions should satisfy the following
conditions to achieve peak performance:

1. Both AKBPSM and S-Cycles should be greater
than or equal to 1.

2. S-Cycles should be an integer value to balance the
threads among multiple SPs.

3. S-Cycles should be as large as possible.
4. AKBPSM should be the least possible to minimize

serialization.

D. Proposed CUDA Restructuring Algorithm

The proposed restructuring algorithm is based on the
following steps:
Step 1: Analyze the granule size in the loop body and the

data locality needed and determine thread granule size:
a. Thread Granule Size: carry out loop

distribution/jusion or statement distribution/jusion

to control the thread granule: the number of

load/store, number of arithmetic operations, and

the needed data locality
b. Carry out statement distribution if statement has

too many arithmetic operations or requiring too
many locality

c. Might carry out the opposite of the above steps in

the case of too fine granule size of very limited

locality
Step 2: Tile the resulting loop (or loops) by generating all

possible tiled loop arrangements and select one or more
tiled arrangements with coalesced memory access.
Step 3: Determine the best possible combination of

Threads per block (TPB) and the Tile Size(TS) to get the

optimal distribution of blocks and threads among SMs and
SPs respectively. We need to generate all possible TPB and

TS, and their respective Warps Per Block (WPB) and
Shared Memory Per Block (ShMPB) using the equation
(1.1 and 1 .2).

a. IdentifY Active Blocks using equation (1) for each
of the combination of TPB and TS

b. Calculate S-Cycles for each of the combinations

using equation (3) and select the combinations

that have the maximum value.

c. Calculate AKBPSM for the selected combinations

and the one that has the minimum value of
AKBPSM will give the best performance.

III. EXAMPLE

In this section, we will show the working steps of
wntmg a matrix mUltiplication application from the
sequential code (Code Listing 1, for N x N matrices) to
optimized CUDA kernel.

58

void matrix_multiply(float **C, float **B, float **A, int N)
{

for(int ty=O; ty < N; ty++)
for(int tx=O; tx < N; tx++){

C[iW] = 0;
for(int k=O; k < N; k++)

C[iW] += A[i][k] * B[k][j];

Code Listing I: Matrix Multiplication Sequential Code

void tiled_matrix_multiply(float **C, float **B, float **A, int N)
{

for(int by=O; by < N; by+=TILE _ Y)
for(int bx=O; bx < N; bx+=TILE_X)

for(int ty=0; ty < TILE_Y; ty++)
for(int tx=O; tx < TILE_X; tx++)

for(int bk=O; bk < N; bk+=TILE _ X)
for(int k=O; k < TILE_X; k++)
C[by+ty][bx+tx] = A[by+ty][bk+k] * B[bk+k][bx+tx];

Code Listing 2(a): Matrix Multiplication Tiled Version

global void
tiled_matrix _ multiply(float *C, float *B, float * A, int N)
{

int by = blockldx.y * TILE_ Y;
int bx = blockIdx.x * TILE_X;
int ty = threadldx.y;
int tx = threadIdx.x;

for(int bk=O; bk < N; bk+=TILE_X)
for(int k=0; k < TILE_X; k++)

C[(by + ty) * N + bx + tx] = A[(by + ty) * N + bk + k]
* B[(bk + k) * N + bx + tx];

Code Listing 2(b): Matrix Multiplication CUDA kernel

global void
coalesced_matrix_multiply(float *C, float *B, float *A, int N)
{

int by = blockldx.y * TILE_ Y;
int bx = blockldx.x * TILE_X;
int ty = threadIdx.y;
int tx = threadldx.x;

float Csub=O;
shared float As [TILE _ Y][TILE _Xl;
shared float Bs[TILE_X] [TILE_X];

for(int bk=O; bk < N; bk+=TILE_X){
As[ty][tx] = A[(by + ty) * N + bk + tx];
Bs[ty][tx] = B[(bk + ty) * N + bx + tx];

_syncthreadsO;

for(int k=O; k < TILE_X; k++)
Csub += As[ty][k] * Bs[k][tx];

_syncthreadsO;

C[(by + ty) * N + bx + tx] = Csub;

Code Listing 3: CUDA kernel with coalesced memory accesses

2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing

global void
gen_coalesced_matrix_multiply(float *C, float *B, float *A, int N)
{

int by = blockIdx.y * TILE_Y;
int bx = blockIdx.x * TILE X;
int ty = threadIdx.y;

-

int tx = threadldx.x;

float Csub[TlLE_Y/BLOCK_Y];
shared float As [TILE_ Y][TILE_X];
shared float Bs[TILE_X][TILE_X];

for(int bk=O; bk < N; bk+=TlLE_X){
for(int i=O; i < TILE_ Y/BLOCK_ Y; i++){

As[ty + i * BLOCK_ Y][tx] = A[(by + ty + i * BLOCK_ Y)
*N + bk + tx]; }

for(int i=O; i < TILE_XlBLOCK_ Y; i++){
Bs[ty + i * BLOCK_ Y][tx] = B[(bk + ty + i * BLOCK_ Y)

*N + bx + tx]; }
_syncthreadsO;
for(int i=O; i < TILE_ Y/BLOCK_ Y; i++)

for(int k=0; k < TILE_X; k++)
Csub[i] += As[ty + i * BLOCK_ Y][k] * Bs[k][txJ;

_syncthreadsO;
for(int i=O; i < TlLE_Y/BLOCK_Y; i++)

C[(by + ty + i * BLOCK_ Y) * N + bx + txt = Csub[i];

Code Listing 4: Optimized CUDA Kernel

Step 1: due to the limited data locality and few arithmetic
operations in the statement, each thread can simply focus
on calculating one resultant element that is thread granule
size = 1.

