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Preface

WHY WE WROTE THIS BOOK
Mass-market computing systems that combine multi-core CPUs and many-

core GPUs have brought terascale computing to the laptop and petascale

computing to clusters. Armed with such computing power, we are at the

dawn of pervasive use of computational experiments for science, engineer-

ing, health, and business disciplines. Many will be able to achieve break-

throughs in their disciplines using computational experiments that are of

unprecedented level of scale, controllability, and observability. This book

provides a critical ingredient for the vision: teaching parallel programming

to millions of graduate and undergraduate students so that computational

thinking and parallel programming skills will be as pervasive as calculus.

During the Christmas holiday of 2006, we were frantically working on

the lecture slides and lab assignments. David was working the system trying

to pull the early GeForce 8800 GTX GPU cards from customer shipments

to Illinois, which would not succeed until a few weeks after the semester

began. It also became clear that CUDA would not become public until a

few weeks after the start of the semester. We had to work out the legal

agreements so that we can offer the course to students under NDA for the

first few weeks. We also needed to get the words out so that students would

sign up since the course was not announced until after the pre-enrollment

period.

We gave our first lecture on January 16, 2007. Everything fell into

place. David commuted weekly to Urbana for the class. We had 52

students, a couple more than our capacity. We had draft slides for most

of the first 10 lectures. Wen-mei’s graduate student, John Stratton,

graciously volunteered as the teaching assistant and set up the lab. All students

signed NDA so that we can proceed with the first several lectures until

CUDA became public. We recorded the lectures but did not release them

on the Web until February. We had graduate students from physics, astron-

omy, chemistry, electrical engineering, mechanical engineering as well as

computer science and computer engineering. The enthusiasm in the room

made it all worthwhile.

Since then, we have taught the course three times in one-semester

format and two times in one-week intensive format. The ECE498AL course

has become a permanent course known as ECE408 of the University of

Illinois, Urbana-Champaign. We started to write up some early chapters

of this book when we offered ECE498AL the second time. We tested these

ix
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chapters in our spring 2009 class and our 2009 Summer School. The first

four chapters were also tested in an MIT class taught by Nicolas Pinto in

spring 2009. We also shared these early chapters on the web and received

valuable feedback from numerous individuals. We were encouraged by

the feedback we received and decided to go for a full book. Here, we hum-

bly present our first edition to you.

TARGET AUDIENCE
The target audience of this book is graduate and undergraduate students

from all science and engineering disciplines the computational thinking

and parallel programming skills needed to use pervasive terascale comput-

ing hardware to achieve breakthroughs in their own disciplines. We assume

that the reader has at least some basic C programming experience and thus

are more advanced programmers, both within and outside of the field of

Computer Science. We especially target computational scientists in fields

such as mechanical engineering, civil engineering, electrical engineering,

bio-engineering, physics, and chemistry, who use computation to further

their field of research. As such, these scientists are both experts in their

domain as well as advanced programmers. The book takes the approach

of building on basic C programming skills, to teach parallel programming

in C. We use C for CUDA�, a parallel programming environment that

is supported on NVIDIA GPUs, and emulated on less parallel CPUs.

There are approximately 200 million of these processors in the hands of

consumers and professionals, and more than 40,000 programmers actively

using CUDA. The applications that you develop as part of the learning

experience will be able to run by a very large user community.

HOW TO USE THE BOOK
We would like to offer some of our experience in teaching ECE498AL

using the material is this book.

A Three-Phased Approach

In ECE498AL the lectures and programming assignments are balanced with

each other and organized into three phases:

Phase 1: One lecture based on Chapter 3 is dedicated to teaching the

basic CUDA memory/threading model, the CUDA extensions to the C
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language, and the basic programming/debugging tools. After the lecture,

students can write a naı̈ve parallel matrix multiplication code in a couple

of hours.

Phase 2: The next phase is a series of ten lectures that give students the

conceptual understanding of the CUDA memory model, the CUDA thread-

ing model, GPU hardware performance features, modern computer system

architecture, and the common data-parallel programming patterns needed

to develop a high-performance parallel application. These lectures are

based on Chapters 4 through 7. The performance of their matrix multiplica-

tion codes increases by about 10 times through this period. The students

also complete assignments on convolution, vector reduction, and prefix

scan through this period.

Phase 3: Once the students have established solid CUDA programming

skills, the remaining lectures cover computational thinking, a broader

range of parallel execution models, and parallel programming principles.

These lectures are based on Chapters 8 through 11. (The voice and video

recordings of these lectures are available on-line (http://courses.ece.

illinois.edu/ece498/al).

Tying It All Together: The Final Project

While the lectures, labs, and chapters of this book help lay the intellectual

foundation for the students, what brings the learning experience together

is the final project. The final project is so important to the course that it

is prominently positioned in the course and commands nearly two months’

focus. It incorporates five innovative aspects: mentoring, workshop, clinic,

final report, and symposium. (While much of the information about final

project is available at the ECE498AL web site (http://courses.ece.illinois.

edu/ece498/al), we would like to offer the thinking that was behind the

design of these aspects.)

Students are encouraged to base their final projects on problems that

represent current challenges in the research community. To seed the

process, the instructors recruit several major computational science research

groups to propose problems and serve as mentors. The mentors are asked to

contribute a one-to-two-page project specification sheet that briefly

describes the significance of the application, what the mentor would like

to accomplish with the student teams on the application, the technical skills

(particular type of Math, Physics, Chemistry courses) required to under-

stand and work on the application, and a list of web and traditional

resources that students can draw upon for technical background, general
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information, and building blocks, along with specific URLs or ftp paths to

particular implementations and coding examples. These project specifica-

tion sheets also provide students with learning experiences in defining their

own research projects later in their careers. (Several examples are available

at the ECE498AL course web site.)

Students are also encouraged to contact their potential mentors during

their project selection process. Once the students and the mentors agree

on a project, they enter into a close relationship, featuring frequent consul-

tation and project reporting. We the instructors attempt to facilitate the

collaborative relationship between students and their mentors, making it a

very valuable experience for both mentors and students.

The Project Workshop
The main vehicle for the whole class to contribute to each other’s final proj-

ect ideas is the project workshop. We usually dedicate six of the lecture

slots to project workshops. The workshops are designed for students’

benefit. For example, if a student has identified a project, the workshop

serves as a venue to present preliminary thinking, get feedback, and recruit

teammates. If a student has not identified a project, he/she can simply

attend the presentations, participate in the discussions, and join one of the

project teams. Students are not graded during the workshops, in order to

keep the atmosphere non-threatening and enable them to focus on a

meaningful dialog with the instructor(s), teaching assistants, and the rest

of the class.

The workshop schedule is designed so the instructor(s) and teaching

assistants can take some time to provide feedback to the project teams

and so that students can ask questions. Presentations are limited to 10 minutes

so there is time for feedback and questions during the class period. This

limits the class size to about 36 presenters, assuming 90-minute lecture

slots. All presentations are pre-loaded into a PC in order to control the

schedule strictly and maximize feedback time. Since not all students

present at the workshop, we have been able to accommodate up to 50

students in each class, with extra workshop time available as needed.

