

King Fahd University of Petroleum and Minerals Department of Computer Engineering

DIGITAL LOGIC DESIGN COE 202

Homework 3, December 20, 2008

Problems	Grading
1	
2	
3	
4	
5	
6	
TOTAL	

Student Name:.....

Student ID:.....

Solve each of the following questions:

- 1. As a *design engineer* your manager asks you to design a circuit that will be used in an electronic safety device used for toddlers. The circuit monitors an area that will be used by toddlers. The area is divided into 4 zones, Z_1 , Z_2 , Z_3 , and Z_4 . Each zone has an installed bodyheat sensor. If the sensor detects the presence of a toddler in its zone, then the sensor produces a binary "1," and it produces a binary "0" otherwise. Your circuit receives the readings from each sensor installed in each of the 4 zones. Furthermore, your circuit controls 2 light bulbs, L_1 and L_2 . Both L_1 and L_2 will be turned **off** (i.e. binary "0") if the circuit detects the presence of toddler(s) in exactly **one** of the 4 zones. Only L_2 will be turned **on** if the circuit detects the presence of toddler(s) in either **two** or **three** of the 4 zones. Both L_1 and L_2 will be turned **on** if the circuit detects the presence of toddler(s) in either **two** or **three** of the 4 zones. Both L_1 and L_2 will be turned **on** if the circuit detects the presence of toddler(s) in either **two** or **three** of the 4 zones. Both L_1 and L_2 will be turned **on** if the circuit detects the presence of toddler(s) in either **two** or **three** of the 4 zones. Both L_1 and L_2 will be turned **on** if the circuit detects the presence of toddler(s) in either **two** or **three** of the 4 zones. Both L_1 and L_2 will be turned **on** if the circuit detects the presence of toddler(s) in either **two** or **three** of the 4 zones. Design the circuit using all **NAND** gates.
- **2.** Use a 4×16 **non-inverted-output decoder** and external gate(s) to implement the following function:

$$X_{A,B,C,D} = \sum (0,4,5,8,9,10,12)$$

- 3. Repeat problem # 2 but use a **4×16 inverted-output decoder** and external gate(s).
- 4. Repeat problem # 2 but use a **16×1 MUX** and external gate(s).
- 5. Repeat problem # 2 but use an 8×1 MUX and external gate(s). Connect *A*, *B*, and *C* to S₂, S₁, and S₀, respectively.
- 6. Repeat problem # 2 but use an 8×1 MUX and external gate(s). Connect *A*, *C*, and *D* to S₂, S₁, and S₀, respectively.