[image: image1.png]

King Fahd University of Petroleum and Minerals

Department of Computer Engineering

 CSE 661 Parallel and Vector Architectures
 T131
EXAM 2
25 December 2013
	Problems
	Grading

	Question 1 / 12
	

	Question 2 / 8
	

	TOTAL
	

Student name:……………………………………

Student ID:……………………………….

QUESTION 1: PARALELEIZING THE OCEAN SIMULATION ON SHARED-MEMORY
The simplified version of the Ocean Simulation Solver (OSS) is based on the iterative Gauss-Seidel sweeps. The OSS is based on updating each point in a 2-D array based on a nearest-neighbour relationship. The convergence of the above simulation is based checking if the accumulated difference for all points is below some threshold (statement 25). The sequential code for OSS is shown below:
 While (!done) do

 /*outermost loop over sweeps*/

16.

diff = 0;

 /*initialize maximum difference to 0*/

17.

for i (1 to N do

 /*sweep over nonborder points of grid*/

18.

for j (1 to N do

19.

temp = A[i,j]; /*save old value of element*/

20.

A[i,j](0.2*(A[i,j]+A[i,j-1]+A[i-1,j]+A[i,j+1] + A[i+1,j]);

22.

diff += abs(A[i,j] - temp);

23.

end for

24.

end for

25.

if (diff/(N*N) < TOL) then done = 1;

26.

end while

Each array is assumed to be an N*N. The drawback of the this algorithm is the O(n^2) sweeps and the data dependencies which constrain its parallelization. A good approximation of the above problem is to partition the above loop into 2 loops (a Red loop and a Black loop) as follows:
(1) A double nested “Red” loop (RL) that updates all array elements in:

a. Odd numbered rows that are in odd numbered columns,

b. Even numbered rows that are in even numbered columns.
(2) A double nested “Black” loop (BL) that updates all array elements in:

a. Odd numbered rows that are in even numbered columns,

b. Even numbered rows that are in odd numbered columns.

Answer each of the following questions:

1. Write the Red and Black sequential program for the Ocean simulation including the convergence conditions.

2. The objective for this question is to develop a parallel program for Red-Black approximation for Shared-Memory Multiprocessor, Shared address space. Write the SPMD program for SAS by partitioning the iteration space among P cores. Make sure that:

a. All used variables are properly declared in the parallel code with clear distinction between private and shared variables,
b. In the SPMD program, each core determines its range of data update based on its PID.
c. The SPMD program should include the convergence condition for the parallel implementation.
3. Write the parallel program for Red-Black approximation using optimized OpenMp directives for parallelization over a shared-memory system (SAS). Make sure that:

a. All used variables are properly declared in the parallel code

b. Your answer includes justification of the use of OpenMp optimized constructs in connection with the Red-Black algorithm structure and data dependencies.

c. The convergence condition is implemented in the parallel code.

Solution:
1. The sequential Red-Black program:
 while (!done) do

 /*outermost loop over sweeps*/

diff = 0;

 /*initialize maximum difference to 0*/

for i (1 to N do

 /*Red Sweep over nonborder points*/

 jstart = i mod 2; /*To visit odd numbered pixels*/

for j (jstart to N do stride 2

temp = A[i,j]; /*save old value of element*/

A[i,j](0.2*(A[i,j]+A[i,j-1]+A[i-1,j]+A[i,j+1] + A[i+1,j]);

diff += abs(A[i,j] - temp);

end for

end for

 for i (1 to N do

 /*Black sweep over nonborder points*/

 jstart = i mod 2 +1; /*To visit even numbered pixels*/

for j (jstart to N do stride 2

temp = A[i,j]; /*save old value of element*/

A[i,j](0.2*(A[i,j]+A[i,j-1]+A[i-1,j]+A[i,j+1] + A[i+1,j]);

diff += abs(A[i,j] - temp);

end for

end for

if (diff/(n*n) < TOL) then done = 1;

end while

2. The parallel Red-Black SPMD program:
 my_start= (Pid)*N/P; my_end = my_start + N/P -1;
 {While (!done) do

 /*outermost loop over sweeps*/

diff = 0; /*initialize maximum difference to 0*/
 {

for i (my_start to my_end do /*Red sweeps over nonborder points*/

 jstart = i mod 2; /*To visit odd numbered pixels*/

for j (jstart to N do stride 2

temp = A[i,j]; /*save old value of element*/

A[i,j](0.2*(A[i,j]+A[i,j-1]+A[i-1,j]+A[i,j+1] + A[i+1,j]);

diff += abs(A[i,j] - temp);

end for

end for
 }
 global-diff += diff * Atomic reduce over a shared variable global-diff