The instructor(s) and TAs must make a commitment to attend all the

presentations and to give useful feedback. Students typically need most

help in answering the following questions. First, are the projects too big

or too small for the amount of time available? Second, is there existing

work in the field that the project can benefit from? Third, are the computa-

tions being targeted for parallel execution appropriate for the CUDA

programming model?
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The Design Document
Once the students decide on a project and form a team, they are required to

submit a design document for the project. This helps them think through the

project steps before they jump into it. The ability to do such planning will

be important to their later career success. The design document should

discuss the background and motivation for the project, application-level

objectives and potential impact, main features of the end application, an

overview of their design, an implementation plan, their performance goals,

a verification plan and acceptance test, and a project schedule.

The teaching assistants hold a project clinic for final project teams

during the week before the class symposium. This clinic helps ensure that

students are on-track and that they have identified the potential roadblocks

early in the process. Student teams are asked to come to the clinic with an

initial draft of the following three versions of their application: (1) The best

CPU sequential code in terms of performance, with SSE2 and other optimi-

zations that establish a strong serial base of the code for their speedup

comparisons; (2) The best CDUA parallel code in terms of performance.

This version is the main output of the project; (3) A version of CPU sequen-

tial code that is based on the same algorithm as version 3, using single

precision. This version is used by the students to characterize the parallel

algorithm overhead in terms of extra computations involved

Student teams are asked to be prepared to discuss the key ideas used in

each version of the code, any floating-point precision issues, any compari-

son against previous results on the application, and the potential impact

on the field if they achieve tremendous speedup. From our experience,

the optimal schedule for the clinic is one week before the class symposium.

An earlier time typically results in less mature projects and less meaningful

sessions. A later time will not give students sufficient time to revise their

projects according to the feedback.

The Project Report
Students are required to submit a project report on their team’s key find-

ings. Six lecture slots are combined into a whole-day class symposium.

During the symposium, students use presentation slots proportional to the

size of the teams. During the presentation, the students highlight the best

parts of their project report for the benefit of the whole class. The presenta-

tion accounts for a significant part of students’ grades. Each student must

answer questions directed to him/her as individuals, so that different grades

can be assigned to individuals in the same team. We have recorded these

presentations for viewing by future students [where are they available?].
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The symposium is a major opportunity for students to learn to produce a

concise presentation that motivates their peers to read a full paper. After

their presentation, the students also submit a full report on their final

project.

ONLINE SUPPLEMENTS
The lab assignments, final project guidelines, and sample project specifica-

tions are available to instructors who use this book for their classes. While

this book provides the intellectual contents for these classes, the additional

material will be crucial in achieving the overall education goals. We would

like to invite you to take advantage of the on-line material that accompanies

this book, which is available at the Publisher’s Web site, [www.elsevierdir-

ect.com/9780123814722].

Finally, we encourage you to submit your feedback. We would like to

hear from you if you have any ideas for improving this book. We would

like to know how we can improve the supplementary on-line material. Of

course, we also like to know what you liked about the book. We look for-

ward to hearing from you.

David B. Kirk and Wen-mei W. Hwu
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s0010 INTRODUCTION
p0045 Microprocessors based on a single central processing unit (CPU), such as

those in the Intel� Pentium� family and the AMD� Opteron� family,

drove rapid performance increases and cost reductions in computer applica-

tions for more than two decades. These microprocessors brought giga (bil-

lion) floating-point operations per second (GFLOPS) to the desktop and

hundreds of GFLOPS to cluster servers. This relentless drive of perfor-

mance improvement has allowed application software to provide more

functionality, have better user interfaces, and generate more useful results.

The users, in turn, demand even more improvements once they become

accustomed to these improvements, creating a positive cycle for the

computer industry.

p0050 During the drive, most software developers have relied on the advances

in hardware to increase the speed of their applications under the hood; the

same software simply runs faster as each new generation of processors

is introduced. This drive, however, has slowed since 2003 due to energy-

consumption and heat-dissipation issues that have limited the increase of

the clock frequency and the level of productive activities that can be

performed in each clock period within a single CPU. Virtually all micro-

processor vendors have switched to models where multiple processing

units, referred to as processor cores, are used in each chip to increase the

Programming Massively Parallel Processors: A Hands-on Approach. DOI: 10.1016/B978-0-12-381472-2.00001-5
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processing power. This switch has exerted a tremendous impact on the

software developer community [Sutter 2005].

p0055 Traditionally, the vast majority of software applications are written as

sequential programs, as described in 1945 by von Neumann in his seminal

report [von Neumann 1945]. The execution of these programs can be under-

stood by a human sequentially stepping through the code. Historically,

computer users have become accustomed to the expectation that these pro-

grams run faster with each new generation of microprocessors. Such expec-

tation is no longer valid from this day onward. A sequential program will

only run on one of the processor cores, which will not become any faster

than those in use today. Without performance improvement, application

developers will no longer be able to introduce new features and capabilities

into their software as new microprocessors are introduced, thus reducing

the growth opportunities of the entire computer industry.

p0060 Rather, the applications software that will continue to enjoy perfor-

mance improvement with each new generation of microprocessors will be

parallel programs, in which multiple threads of execution cooperate to com-

plete the work faster. This new, dramatically escalated incentive for parallel

program development has been referred to as the concurrency revolution
[Sutter 2005]. The practice of parallel programming is by no means new.

The high-performance computing community has been developing parallel

programs for decades. These programs run on large-scale, expensive com-

puters. Only a few elite applications can justify the use of these expensive

computers, thus limiting the practice of parallel programming to a small

number of application developers. Now that all new microprocessors are

parallel computers, the number of applications that must be developed

as parallel programs has increased dramatically. There is now a great need

for software developers to learn about parallel programming, which is the

focus of this book.

s0015 1.1 GPUs AS PARALLEL COMPUTERS
p0065 Since 2003, the semiconductor industry has settled on two main trajectories

for designing microprocessor [Hwu 2008]. The multicore trajectory seeks to

maintain the execution speed of sequential programs while moving into

multiple cores. The multicores began as two-core processors, with the

number of cores doubling with each semiconductor process generation.