Step 2: Code Listing 2(a) shows the tiled version of Code
Listing 1 by using general strategy of loop tiling for
uniprocessors that is split each loop of a nested loop-set
into a pair of adjacent loops in the loop nest, with the outer
loop (tiling loop) traversing tiles (blocks), and the inner
loop (intra-tile loop) covering the iteration points within the
tile. Code Listing 2(b) shows the corresponding CUDA
kernel implementation using 2D blocks and threads that
maps the outer four loops of Code Listing 2(a) to the
blocks and threads dimensions in Code Listing 2(b). At this
stage, accessing to matrix C and B are satisfying the
mappings of coalesced memory access as shows in second
row of 2D kernel mappings in Table 1 while access to
matrix A is not coalesced.

Code Listing 3 shows the modified kernel to perform
coalesced loads of matrix A and B using shared memory
and coalesced stores to the resultant matrix C. Here, we are
assuming the same dimensions for thread blocks and matrix
tiles. We also need to add barrier synchronization among
threads of the same block using syncthreadsO between
tiles load and compute statement within the traversal of all
tiles of matrices A and B. Also a barrier is required before
storing the resultant tile of matrix C due to difference in the
traversal order of load/store and computation statements.

Step 3: For Tesla C2070 using the resource optimization
strategy as explained in section II.C, we found optimal
values for threads per block and tile sizes as TPB = 32 * 16
512 and TS = 32 * 64 = 2048. Code Listing 4 shows the

59

modified kernel of Code Listing 3 to handle the case of
TPB < TS, for this we need to add loop for each load,
compute and store statement to correctly load the whole
tile, compute the results, and store the whole resultant tile
to the destination.

IV. ApPLICATION RESULTS COMPARISON

A. Matrix Multiplication

We have analyzed the structure of matrix multiplication
kernels using CUDALite [1] approach and NVIDIA SDK
approach [10]. Both of these implementations used
arbitrary values for defining threads per block (TPB) and
tile size (TS) which are not optimal values in terms of
resource utilization as we have explained in section H.C. In
CUDALite, each thread work on the entire row of the tile
resulting in very few threads per block (TPB = 32 as shown
in Table 2 that only 1 warp per block) which is not
sufficient to hide latency of the global memory transfers.
Also, in CUDALite, a tile allocation is also done for results
which causes large shared memory usage per thread block
that restricts the number of Active Blocks (AB = 1, see
Table 2, can be calculated using eq. (1)) that highly reduces
the S-Cycles to 1. In NVIDIA SDK approach, 2D thread
blocks of 16 x 16 dimensions is defmed with same tile
sizes so each thread work on one element of each tile but
these values produces large number of average kernel
blocks per SM which causes increased overhead of blocks
allocation and thus limited performance. The optimal value
of TPB and TS for Tesla C2070 GPU are 512 and 2048
respectively as proposed by our restructuring algorithm and
gives the minimum execution time in comparison of the
other approaches.

We have also analyzed the matrix scaling kernel shown
as an example in CUDALite [1] paper. We have found
similar problems of limited number of active blocks due to
large shared memory usage and also large number of
average kernel blocks per SM due to small number of
threads per blocks as explained in the previous section II.C
in the case of matrix multiplication. The optimal value of
TPB and TS for Tesla C2070 GPU are 512 and 4096
respectively as proposed by our restructuring algorithm
(see Table 3) and gives the minimum execution time in
comparison of the CUDALite approach.

Te,l" C2070 (N � 2048 x 2048)

TPB TS AD TKD
S-

AKBPSM
Exec.

Cycles Time

Restructuring 512 2048 3 2048 48 146.2857143 2.4486
Algorithm

NVIDIA SDK 256 256 6 16384 48 1170285714 2 6268

CUDALite 32 1024 I 4096 I 292.5714286 21.2396

Table 2: Parameters comparison of different implementations of
Matrix Multiplication

2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing

B. Matrix Scaling

Tesla C2070 (N � 2048 x 2048)

TPB TS AB TKB
S-

AKBPSM
Exec.