 {
 for i (my_start to my_end do /*Black sweeps over nonborder points*/

 jstart = i mod 2 +1; /*To visit even numbered pixels*/

for j (jstart to N do stride 2

temp = A[i,j]; /*save old value of element*/

A[i,j](0.2*(A[i,j]+A[i,j-1]+A[i-1,j]+A[i,j+1] + A[i+1,j]);

diff += abs(A[i,j] - temp);

end for

end for

 }

 global-diff += diff * Atomic reduce over a shared variable global-diff

if (global-diff/(N*N) < TOL) then done = 1; * Done by each process or by master

end while

 }

3. The OpenMp parallel Red-Black program:
 #pragma omp parallel /*Start the parallel section*/
 { while (!done) do

 /*outermost loop over sweeps*/

{diff = 0; /*initialize maximum difference to 0*/
 #pragma omp for private(jstart, j) /*Start the parallel for section*/

for i (1 to N do

 /*Red Sweep over nonborder points*/

 jstart = i mod 2; /*To visit odd numbered pixels*/

for j (jstart to N do stride 2

temp = A[i,j]; /*save old value of element*/

A[i,j](0.2*(A[i,j]+A[i,j-1]+A[i-1,j]+A[i,j+1] + A[i+1,j]);

diff += abs(A[i,j] - temp);

end for

end for
 #pragma omp parallel for reduction(+:diff) * Red: global diff is the sum of all diffs

 #pragma omp for private(jstart, j) /*Start the parallel for section*/
 for i (1 to N do

 /*Black sweep over nonborder points*/

 jstart = i mod 2 +1; /*To visit even numbered pixels*/

for j (jstart to N do stride 2

temp = A[i,j]; /*save old value of element*/

A[i,j](0.2*(A[i,j]+A[i,j-1]+A[i-1,j]+A[i,j+1] + A[i+1,j]);

diff += abs(A[i,j] - temp);

end for

end for

 }

 #pragma omp parallel for reduction(+:diff) * Black: global diff is the sum of all diffs

 #pragma omp single /*Only the Master Thread checks the iteration condition */

if (diff/(n*n) < TOL) then done = 1;

end while

 }

QUESTION-3: PARALELEIZING THE FIRST ADI LOOP ON DISTRIBUTED-MEMORY
The Alternating Direction Integration (ADI) program is a small piece of code with its structure and recurrence represents an iterative integration procedure. The C code shown below represents the first ADI-L1 loop with K iterations and uses an NxN array:
for (iter = 1; iter<= K ; iter++)

{

 for (int i = 1; i <= N; j++)

{

for (int j = 1; j <=N; i++)

{

x[i][j] = x[i][j]-x[i][j-1]*a[i][j]/b[i][j-1];

b[i][j]= b[i][j] - a[i][j]*a[i][j]/b[i][j-1];

}

}

 }

The objective is to write an SPMD (single-program, multiple-data) program for ADI-L1 using MPI library for execution on a Distributed-Memory Multi-computer with following assumptions:
1. Arrays x, a, and b have been properly initialized and are initially stored in the local memory of the master process (Localpid=0).

2. The number of processes (threads) is numprocs=8, e.g. pid is from 0 to 7.
Answer each of the following questions:

1. Carry out the recurrence analysis (data dependence analysis) of both loops (loop i or loop j) and determine which loop is fully parallel, which is not, and which can be partitioned for parallel execution over a Distributed-Memory System. Provide analysis and justifications.
2. Determine the range from arrays x, a, and b which belongs to a process identified by Pid.