A current exemplar is the recent Intel� Core� i7 microprocessor, which

2 CHAPTER 1 Introduction
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has four processor cores, each of which is an out-of-order, multiple-instruc-

tion issue processor implementing the full x86 instruction set; the micropro-

cessor supports hyperthreading with two hardware threads and is designed

to maximize the execution speed of sequential programs.

p0070 In contrast, the many-core trajectory focuses more on the execution

throughput of parallel applications. The many-cores began as a large num-

ber of much smaller cores, and, once again, the number of cores doubles

with each generation. A current exemplar is the NVIDIA� GeForce�

GTX 280 graphics processing unit (GPU) with 240 cores, each of which

is a heavily multithreaded, in-order, single-instruction issue processor that

shares its control and instruction cache with seven other cores. Many-core

processors, especially the GPUs, have led the race of floating-point perfor-

mance since 2003. This phenomenon is illustrated in Figure 1.1. While the

performance improvement of general-purpose microprocessors has slowed

significantly, the GPUs have continued to improve relentlessly. As of

2009, the ratio between many-core GPUs and multicore CPUs for peak

floating-point calculation throughput is about 10 to 1. These are not neces-

sarily achievable application speeds but are merely the raw speed that the

execution resources can potentially support in these chips: 1 teraflops

(1000 gigaflops) vs. 100 gigaflops in 2009.
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FIGURE 1.1

Enlarging performance gap between GPUs and CPUs.
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p0075 Such a large performance gap between parallel and sequential execution

has amounted to a significant “electrical potential” buildup, and at some

point something will have to give. We have reached that point now. To

date, this large performance gap has already motivated many applications

developers to move the computationally intensive parts of their software

to GPUs for execution. Not surprisingly, these computationally intensive

parts are also the prime target of parallel programming—when there is

more work to do, there is more opportunity to divide the work among coop-

erating parallel workers.

p0080 One might ask why there is such a large performance gap between

many-core GPUs and general-purpose multicore CPUs. The answer lies in

the differences in the fundamental design philosophies between the two

types of processors, as illustrated in Figure 1.2. The design of a CPU is

optimized for sequential code performance. It makes use of sophisticated

control logic to allow instructions from a single thread of execution to exe-

cute in parallel or even out of their sequential order while maintaining the

appearance of sequential execution. More importantly, large cache mem-

ories are provided to reduce the instruction and data access latencies of

large complex applications. Neither control logic nor cache memories con-

tribute to the peak calculation speed. As of 2009 Au1, the new general-purpose,

multicore microprocessors typically have four large processor cores

designed to deliver strong sequential code performance.

p0085 Memory bandwidth is another important issue. Graphics chips have been

operating at approximately 10 times the bandwidth of contemporaneously

available CPU chips. In late 2006, the GeForce� 8800 GTX, or simply

Control
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CPU GPU

DRAM DRAM

ALU

ALU

ALU

ALU

f0015
FIGURE 1.2

CPUs and GPUs have fundamentally different design philosophies.
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G80, was capable of moving data at about 85 gigabytes per second (GB/s)

in and out of its main dynamic random access memory (DRAM). Because

of frame buffer requirements and the relaxed memory model—the way

various system software, applications, and input/output (I/O) devices expect

their memory accesses to work—general-purpose processors have to satisfy

requirements from legacy operating systems, applications, and I/O devices

that make memory bandwidth more difficult to increase. In contrast, with

simpler memory models and fewer legacy constraints, the GPU designers

can more easily achieve higher memory bandwidth. The more recent

NVIDIA� GT200 chip supports about 150 GB/s. Microprocessor system

memory bandwidth will probably not grow beyond 50 GB/s for about

3 years, so CPUs will continue to be at a disadvantage in terms of memory

bandwidth for some time.

p0090 The design philosophy of the GPUs is shaped by the fast growing video

game industry, which exerts tremendous economic pressure for the ability

to perform a massive number of floating-point calculations per video frame

in advanced games. This demand motivates the GPU vendors to look for

ways to maximize the chip area and power budget dedicated to floating-

point calculations. The prevailing solution to date is to optimize for the exe-

cution throughput of massive numbers of threads. The hardware takes

advantage of a large number of execution threads to find work to do when

some of them are waiting for long-latency memory accesses, thus minimiz-

ing the control logic required for each execution thread. Small cache mem-

ories are provided to help control the bandwidth requirements of these

applications so multiple threads that access the same memory data do not

need to all go to the DRAM. As a result, much more chip area is dedicated

to the floating-point calculations.

p0095 It should be clear now that GPUs are designed as numeric computing

engines, and they will not perform well on some tasks on which CPUs

are designed to perform well; therefore, one should expect that most appli-

cations will use both CPUs and GPUs, executing the sequential parts on the

CPU and numerically intensive parts on the GPUs. This is why the

CUDA� (Compute Unified Device Architecture) programming model,

introduced by NVIDIA in 2007, is designed to support joint CPU/GPU exe-

cution of an application.1

fn0010
1See Chapter 2 for more background on the evolution of GPU computing and the creation

of CUDA.
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p0100 It is also important to note that performance is not the only decision

factor when application developers choose the processors for running their

applications. Several other factors can be even more important. First and

foremost, the processors of choice must have a very large presence in the

marketplace, referred to as the installation base of the processor. The reason

is very simple. The cost of software development is best justified by a very

large customer population. Applications that run on a processor with a

small market presence will not have a large customer base. This has been

a major problem with traditional parallel computing systems that have neg-

ligible market presence compared to general-purpose microprocessors.

Only a few elite applications funded by government and large corporations

have been successfully developed on these traditional parallel computing

systems. This has changed with the advent of many-core GPUs. Due to

their popularity in the PC market, hundreds of millions of GPUs have been

sold. Virtually all PCs have GPUs in them. The G80 processors and their

successors have shipped more than 200 million units to date. This is the

first time that massively parallel computing has been feasible with a

mass-market product. Such a large market presence has made these GPUs

economically attractive for application developers.

p0105 Other important decision factors are practical form factors and easy

accessibility. Until 2006, parallel software applications usually ran on

data-center servers or departmental clusters, but such execution environ-

ments tend to limit the use of these applications. For example, in an appli-

cation such as medical imaging, it is fine to publish a paper based on a

64-node cluster machine, but actual clinical applications on magnetic reso-

nance imaging (MRI) machines are all based on some combination of a PC

and special hardware accelerators. The simple reason is that manufacturers

such as GE and Siemens cannot sell MRIs with racks of clusters to clinical

settings, but this is common in academic departmental settings. In fact, the

National Institutes of Health (NIH) refused to fund parallel programming

projects for some time; they felt that the impact of parallel software would

be limited because huge cluster-based machines would not work in the

clinical setting. Today, GE ships MRI products with GPUs, and NIH funds

research using GPU computing.

p0110 Yet another important consideration in selecting a processor for exe-

cuting numeric computing applications is the support for the Institute of

Electrical and Electronics Engineers (IEEE) floating-point standard. The

standard makes it possible to have predictable results across processors

from different vendors. While support for the IEEE floating-point standard

6 CHAPTER 1 Introduction
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was not strong in early GPUs, this has also changed for new generations of

GPUs since the introduction of the G80. As we will discuss in Chapter 7,

GPU support for the IEEE floating-point standard has become comparable

to that of the CPUs. As a result, one can expect that more numerical appli-

cations will be ported to GPUs and yield comparable values as the CPUs.

