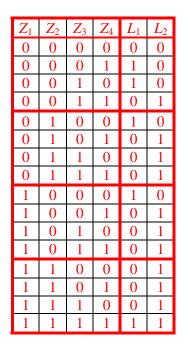
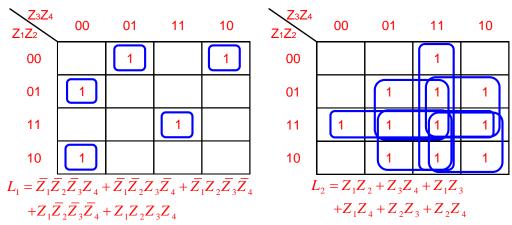
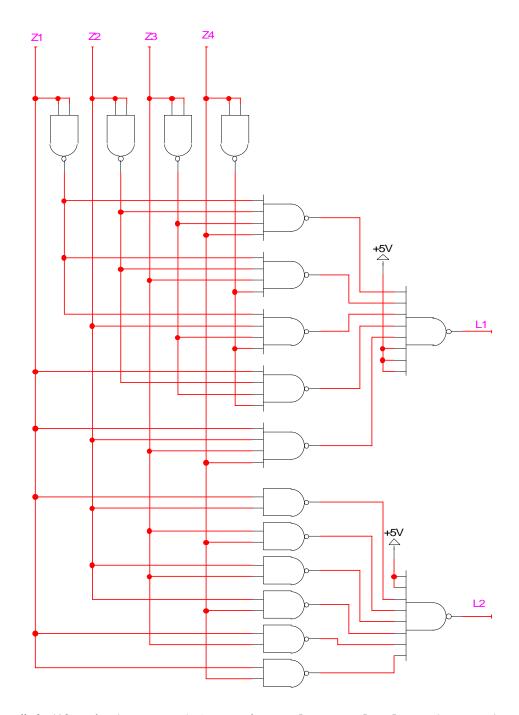


King Fahd University of Petroleum and Minerals Department of Computer Engineering

DIGITAL LOGIC DESIGN COE 202

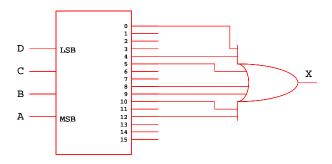

Homework 3, December 21, 2008

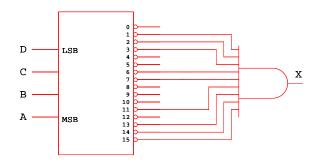

Problems	Grading
1	
2	
3	
4	
5	
6	
TOTAL	


Student Name:	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
Student ID:			

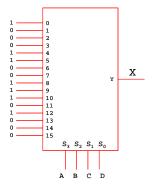
Question1:

As a *design engineer* your manager asks you to design a circuit that will be used in an electronic safety device used for toddlers. The circuit monitors an area that will be used by toddlers. The area is divided into 4 zones, Z_1 , Z_2 , Z_3 , and Z_4 . Each zone has an installed body-heat sensor. If the sensor detects the presence of a toddler in its zone, then the sensor produces a binary "1," and it produces a binary "0" otherwise. Your circuit receives the readings from each sensor installed in each of the 4 zones. Furthermore, your circuit controls 2 light bulbs, L_1 and L_2 . Both L_1 and L_2 will be turned **off** (i.e. binary "0") if the circuit detects the presence of **no** toddlers in all 4 zones. Only L_1 will be turned **on** if the circuit detects the presence of toddler(s) in exactly **one** of the 4 zones. Only L_2 will be turned **on** if the circuit detects the presence of toddler(s) in either **two** or **three** of the 4 zones. Both L_1 and L_2 will be turned **on** if the circuit detects the presence of toddler(s) in either **two** or **three** of the 4 zones. Design the circuit using all **NAND** gates.

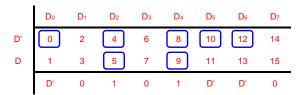


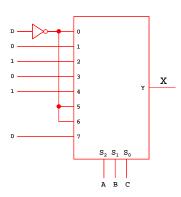

<u>Problem # 2 (10 points):</u> Use a 4×16 <u>non-inverted-output decoder</u> and external gate(s) to implement the following function: $X_{A,B,C,D} = \sum_{i=0}^{n} (0,4,5,8,9,10,12)$

$$X_{A,B,C,D} = \sum (0,4,5,8,9,10,12)$$

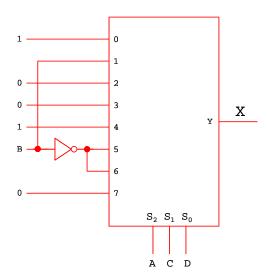


<u>Problem # 3 (10 points):</u> Repeat problem # 2 but use a **4×16** <u>inverted-output</u> decoder and external gate(s).


$$X_{A,B,C,D} = \sum_{A,B,C,D} (0,4,5,8,9,10,12) = \prod_{A,B,C,D} (1,2,3,6,7,11,13,14,15)$$



Problem # 4 (10 points): Repeat problem # 2 but use a **16×1 MUX** and external gate(s).


<u>Problem # 5 (10 points):</u> Repeat problem # 2 but use an 8×1 MUX and external gate(s). Connect A, B, and C to S_2 , S_1 , and S_0 , respectively.

<u>Problem # 6 (10 points):</u> Repeat problem # 2 but use an 8×1 MUX and external gate(s). Connect A, C, and D to S_2 , S_1 , and S_0 , respectively.

		D ₁						
В'	0	1 5	2	3	8	9	10	11
В	4	5	6	7	12	13	14	15
	1	В	0	0	1	B'	B'	0