3. At the start of the parallel computation, the master process (Pid=0) must broadcast (using MPI library) the arrays x, a, and b to all the other processes. After receiving all the arrays, each process must buffer in its local memory only its own range from arrays x, a, and b. Write the SPMD program (using MPI library) to parallelize first ADI-L1 over P=8 cores and make sure of following:
a) The master process sends the in-range data to each slave process,
b) The SPMD program uses MPI library to parallelize first ADI-L1 over P=8 cores. Make sure that each process will run only in its range of data and the program returns after completion of all the iterations.
c) The master process receives the computed data and correctly maps the data to global arrays.
Solution:
1. The ADI iteration loop cannot be partitioned for parallel execution because the computed data in one iteration is to be used in the next iteration due to the iterative nature of ADI. The loop that can be partitioned for parallel execution over a Distributed-Memory System must be (for (int i = 1; i <= 1000; j++)) which contains one innermost loop. A work-sharing for this loop is adequate because its partitioning leads to a coarse grain partitioning of the innermost loop enclosed in it.
2. The loop that can be partitioned is (for (int i = 1; i <= 1000; j++)), which contains one innermost loop. Therefore, the range from arrays x, a, and b which belongs to a process identified by pid. Given that pid, the range is identified by its Rmin=pid*1000/8 and Rmax= (pid+1)*1000/8-1. In other words, for pid in [0,7] we have Rmin=pid*125 and Rmax= (pid+1)*125-1.
3. At the start of the parallel computation, the master process (Localpid=0) broadcast arrays x, a, and b to all the other processes. After receiving all the arrays, each process buffers in its local memory its own range from arrays x, a, and b. The SPMD code performs (1) send from master process, and (2) receive and map operations for the slave processes:
Main:
 MPI-init(argc, argv);

 MPI-Comm-size(MPI-comm-wolrd, &numprocs)

 MPI-Comm-rank(MPI-comm-wolrd, &Localpid)

 ADI-Procedure(a, b, x);
 Some processing or saving data;

 MPI-Finalize(argc, argv);

 Return;

ADI-Procedure(a, b, x); * This is the SPMD ADI program
 array_size = N*N; range=array_size / 8;

 Other declarations;

 * Scattering of the array data by process 0 to all slave processes (arrays a, b, and x)

 Float local-a[N/p][N], local-b[N/p][N], local-x[N/p][N],

 MPI-Scatter(&a, N2/p, MPI-float, local-a, N2/p, MPI-float, 0, Localtag, MPI-Comm-world);
 MPI-Scatter(&b, N2/p, MPI-float, local-b, N2/p, MPI-float, 0, Localtag, MPI-Comm-world);
 MPI-Scatter(&x, N2/p, MPI-float, local-x, N2/p, MPI-float, 0, Localtag, MPI-Comm-world);
for (iter = 1; iter<= Max-iter ; iter++)

{

 for (int i = 1; i <= range; i++)

 {

for (int j = 1; j <= N; i++)

{

 Local_x[i][j] = Local_x[i][j]- Local_x[i][j-1]* Local_a[i][j]/ Local_b[i][j-1];

 Local_b[i][j]= Local_b[i][j] - Local_a[i][j]* Local_a[i][j]/b[i][j-1];

}

 }

 }

 * Gathering of the array results from all slave processes (arrays a, b, and x) to master 0

 MPI-Gather(&a, N2/p, MPI-float, local-a, N2/p, MPI-float, 0, Localtag, MPI-Comm-world);

 MPI-Gather(&b, N2/p, MPI-float, local-b, N2/p, MPI-float, 0, Localtag, MPI-Comm-world);

QUESTION 1: PARALELEIZING THE OCEAN SIMULATION ON SHARED-MEMORY
The simplified version of the Ocean Simulation Solver (OSS) is based on the iterative Gauss-Seidel sweeps. The OSS is based on updating each point in a 2-D array based on a nearest-neighbour relationship. The convergence of the above simulation is based checking if the accumulated difference for all points is below some threshold (statement 25). The sequential code for OSS is shown below:
 While (!done) do

 /*outermost loop over sweeps*/

16.

diff = 0;

 /*initialize maximum difference to 0*/

17.

for i (1 to N do

 /*sweep over nonborder points of grid*/

18.

for j (1 to N do

19.

temp = A[i,j]; /*save old value of element*/

20.

