

King Fahd University of Petroleum and Minerals Department of Computer Engineering

DIGITAL LOGIC DESIGN COE 202

Exam 1, November 8, 2008

Problems	Grading
1	
2	
3	
TOTAL	

Student Name:	•••••	•••••	•••••
Student ID:			

Problem-1: R's and (R-1)'s Complements and Conversions

Answer each of the following questions and show all your steps

a. $(323.25)_{10}$ to binary, octal and hexadecimal

1. Convert the following numbers from the given basis (radix)

b. $(10111101.101)_2$ to decimal, octal and hexadecimal

2. Find the Rs and(R-1)s complements of following numbers:
a. The binary number $(110101101010101)_2$ has its
i. Its 2's complement as:
ii. Its 1's complement as:
b. The octal number (36542) ₈ has its
i. Its 8's complement as:
ii. Its 7's complement as:
c. The hexadecimal number (AB5612) ₁₆ has
i. Its 16's complement as:
ii. Its 15's complement as:
n. Its 13 s complement as.

Problem-2: Addition and Subtraction using R's and (R-1)'s Complements

Perform the following subtractions using the specified representation. Also indicate weather the result is positive, negative or overflow:

- **d.** Using 7's Complement, evaluate $(3567)_8 (4573)_8 =$
- e. Using 16's Complement, evaluate $(357f6)_{16}$ $(12345)_{16}$ =
- **f.** Using 1's Complement, evaluate $(11010011)_2 (10101110)_2 =$
- **g.** Using 2's Complement, evaluate $(11010011.101)_2 (10101110.1001)_2 =$

Problem-3: Simplification of Boolean Expressions

<u>Note</u>: The notation used is as follows the Complement(XY = X' and Complement(XY = (XY)'). Simplify the following Boolean expressions. **Show all your steps:**

1.
$$XY + XYZ =$$

2.
$$XZ + (X' + Z')Y =$$

3.
$$XYZ + UV + (XYZ)'V =$$

4.
$$(X + Y' + XY')' =$$

5. Evaluate the dual of (X + Y' + XY')' =