King Fahd University of Petroleum & Minerals
College of Computer Sciences and Engineering

Computer Engineering Department
COE 202 Digital Logic Design
Course Syllabus

Course Objectives:

Catalog Description
Introduction to Computer Engineering. Digital Circuits. Boolean algebra and switching theory. Manipulation and minimization of Boolean functions. Combinational circuits analysis and design, multiplexers, decoders and adders. Sequential circuit analysis and design, basic flip-flops, clocking and edge-triggering, registers, counters, timing sequences, state assignment and reduction techniques. Register transfer level operations. (Prerequisite: PHYS 102)

COURSE TOPICS

·         Number System and Codes: Information Processing, and representation. Digital vs Analog quantities. General Number Systems. Binary, Octal and Hexadecimal systems. Number System Arithmetic (Addition, Subtraction & Multiplication). Number base conversion. Binary Storage & Registers. Signed Binary Number representation (Signed Mag, R’s &(R-1)’s Complement). Signed Binary Addition and Subtraction ((R-1)’s, R’s Complement Addition and Subtraction). Codes.  BCD, Excess-3, Parity Bits, ASCII & Unicode.

·         Binary Logic & Gates: Boolean Algebra; basic identities, algebraic manipulation, complement of a function. Canonical and Standard forms, minterms and Maxterms, Sum of products and Products of Sums. Physical properties of gates: fan-in, fan-out, propagation delay, timing diagrams and Tri-state drivers. Map method of simplification: Two-, Three-, Four-and Five-variable K-Maps. Essential prime implicants, simplification procedure, SOP & POS simplification, Don’t care conditions. Universal gates; NAND, NOR gates: 2-level implementations. Multilevel Circuits. Exclusive-OR (XOR) and Equivalence (XNOR) gates, Odd and Even Functions, Parity generation and checking.

·         Combinational Logic: Design Procedure & Examples. Half and Full Adders, Binary Adders: 4-Bit Ripple Carry Adder and delay analysis. Carry Look-Ahead Adder, Adder-Subtractor circuit. MSI parts. Decoders, Decoder expansion,  combinational logic implementation using decoders, Encoders & Priority Encoders, Multiplexers, Function Implementation using multiplexers, Demultiplexers, Magnitude Comparator. Design Examples.

·         Sequential Circuits: Latches, Clocked latches: SR, D, T and JK. Race problem in clocked JK-Latch. Function & Excitation Tables of clocked latches: SR, D, T and JK. Flip-Flops: Master-Slave, and edge-triggered. Function & Excitation Tables of T-FF. Asynchronous/Direct Clear and Set Inputs. Setup &Hold times. Sequential Circuit Design: Excitation Tables. Design procedure, State diagrams and state tables. Sequential Circuit Analysis: Input equations, State table. Mealy vs. Moore models of FSMs. Examples. Registers and counters.

·         Memory & PLDs: Memory devices: RAMs & ROMs . Combinational Circuit Implementation with ROM. Programmable Logic Devices: PLAs, PALs, and FPGA’a

MEETING THE PROFESSIONAL COMPONENTS

This course emphasizes the design and analysis of combinational as well as sequential digital logic circuits. For this end, the course also emphasizes the ability of students to use Boolean algebra to simplify functions using both the algebraic and the K-map techniques.

 

COURSE OUTCOMES

 

 

Course Learning

Outcomes

 

Outcome Indicators and Details

 

O1. Ability to apply math and Boolean algebra in performing computations in various number systems and simplification of Boolean algebraic  expressions. [ABET Criterion 3a]

·         Digital vs Analog quantities.

·         General Number Systems. Binary, Octal and Hexadecimal systems. Number System Arithmetic (Addition, Subtraction & Multiplication).

·         Number base conversion. Binary Storage & Registers. Signed Binary Number representation (Signed Mag, R’s &(R-1)’s Complement).

·         Signed Binary Addition and Subtraction ((R-1)’s, R’s Complement Addition and Subtraction). Codes.  BCD, Excess-3, Parity Bits, ASCII & Unicode.

·         Represent integer and fractional values in various number systems

·         Convert number representation from one system to another

·         Perform arithmetic operations in various number systems

·         Represent data in different binary codes including error detecting codes

Simplify Boolean expressions using Boolean algebra & identities

 

O2. Ability to design efficient combinational and sequential logic circuit implementations from functional description of digital systems. [ABET Criterion 3c]

  • Derive gate-level implementation of a given Boolean expression and vice versa
  • Ability to build larger combinational functions using predefined modules (e.g., decoders, multiplexers, adders, Magnitude comparators.)
  • Design Procedure & Examples. Half and Full Adders, Binary Adders: 4-Bit Ripple Carry Adder and delay analysis. Carry Look-Ahead Adder, Adder-Subtractor circuit. MSI parts. Decoders, Decoder expansion,  combinational logic implementation using decoders, Encoders & Priority Encoders, Multiplexers, Function Implementation using multiplexers, Demultiplexers, Magnitude Comparator. Design Examples.
  • Design of Latches, Clocked latches: SR, D, T and JK. Race problem in clocked JK-Latch. Function & Excitation Tables of clocked latches: SR, D, T and JK. Flip-Flops: Master-Slave, and edge-triggered. Function & Excitation Tables of T-FF.
  • Design of Asynchronous/Direct Clear and Set Inputs. Setup &Hold times. Sequential Circuit Design: Design procedure, State diagrams and state tables. Sequential Circuit Analysis: Input equations, State table. Mealy vs. Moore models of FSMs.
  • Analysis of Memory devices: RAMs & ROMs . Combinational Circuit Implementation with ROM. Programmable Logic Devices: PLAs, PALs, and FPGA’a
  • Ability to build a state diagram / table for both

Moore & Mealy models from functional description

  • Ability to design & implement Moore & Mealy model synchronous sequential circuits using different Flip-Flop types.
  • Ability to draw timing diagrams for major signals of both sequential and combination circuits

O3. Ability to use CAD tools to simulate and verify logic circuits. [ABET Criterion 3k]

  •  Use of CAD tools to simulate and verify logic circuits.

  •  Ability to simulate and verify the operation of combinational circuits

  • Ability to simulate and verify the operation of sequential circuits

  •  

     

    Working Groups:
    The instructor encourages the students to work in groups for reviewing the class lectures, preparation for exams, and discussion (only) of homework problems. Participants receive bonus grades for such activities. A Bonus will be given to all members of a Working Group for each meeting of the group.  Students wishing to participate as group members may ask the instructor about the class leaders and their groups. A group leader has the responsibility of providing the instructor the list of students who attended a meeting. This list should include the students name, date of meeting, and signatures. Any student can attend the lecture review meetings.