A[i,j](0.2*(A[i,j]+A[i,j-1]+A[i-1,j]+A[i,j+1] + A[i+1,j]);

22.

diff += abs(A[i,j] - temp);

23.

end for

24.

end for

25.

if (diff/(N*N) < TOL) then done = 1;

26.

end while

Each array is assumed to be an N*N. The drawback of the this algorithm is the O(n^2) sweeps and the data dependencies which constrain its parallelization. A good approximation of the above problem is to partition the above loop into 2 loops (a Red loop and a Black loop) as follows:
(3) A double nested “Red” loop (RL) that updates all array elements in:

a. Odd numbered rows that are in odd numbered columns,

b. Even numbered rows that are in even numbered columns.
(4) A double nested “Black” loop (BL) that updates all array elements in:

a. Odd numbered rows that are in even numbered columns,

b. Even numbered rows that are in odd numbered columns.

Answer each of the following questions:

4. Write the Red and Black sequential program for the Ocean simulation including the convergence conditions.

5. Write the parallel program for Red-Black approximation using optimized OpenMp constructs for parallelization over a shared-memory system (SAS). Make sure that:

a. All used variables are properly declared in the parallel code

b. Your answer includes justification of the use of OpenMp optimized constructs in connection with the Red-Black algorithm structure and data dependencies.

c. The convergence condition is implemented in the parallel code.

Solution:
4. The Red-Black sequential program:
 while (!done) do

 /*outermost loop over sweeps*/

diff = 0;

 /*initialize maximum difference to 0*/

for i (1 to N do

 /*Red Sweep over nonborder points*/

 jstart = i mod 2; /*To visit odd numbered pixels*/

for j (jstart to N do stride 2

temp = A[i,j]; /*save old value of element*/

A[i,j](0.2*(A[i,j]+A[i,j-1]+A[i-1,j]+A[i,j+1] + A[i+1,j]);

diff += abs(A[i,j] - temp);

end for

end for

 for i (1 to N do

 /*Black sweep over nonborder points*/

 jstart = i mod 2 +1; /*To visit even numbered pixels*/

for j (jstart to N do stride 2

temp = A[i,j]; /*save old value of element*/

A[i,j](0.2*(A[i,j]+A[i,j-1]+A[i-1,j]+A[i,j+1] + A[i+1,j]);

diff += abs(A[i,j] - temp);

end for

end for

if (diff/(n*n) < TOL) then done = 1;

end while

5. The parallel Red-Black program:
 #pragma omp parallel /*Start the parallel section*/
 { while (!done) do

 /*outermost loop over sweeps*/

diff = 0; /*initialize maximum difference to 0*/
 #pragma omp for private(jstart, j) /*Start the parallel for section*/
 {

for i (1 to N do

 /*Red Sweep over nonborder points*/

 jstart = i mod 2; /*To visit odd numbered pixels*/

for j (jstart to N do stride 2

temp = A[i,j]; /*save old value of element*/

A[i,j](0.2*(A[i,j]+A[i,j-1]+A[i-1,j]+A[i,j+1] + A[i+1,j]);

diff += abs(A[i,j] - temp);

end for

end for
 }
 #pragma omp for private(jstart, j) reduce (+:diff) /*Start the parallel for section*/
 {
 for i (1 to N do

 /*Black sweep over nonborder points*/

 jstart = i mod 2 +1; /*To visit even numbered pixels*/

for j (jstart to N do stride 2

temp = A[i,j]; /*save old value of element*/

A[i,j](0.2*(A[i,j]+A[i,j-1]+A[i-1,j]+A[i,j+1] + A[i+1,j]);

diff += abs(A[i,j] - temp);

end for

end for

 }

 #pragma omp single /*Only the Master Thread checks the iteration condition */

if (diff/(n*n) < TOL) then done = 1;

end while

 }