Today, a major remaining issue is that the floating-point arithmetic units

of the GPUs are primarily single precision. Applications that truly require

double-precision floating point were not suitable for GPU execution;

however, this has changed with the recent GPUs, whose double-precision

execution speed approaches about half that of single precision, a level that

high-end CPU cores achieve. This makes the GPUs suitable for even more

numerical applications.

p0115 Until 2006, graphics chips were very difficult to use because programmers

had to use the equivalent of graphic application programming interface

(API) functions to access the processor cores, meaning that OpenGL� or

Direct3D� techniques were needed to program these chips. This technique

was called GPGPU, short for general-purpose programming using a graphics

processing unit. Even with a higher level programming environment, the

underlying code is still limited by the APIs. These APIs limit the kinds

of applications that one can actually write for these chips. That’s why only

a few people could master the skills necessary to use these chips to achieve

performance for a limited number of applications; consequently, it did not

become a widespread programming phenomenon. Nonetheless, this technol-

ogy was sufficiently exciting to inspire some heroic efforts and excellent

results.

p0120 Everything changed in 2007 with the release of CUDA [NVIDIA 2007].

NVIDIA actually devoted silicon area to facilitate the ease of parallel pro-

gramming, so this did not represent a change in software alone; additional

hardware was added to the chip. In the G80 and its successor chips for par-

allel computing, CUDA programs no longer go through the graphics inter-

face at all. Instead, a new general-purpose parallel programming interface

on the silicon chip serves the requests of CUDA programs. Moreover, all

of the other software layers were redone, as well, so the programmers can

use the familiar C/Cþþ programming tools. Some of our students tried to

do their lab assignments using the old OpenGL-based programming inter-

face, and their experience helped them to greatly appreciate the improve-

ments that eliminated the need for using the graphics APIs for computing

applications.

71.1 GPUs as Parallel Computers
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s0020 1.2 ARCHITECTURE OF A MODERN GPU
p0125 Figure 1.3 shows the architecture of a typical CUDA-capable GPU. It is

organized into an array of highly threaded streaming multiprocessors

(SMs). In Figure 1.3, two SMs form a building block; however, the number

of SMs in a building block can vary from one generation of CUDA GPUs

to another generation. Also, each SM in Figure 1.3 has a number of stream-

ing processors (SPs) that share control logic and instruction cache. Each

GPU currently comes with up to 4 gigabytes of graphics double data rate

(GDDR) DRAM, referred to as global memory in Figure 1.3. These GDDR

DRAMs differ from the system DRAMs on the CPU motherboard in that

they are essentially the frame buffer memory that is used for graphics.

For graphics applications, they hold video images, and texture information

for three-dimensional (3D) rendering, but for computing they function

as very-high-bandwidth, off-chip memory, though with somewhat more

latency than typical system memory. For massively parallel applications,

the higher bandwidth makes up for the longer latency.

p0130 The G80 that introduced the CUDA architecture had 86.4 GB/s of mem-

ory bandwidth, plus an 8-GB/s communication bandwidth with the CPU.

A CUDA application can transfer data from the system memory at 4 GB/s

and at the same time upload data back to the system memory at 4 GB/s.

Altogether, there is a combined total of 8 GB/s. The communication band-

width is much lower than the memory bandwidth and may seem like

a limitation; however, the PCI Express� bandwidth is comparable to the

CPU front-side bus bandwidth to the system memory, so it’s really not the

limitation it would seem at first. The communication bandwidth is also

expected to grow as the CPU bus bandwidth of the system memory grows

in the future.

p0135 The massively parallel G80 chip has 128 SPs (16 SMs, each with 8 SPs).

Each SP has a multiply–add (MAD) unit and an additional multiply unit.

With 128 SPs, that’s a total of over 500 gigaflops. In addition, special-

function units perform floating-point functions such as square root (SQRT),

as well as transcendental functions. With 240 SPs, the GT200 exceeds 1 ter-

flops. Because each SP is massively threaded, it can run thousands of

threads per application. A good application typically runs 5000 to 12,000

threads simultaneously on this chip. For those who are used to simultaneous

multithreading, note that Intel CPUs support 2 or 4 threads, depending on

the machine model, per core. The G80 chip supports up to 768 threads

per SP, which sums up to about 12,000 threads for this chip. The more

recent GT200 supports 1024 threads per SP and up to about 30,000 threads

8 CHAPTER 1 Introduction
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for the chip. Thus, the level of parallelism supported by GPU hardware is

increasing quickly. It is very important to strive for such levels of parallelism

when developing GPU parallel computing applications.

s0025 1.3 WHY MORE SPEED OR PARALLELISM?
p0140 As we stated in Section 1.1, the main motivation for massively parallel pro-

gramming is for applications to enjoy a continued increase in speed in

future hardware generations. One might ask why applications will continue

to demand increased speed. Many applications that we have today seem to

be running quite fast enough. As we will discuss in the case study chapters,

when an application is suitable for parallel execution, a good implementa-

tion on a GPU can achieve more than 100 times (100�) speedup over

sequential execution. If the application includes what we call data parallel-
ism, it is often a simple task to achieve a 10� speedup with just a few hours

of work. For anything beyond that, we invite you to keep reading!

p0145 Despite the myriad computing applications in today’s world, many

exciting mass-market applications of the future will be what we currently

consider to be supercomputing applications, or super-applications. For

example, the biology research community is moving more and more into

the molecular level. Microscopes, arguably the most important instrument

in molecular biology, used to rely on optics or electronic instrumentation,

but there are limitations to the molecular-level observations that we can

make with these instruments. These limitations can be effectively addressed

by incorporating a computational model to simulate the underlying molec-

ular activities with boundary conditions set by traditional instrumentation.

From the simulation we can measure even more details and test more

hypotheses than can ever be imagined with traditional instrumentation

alone. These simulations will continue to benefit from the increasing com-

puting speed in the foreseeable future in terms of the size of the biological

system that can be modeled and the length of reaction time that can be

simulated within a tolerable response time. These enhancements will have

tremendous implications with regard to science and medicine.

p0150 For applications such as video and audio coding and manipulation, con-

sider our satisfaction with digital high-definition television (HDTV) vs.

older National Television System Committee (NTSC) television. Once we

experience the level of details offered by HDTV, it is very hard to go back

to older technology. But, consider all the processing that is necessary

for that HDTV. It is a very parallel process, as are 3D imaging and

10 CHAPTER 1 Introduction
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visualization. In the future, new functionalities such as view synthesis and

high-resolution display of low-resolution videos will demand that televisions

have more computing power.

p0155 Among the benefits offered by greater computing speed are much better

user interfaces. Consider the Apple� iPhone� interfaces; the user enjoys

a much more natural interface with the touch screen compared to other

cell phone devices, even though the iPhone has a limited-size window.

Undoubtedly, future versions of these devices will incorporate higher defi-

nition, three-dimensional perspectives, voice and computer vision based

interfaces, requiring even more computing speed.

p0160 Similar developments are underway in consumer electronic gaming.