Cycles Time

Restructuring 512 4096 3 1024 48 73.14285714 0.0014
Algorithm

CUDALite 32 1024 I 4096 I 292 5714286 0.0096

Table 3: Parameters comparison of different implementations of
Matrix Scaling

C. Matrix Transpose

NVIDIA provides optimized kernels of matrix
transpose by analyzing the architectures of shared memory
and global memory. In these optimizations, tiles are
allocated in shared memory in such a way that the access to
the shared memory by different threads at the same time
should be free from shared memory bank conflicts.
Furthermore, access to global memory by concurrent thread
blocks will be done in different partitions of global
memory to load the tile from the source matrix and store
the tile into transposed matrix. We have applied our
resource optimization strategy to two different matrix
transpose kernels as provided in NVIDIA SDK. TPB = 512
is obtained as an optimal value for threads per block that
maximize S-Cycles (see Table 4 and 5) and hence
minimize the execution time in comparison of the defmed
parameters in NVIDIA documentation.

Quadro FX 7000 (N � 2048 x 2048)

TPB TS AB TKB
S-

AKBPSM
Exec.

Cycles Time

Restructuring 512 1024 3 4096 48 256 0.0776
Algorithm

NVIDIA SDK 256 1024 5 4096 40 256 0.1084

Table 4: Parameters comparison of Matrix Transpose kernels with no
shared memory bank conflicts

Quadro FX 7000 (N � 2048 x 2048)

TPB TS AB TKB
S-

AKBPSM
Exec.

Cycles Time

Restructuring 512 1024 3 4096 48 256 0.0800
Algorithm

NVIDIA SDK 256 1024 5 4096 40 256 0.1234

Table 5: Parameters comparison of Matrix Transpose kernels with
diagonal tiles mapping to blocks to avoid partition camping

V. CONCLUSION

We presented a restructuring algorithm to optimize a
CUD A program based on three key concepts: (1) tiling, (2)
coalesced global memory access, and (3) resource
optimization. Obtained results were analyzed in view of
proposed optimization parameters which reinforces the
proposed restructuring and alleviate the tedious task of

60

finding an optimized solution based manually optimizing
many parameters using brute-force approach. We have also
compared our strategy with other implemented approaches
of matrix multiplication, matrix scaling, and matrix
transpose kernels mentioned in CUDALite and NVIDIA
SDK. Currently some frameworks provide auto-tuning of
kernel parameters using brute-force approach but none of
the approach defines a strategy for defining optimal
number of threads per block and tile size while our
resource optimization strategy helps to determine the
optimal values of these parameters that maximize the
performance in comparison of the other approaches.

ACKNOWLEDGMENT

Thanks to the ICS-KFUPM and KAUST for giving
access to their GPU computers and workstations.

REFERENCES

[I] S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu. CUDA-lite:
Reducing GPU programming complexity. International Workshop
on Languages and Compilers for Parallel Computing (LCPC), 2008.

[2] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann, OpenMP to
GPGPU: A Compiler Framework for Automatic Translation and
Optimization, Proc. 14th ACM SIGPLAN Symp. on Prin. and Prac.
of Parallel Programming, 2009.

[3] Tianyi David Han and Tarek S. Abdelrahman, "hiCuda: A high-level
Directive-based Language for GPU Programming", GPGPU'09,
March 8, 2009.

[4] J. Owens, D. Luebke, N. Govindaraju, M. Harris, 1. Kr uger, A.
Lefohn, and T. Purcell. A survey of general-purpose computation on
graphics hardware. Computer Graphics Forum, 26(1):80-113, March
2007.

[5] K. Mueller, F. Xu, and N. Neophytou. Why do commodity graphics
hardware boards (GPUs) work so well for acceleration of computed
tomography? SPIE Electronic Imaging 2007, Computational
Imaging , Keynote, 2007.

[6] Demmel, 1. et. aI., Self-Adapting Linear Algebra Algorithms and
Software, Proc. of the IEEE, Vol. 93, No 2, pp.293-312, 2005.

[7] Volkov, V.; Demmel, J.W., Benchmarking GPUs to tune dense
linear algebra, Inter. Conf. on High Performance Computing,
Networking, Storage ans Analysis (SC 2008), pp. 1-11, 2008.

[8] Tomov, S.; Nath, R.; Ltaief, H.; Dongarra, J., Dense linear algebra
solvers for multicore with GPU accelerators, IEEE Inter. Symp. On
Parallel and Distrib. Processing, pp. 1-8, 20 I O.

[9] Agullo, E. et. AI., QR Factorization on a Multicore Node Enhanced
with Multiple GPU Accelerators, IEEE Inter. Parallel & Distributed
Processing Symposium (rPDPS), pp. 932-943, 201 I.

[10] David B. Kirk and Wen-mei W. Hwu, "Programming Massively
Parallel Processors: A Hands-on Approach", Published by Elsevier
Inc. ISBN: 978-0-12-381472-2, 2011.

[II] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Kevin Skadron, "A Performance Study of General-Purpose
Applications on Graphics Processors Using CUDA", in The First
Workshop on General Purpose Processing on Graphics Processing
Units, 2007.

[12] R. Belleman, 1. Bedorf, S.P. Zwart, High performance direct
gravitational N-body simulations on graphics processing units - IT:
an imp. in CUDA, New Astronomy, Vol 13 (2) , pp. 103-112, 2008.

[13] Gabe Rudy, "CUDA-CHiLL: A Programming Language Interface
for GPGPU Optimizations And Code Generation", 2010,
http://books.google.com.salbooks?id=vg66ZwEACAAJ