Imagine driving a car in a game today; the game is, in fact, simply a prear-

ranged set of scenes. If your car bumps into an obstacle, the course of your

vehicle does not change; only the game score changes. Your wheels are not

bent or damaged, and it is no more difficult to drive, regardless of whether

you bumped your wheels or even lost a wheel. With increased computing

speed, the games can be based on dynamic simulation rather than prear-

ranged scenes. We can expect to see more of these realistic effects in the

future—accidents will damage your wheels, and your online driving expe-

rience will be much more realistic. Realistic modeling and simulation of

physics effects are known to demand large amounts of computing power.

p0165 All of the new applications that we mentioned involve simulating a con-

current world in different ways and at different levels, with tremendous

amounts of data being processed. And, with this huge quantity of data,

much of the computation can be done on different parts of the data in par-

allel, although they will have to be reconciled at some point. Techniques for

doing so are well known to those who work with such applications on a

regular basis. Thus, various granularities of parallelism do exist, but the

programming model must not hinder parallel implementation, and the data

delivery must be properly managed. CUDA includes such a programming

model along with hardware support that facilitates parallel implementation.

We aim to teach application developers the fundamental techniques for

managing parallel execution and delivering data.

p0170 How many times speedup can be expected from parallelizing these super

application? It depends on the portion of the application that can be paral-

lelized. If the percentage of time spent in the part that can be parallelized is

30%, a 100� speedup of the parallel portion will reduce the execution time

by 29.7%. The speedup for the entire application will be only 1.4�. In fact,

even an infinite amount of speedup in the parallel portion can only slash

less 30% off execution time, achieving no more than 1.43� speedup.

111.3 Why More Speed or Parallelism?
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On the other hand, if 99% of the execution time is in the parallel portion,

a 100� speedup will reduce the application execution to 1.99% of the

original time. This gives the entire application a 50� speedup; therefore,

it is very important that an application has the vast majority of its execution

in the parallel portion for a massively parallel processor to effectively

speedup its execution.

p0175 Researchers have achieved speedups of more than 100� for some appli-

cations; however, this is typically achieved only after extensive optimiza-

tion and tuning after the algorithms have been enhanced so more than

99.9% of the application execution time is in parallel execution. In general,

straightforward parallelization of applications often saturates the memory

(DRAM) bandwidth, resulting in only about a 10� speedup. The trick is

to figure out how to get around memory bandwidth limitations, which

involves doing one of many transformations to utilize specialized GPU

on-chip memories to drastically reduce the number of accesses to the

DRAM. One must, however, further optimize the code to get around limita-

tions such as limited on-chip memory capacity. An important goal of this

book is to help you to fully understand these optimizations and become

skilled in them.

p0180 Keep in mind that the level of speedup achieved over CPU execution

can also reflect the suitability of the CPU to the application. In some appli-

cations, CPUs perform very well, making it more difficult to speed up per-

formance using a GPU. Most applications have portions that can be much

better executed by the CPU. Thus, one must give the CPU a fair chance

to perform and make sure that code is written in such a way that GPUs

complement CPU execution, thus properly exploiting the heterogeneous

parallel computing capabilities of the combined CPU/GPU system. This is

precisely what the CUDA programming model promotes, as we will further

explain in the book.

p0185 Figure 1.4 illustrates the key parts of a typical application. Much of the

code of a real application tends to be sequential. These portions are consid-

ered to be the pit area of the peach; trying to apply parallel computing tech-

niques to these portions is like biting into the peach pit—not a good feeling!

These portions are very difficult to parallelize. CPUs tend to do a very good

job on these portions. The good news is that these portions, although they

can take up a large portion of the code, tend to account for only a small por-

tion of the execution time of super-applications.

p0190 Then come the meat portions of the peach. These portions are easy to

parallelize, as are some early graphics applications. For example, most of

today’s medical imaging applications are still running on combinations of

12 CHAPTER 1 Introduction
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microprocessor clusters and special-purpose hardware. The cost and size

benefit of the GPUs can drastically improve the quality of these applica-

tions. As illustrated in Figure 1.4, early GPGPUs cover only a small portion

of the meat section, which is analogous to a small portion of the most excit-

ing applications coming in the next 10 years. As we will see, the CUDA

programming model is designed to cover a much larger section of the peach

meat portions of exciting applications.

s0030 1.4 PARALLEL PROGRAMMING LANGUAGES AND MODELS
p0195 Many parallel programming languages and models have been proposed in

the past several decades [Mattson 2004]. The ones that are the most widely

used are the Message Passing Interface (MPI) for scalable cluster com-

puting and OpenMP� for shared-memory multiprocessor systems. MPI is

a model where computing nodes in a cluster do not share memory

[MPI 2009]; all data sharing and interaction must be done through explicit

message passing. MPI has been successful in the high-performance scien-

tific computing domain. Applications written in MPI have been known to

run successfully on cluster computing systems with more than 100,000

nodes. The amount of effort required to port an application into MPI,

Sequential portions

Data parallel portions

Traditional CPU coverage

GPGPU coverage
Obstacles

f0025
FIGURE 1.4

Coverage of sequential and parallel application portions.
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however, can be extremely high due to lack of shared memory across com-

puting nodes. CUDA, on the other hand, provides shared memory for par-

allel execution in the GPU to address this difficulty. As for CPU and

GPU communication, CUDA currently provides very limited shared mem-

ory capability between the CPU and the GPU. Programmers need to man-

age the data transfer between the CPU and GPU in a manner similar to

“one-sided” message passing, a capability whose absence in MPI has been

historically considered as a major weakness of MPI.

p0200 OpenMP supports shared memory, so it offers the same advantage as

CUDA in programming efforts; however, it has not been able to scale

beyond a couple hundred computing nodes due to thread management over-

heads and cache coherence hardware requirements. CUDA achieves much

higher scalability with simple, low-overhead thread management and no

cache coherence hardware requirements. As we will see, however, CUDA

does not support as wide a range of applications as OpenMP due to these

scalability tradeoffs. On the other hand, many super-applications fit well

into the simple thread management model of CUDA and thus enjoy the

scalability and performance.

p0205 Aspects of CUDA are similar to both MPI and OpenMP in that the pro-

grammer manages the parallel code constructs, although OpenMP compi-

lers do more of the automation in managing parallel execution. Several

ongoing research efforts aim at adding more automation of parallelism

management and performance optimization to the CUDA tool chain. Devel-

opers who are experienced with MPI and OpenMP will find CUDA easy to

learn. Especially, many of the performance optimization techniques are

common among these models.

p0210 More recently, several major industry players, including Apple, Intel,

AMD/ATI, and NVIDIA, have jointly developed a standardized program-

ming model called OpenCL� [Khronos 2009]. Similar to CUDA, the

OpenCL programming model defines language extensions and runtime

APIs to allow programmers to manage parallelism and data delivery in

massively parallel processors. OpenCL is a standardized programming

model in that applications developed in OpenCL can run without modi-

fication on all processors that support the OpenCL language extensions

and API.

p0215 The reader might ask why the book is not based on OpenCL. The main

reason is that OpenCL was still in its infancy when this book was written.

The level of programming constructs in OpenCL is still at a lower level

than CUDA and much more tedious to use. Also, the speed achieved in

an application expressed in OpenCL is still much lower than in CUDA on

14 CHAPTER 1 Introduction
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the platforms that support both. Because programming massively parallel

processors is motivated by speed, we expect that most who program mas-

sively parallel processors will continue to use CUDA for the foreseeable

future. Finally, those who are familiar with both OpenCL and CUDA

know that there is a remarkable similarity between the key features of

OpenCL and CUDA; that is, a CUDA programmer should be able to

learn OpenCL programming with minimal effort. We will give a more

detailed analysis of these similarities later in the book.

s0035 1.5 OVERARCHING GOALS
p0220 Our primary goal is to teach you, the reader, how to program massively par-

allel processors to achieve high performance, and our approach will not

require a great deal of hardware expertise. Someone once said that if you

don’t care about performance parallel programming is very easy. You can

literally write a parallel program in an hour. But, we’re going to dedicate

many pages to materials on how to do high-performance parallel program-

ming, and we believe that it will become easy once you develop the right

insight and go about it the right way. In particular, we will focus on compu-
tational thinking techniques that will enable you to think about problems in

ways that are amenable to high-performance parallel computing.

p0225 Note that hardware architecture features have constraints. High-

performance parallel programming on most of the chips will require some

knowledge of how the hardware actually works. It will probably take

10 more years before we can build tools and machines so most program-

mers can work without this knowledge. We will not be teaching computer

architecture as a separate topic; instead, we will teach the essential

computer architecture knowledge as part of our discussions on high-

performance parallel programming techniques.

p0230 Our second goal is teach parallel programming for correct functionality and

reliability, which constitute a subtle issue in parallel computing. Those who

have worked on parallel systems in the past know that achieving initial per-

formance is not enough. The challenge is to achieve it in such a way that

you can debug the code and support the users. We will show that with the

CUDA programming model that focuses on data parallelism, one can achieve

both high performance and high reliability in their applications.

p0235 Our third goal is achieving scalability across future hardware generations

by exploring approaches to parallel programming such that future machines,

which will be more and more parallel, can run your code faster than today’s

151.5 Overarching Goals
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machines. We want to help you to master parallel programming so your

programs can scale up to the level of performance of new generations of

machines.

p0240 Much technical knowledge will be required to achieve these goals, so we

will cover quite a few principles and patterns of parallel programming in

this book. We cannot guarantee that we will cover all of them, however,

so we have selected several of the most useful and well-proven techniques

to cover in detail. To complement your knowledge and expertise, we

include a list of recommended literature. We are now ready to give you a

quick overview of the rest of the book.

s0040 1.6 ORGANIZATION OF THE BOOK
p0245 Chapter 2 reviews the history of GPU computing. It begins with a brief

summary of the evolution of graphics hardware toward greater programma-

bility and then discusses the historical GPGPU movement. Many of the cur-

rent features and limitations of CUDA GPUs have their roots in these

historic developments. A good understanding of these historic develop-

ments will help the reader to better understand the current state and the

future trends of hardware evolution that will continue to impact the types

of applications that will benefit from CUDA.

p0250 Chapter 3 introduces CUDA programming. This chapter relies on the

fact that students have had previous experience with C programming. It

first introduces CUDA as a simple, small extension to C that supports het-

erogeneous CPU/GPU joint computing and the widely used single-program,

multiple-data (SPMD) parallel programming model. It then covers the

thought processes involved in: (1) identifying the part of application pro-

grams to be parallelized, (2) isolating the data to be used by the parallelized

code by using an API function to allocate memory on the parallel comput-

ing device, (3) using an API function to transfer data to the parallel com-

puting device, (4) developing a kernel function that will be executed by

individual threads in the parallelized part, (5) launching a kernel function

for execution by parallel threads, and (6) eventually transferring the data

back to the host processor with an API function call. Although the objective

of Chapter 3 is to teach enough concepts of the CUDA programming model

so students can write a simple parallel CUDA program, it actually covers

several basic skills needed to develop a parallel application based on any

parallel programming model. We use a running example of matrix–matrix

multiplication to make this chapter concrete.

16 CHAPTER 1 Introduction
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p0255 Chapters 4 through 7 are designed to give the readers more in-depth

understanding of the CUDA programming model. Chapter 4 covers the

thread organization and execution model required to fully understand the

execution behavior of threads and basic performance concepts. Chapter 5

is dedicated to the special memories that can be used to hold CUDA vari-

ables for improved program execution speed. Chapter 6 introduces the

major factors that contribute to the performance of a CUDA kernel func-

tion. Chapter 7 introduces the floating-point representation and concepts

such as precision and accuracy. Although these chapters are based on

CUDA, they help the readers build a foundation for parallel programming

in general. We believe that humans understand best when we learn from

the bottom up; that is, we must first learn the concepts in the context of a

particular programming model, which provides us with a solid footing to

generalize our knowledge to other programming models. As we do so, we

can draw on our concrete experience from the CUDA model. An in-depth

experience with the CUDA model also enables us to gain maturity, which

will help us learn concepts that may not even be pertinent to the CUDA

model.

p0260 Chapters 8 and 9 are case studies of two real applications, which take the

readers through the thought processes of parallelizing and optimizing their

applications for significant speedups. For each application, we begin by

identifying alternative ways of formulating the basic structure of the paral-

lel execution and follow up with reasoning about the advantages and disad-

vantages of each alternative. We then go through the steps of code

transformation necessary to achieve high performance. These two chapters

help the readers put all the materials from the previous chapters together

and prepare for their own application development projects.

p0265 Chapter 10 generalizes the parallel programming techniques into prob-

lem decomposition principles, algorithm strategies, and computational

thinking. It does so by covering the concept of organizing the computation

tasks of a program so they can be done in parallel. We begin by discussing

the translational process of organizing abstract scientific concepts into

computational tasks, an important first step in producing quality application

software, serial or parallel. The chapter then addresses parallel algorithm

structures and their effects on application performance, which is grounded

in the performance tuning experience with CUDA. The chapter concludes

with a treatment of parallel programming styles and models, allowing the

readers to place their knowledge in a wider context. With this chapter,

the readers can begin to generalize from the SPMD programming style to

other styles of parallel programming, such as loop parallelism in OpenMP

171.6 Organization of the Book
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and fork–join in p-thread programming. Although we do not go into

these alternative parallel programming styles, we expect that the readers

will be able to learn to program in any of them with the foundation gained

in this book.

p0270 Chapter 11 introduces the OpenCL programming model from a CUDA

programmer’s perspective. The reader will find OpenCL to be extremely

similar to CUDA. The most important difference arises from OpenCL’s

use of API functions to implement functionalities such as kernel launching

and thread identification. The use of API functions makes OpenCL more

tedious to use; nevertheless, a CUDA programmer has all the knowledge

and skills necessary to understand and write OpenCL programs. In fact, we

believe that the best way to teach OpenCL programming is to teach CUDA

first. We demonstrate this with a chapter that relates all major OpenCL

features to their corresponding CUDA features. We also illustrate the use of

these features by adapting our simple CUDA examples into OpenCL.

p0275 Chapter 12 offers some concluding remarks and an outlook for the

future of massively parallel programming. We revisit our goals and summa-

rize how the chapters fit together to help achieve the goals. We then present

a brief survey of the major trends in the architecture of massively parallel

processors and how these trends will likely impact parallel programming

in the future. We conclude with a prediction that these fast advances in

massively parallel computing will make it one of the most exciting areas

in the coming decade.
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s0010 INTRODUCTION
p0060 To CUDA� and OpenCL� programmers, graphics processing units (GPUs)

are massively parallel numeric computing processors programmed in C with

extensions. One need not understand graphics algorithms or terminology in

order to be able to program these processors. However, understanding the

graphics heritage of these processors illuminates the strengths and weak-

nesses of these processors with respect to major computational patterns. In

particular, the history helps to clarify the rationale behind major architectural

design decisions of modern programmable GPUs: massive multithreading,

relatively small cache memories compared to central processing units

(CPUs), and bandwidth-centric memory interface design. Insights into the

historical developments will also likely give the reader the context needed

to project the future evolution of GPUs as computing devices.

s0015 2.1 EVOLUTION OF GRAPHICS PIPELINES
p0065 Three-dimensional (3D) graphics pipeline hardware evolved from the large

expensive systems of the early 1980s to small workstations and then PC

accelerators in the mid- to late 1990s. During this period, the performance-

Programming Massively Parallel Processors: A Hands-on Approach. DOI: 10.1016/B978-0-12-381472-2.00002-7
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leading graphics subsystems decreased in price from $50,000 to $200.

During the same period, the performance increased from 50 million pixels

per second to 1 billion pixels per second and from 100,000 vertices per

second to 10 million vertices per second. Although these advancements have

much to do with the relentlessly shrinking feature sizes of semiconductor

devices, they also have resulted from innovations in graphics algorithms

and hardware design that have shaped the native hardware capabilities of

modern GPUs.

p0070 The remarkable advancement of graphics hardware performance has

been driven by the market demand for high-quality, real-time graphics in

computer applications. In an electronic gaming application, for example,

one needs to render ever more complex scenes at an ever-increasing resolu-

tion at a rate of 60 frames per second. The net result is that over the last

30 years graphics architecture has evolved from being a simple pipeline

for drawing wire-frame diagrams to a highly parallel design consisting of

several deep parallel pipelines capable of rendering the complex interactive

imagery of 3D scenes. Concurrently, many of the hardware functionalities

involved became far more sophisticated and user programmable.

s0020 2.1.1 The Era of Fixed-Function Graphics Pipelines

p0075 From the early 1980s to the late 1990s, the leading performance graphics

hardware was fixed-function pipelines that were configurable but not pro-

grammable. In that same era, major graphics application programming

interface (API) libraries became popular. An API is a standardized layer

of software (i.e., a collection of library functions) that allows applications

(such as games) to use software or hardware services and functionality.

An API, for example, can allow a game to send commands to a graphics

processing unit to draw objects on a display. One such API is DirectX�,

Microsoft’s proprietary API for media functionality. The Direct3D� com-

ponent of DirectX provides interface functions to graphics processors.

The other major API is OpenGL�, an open standard API supported by

multiple vendors and popular in professional workstation applications. This

era of fixed-function graphics pipeline roughly corresponds to the first

seven generations of DirectX.

p0080 Figure 2.1 shows an example fixed-function graphics pipeline in early

NVIDIA� GeForce� GPUs. The host interface receives graphics commands

and data from the CPU. The commands are typically given by application

programs by calling an API function. The host interface typically contains

a specialized direct memory access (DMA) hardware to efficiently transfer

22 CHAPTER 2 History of GPU Computing
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bulk data to and from the host system memory to the graphics pipeline.

The host interface also communicates back the status and result data of

executing the commands.

p0085 Before we describe the other stages of the pipeline, we should clarify

that the term vertex usually refers to the corner of a polygon. The GeForce

graphics pipeline is designed to render triangles, so the term vertex is typi-

cally used in this case to refer to the corners of a triangle. The surface of

an object is drawn as a collection of triangles. The finer the sizes of the

triangles are, the better the quality of the picture typically becomes. The

vertex control stage in Figure 2.1 receives parameterized triangle data from

the CPU. The vertex control stage then converts the triangle data into a

form that the hardware understands and places the prepared data into the

vertex cache.

p0090 The vertex shading, transform, and lighting (VS/T&L) stage in Figure 2.1

transforms vertices and assigns per-vertex values (e.g., colors, normals,

texture coordinates, tangents). The shading is done by the pixel shader hard-

ware. The vertex shader can assign a color to each vertex, but color is not

applied to triangle pixels until later. The triangle setup stage further creates

Host CPU

Vertex Control

GPU
Host Interface

Vertex Control
Vertex 
Cache

VS/Tand L

Triangle Setup

Raster

Shader
Texture
Cache Frame

ROP

Cache Frame
Buffer

Memory

FBI

f0010
FIGURE 2.1

A fixed-function NVIDIA GeForce graphics pipeline.
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edge equations that are used to interpolate colors and other per-vertex data

(such as texture coordinates) across the pixels touched by the triangle. The

raster stage determines which pixels are contained in each triangle. For each

of these pixels, the raster stage interpolates per-vertex values necessary for

shading the pixel, including the color, position, and texture position that will

be shaded (painted) on the pixel Au1.

p0095 The shader stage in Figure 2.1 determines the final color of each pixel.

This can be generated as a combined effect of many techniques: interpola-

tion of vertex colors, texture mapping, per-pixel lighting mathematics,

reflections, and more. Many effects that make the rendered images more

realistic are incorporated in the shader stage. Figure 2.2 illustrates texture

mapping, one of the shader stage functionalities. It shows an example in

which a world map texture is mapped onto a sphere object. Note that the

sphere object is described as a large collection of triangles. Although

the shader stage must perform only a small number of coordinate transform

Sphere with no texture

Sphere with texture

Texture image
texture image

Vn

Vp

Ve

u

v

f0015
FIGURE 2.2

Texture mapping example: painting a world map texture image onto a globe

object.
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calculations to identify the exact coordinates of the texture point that will

be painted on a point in one of the triangles that describes the sphere object,

the sheer number of pixels covered by the image requires the shader stage

to perform a very large number of coordinate transforms for each frame.

p0100 The raster operation (ROP) stage in Figure 2.2 performs the final raster

operations on the pixels. It performs color raster operations that blend the

color of overlapping/adjacent objects for transparency and anti-aliasing

effects. It also determines the visible objects for a given viewpoint and

discards the occluded pixels. A pixel becomes occluded when it is blocked

by pixels from other objects according to the given view point.

p0105 Figure 2.3 illustrates anti-aliasing, one the of ROP stage operations.

Notice the three adjacent triangles with a black background. In the aliased

output, each pixel assumes the color of one of the objects or the back-

ground. The limited resolution makes the edges look crooked and the

shapes of the objects distorted. The problem is that many pixels are partly

in one object and partly in another object or the background. Forcing these

pixels to assume the color of one of the objects introduces distortion into

the edges of the objects. The anti-aliasing operation gives each pixel a color

that is blended, or linearly combined, from the colors of all the objects and

background that partially overlap the pixel. The contribution of each object

to the color of the pixel is the amount of the pixel that the object overlaps.

p0110 Finally, the frame buffer interface (FBI) stage in Figure 2.1 manages

memory reads from and writes to the display frame buffer memory. For

high-resolution displays, there is a very high bandwidth requirement in

Triangle Geometry Aliased Anti-Aliased

f0020
FIGURE 2.3

Example of anti-aliasing operations.
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accessing the frame buffer. Such bandwidth is achieved by two strategies.

One is that graphics pipelines typically use special memory designs that

provide higher bandwidth than the system memories. Second, the FBI

simultaneously manages multiple memory channels that connect to multiple

memory banks. The combined bandwidth improvement of multiple chan-

nels and special memory structures gives the frame buffers much higher

bandwidth than their contemporaneous system memories. Such high mem-

ory bandwidth has continued to this day and has become a distinguishing

feature of modern GPU design.

p0115 For two decades, each generation of hardware and its corresponding

generation of API brought incremental improvements to the various stages

of the graphics pipeline. Although each generation introduced additional

hardware resources and configurability to the pipeline stages, developers

were growing more sophisticated and asking for more new features than

could be reasonably offered as built-in fixed functions. The obvious next

step was to make some of these graphics pipeline stages into programmable

processors.

s0025 2.1.2 Evolution of Programmable Real-Time Graphics

p0120 In 2001, the NVIDIA GeForce 3 took the first step toward achieving true

general shader programmability. It exposed the application developer to

what had been the private internal instruction set of the floating-point vertex

engine (VS/T&L stage). This coincided with the release of Microsoft’s

DirectX 8 and OpenGL vertex shader extensions. Later GPUs, at the time

of DirectX 9, extended general programmability and floating-point capa-

bility to the pixel shader stage and made texture accessible from the vertex

shader stage. The ATI Radeon� 9700, introduced in 2002, featured a pro-

grammable 24-bit floating-point pixel shader processor programmed with

DirectX 9 and OpenGL. The GeForce FX added 32-bit floating-point pixel

processors. These programmable pixel shader processors were part of a

general trend toward unifying the functionality of the different stages as seen

by the application programmer. The GeForce 6800 and 7800 series were

built with separate processor designs dedicated to vertex and pixel proces-

sing. The XBox� 360 introduced an early unified processor GPU in 2005,

allowing vertex and pixel shaders to execute on the same processor.

p0125 In graphics pipelines, certain stages do a great deal of floating-point arith-

metic on completely independent data, such as transforming the positions of

triangle vertices or generating pixel colors. This data independence as the

dominating application characteristic is a key difference between the design
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assumption for GPUs and CPUs. A single frame, rendered in 1/60th of a

second, might have a million triangles and 6 million pixels. The opportunity

to use hardware parallelism to exploit this data independence is tremendous.

p0130 The specific functions executed at a few graphics pipeline stages vary

with rendering algorithms. Such variation has motivated the hardware

designers to make those pipeline stages programmable. Two particular

programmable stages stand out: the vertex shader and the pixel shader.

Vertex shader programs map the positions of triangle vertices onto the

screen, altering their position, color, or orientation. Typically, a vertex

shader thread reads a floating-point (x, y, z, w) vertex position and computes

a floating-point (x, y, z) screen position. Geometry shader programs operate

on primitives defined by multiple vertices, changing them or generating

additional primitives. Vertex shader programs and geometry shader pro-

grams execute on the vertex shader (VS/T&L) stage of the graphics pipeline.

p0135 Pixel shader programs each shade one pixel, computing a floating-point

red, green, blue, alpha (RGBA) color contribution to the rendered image at

its pixel sample (x, y) image position. These programs execute on the

shader stage of the graphics pipeline. For all three types of graphics shader

programs, program instances can be run in parallel, because each works on

independent data, produces independent results, and has no side effects.

This property has motivated the design of the programmable pipeline stages

into massively parallel processors.

p0140 Figure 2.4 shows an example of a programmable pipeline that employs a

vertex processor and a fragment (pixel) processor. The programmable vertex

processor executes the programs designated to the vertex shader stage, and

the programmable fragment processor executes the programs designated to

the (pixel) shader stage. Between these programmable graphics pipeline

stages are dozens of fixed-function stages that perform well-defined tasks

far more efficiently than a programmable processor could and which would

benefit far less from programmability. For example, between the geometry

processing stage and the pixel processing stage is a rasterizer, a complex

state machine that determines exactly which pixels (and portions thereof)

lie within each geometric primitive’s boundaries. Together, the mix of

programmable and fixed-function stages is engineered to balance extreme

performance with user control over the rendering algorithms.

p0145 Common rendering algorithms perform a single pass over input primi-

tives and access other memory resources in a highly coherent manner. That

is, these algorithms tend to simultaneously access contiguous memory loca-

tions, such as all triangles or all pixels in a neighborhood. As a result, these

algorithms exhibit excellent efficiency in memory bandwidth utilization
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and are largely insensitive to memory latency. Combined with a pixel

shader workload that is usually compute limited, these characteristics have

guided GPUs along a different evolutionary path than CPUs. In particular,

whereas the CPU die area is dominated by cache memories, GPUs are

dominated by floating-point datapath and fixed-function logic. GPU mem-

ory interfaces emphasize bandwidth over latency (as latency can be readily

hidden by massively parallel execution); indeed, bandwidth is typically

many times higher than that for a CPU, exceeding 100 GB/s in more recent

designs.

s0030 2.1.3 Unified Graphics and Computing Processors

p0150 Introduced in 2006, the GeForce 8800 GPU mapped the separate program-

mable graphics stages to an array of unified processors; the logical graphics

pipeline is physically a recirculating path that visits these processors three

times, with much fixed-function graphics logic between visits. This is illu-

strated in Figure 2.5. The unified processor array allows dynamic partition-

ing of the array to vertex shading, geometry processing, and pixel

processing. Because different rendering algorithms present wildly different

loads among the three programmable stages, this unification allows the

same pool of execution resources to be dynamically allocated to different

pipeline stages and achieve better load balance.

p0155 The GeForce 8800 hardware corresponds to the DirectX 10 API genera-

tion. By the DirectX 10 generation, the functionality of vertex and pixel

shaders had been made identical to the programmer, and a new logical stage

was introduced, the geometry shader, to process all the vertices of a primi-

tive rather than vertices in isolation. The GeForce 8800 was designed with

DirectX 10 in mind. Developers were coming up with more sophisticated

shading algorithms, and this motivated a sharp increase in the available

shader operation rate, particularly floating-point operations. NVIDIA pur-

sued a processor design with higher operating clock frequency than what

was allowed by standard-cell methodologies in order to deliver the desired

operation throughput as area efficiently as possible. High-clock-speed

design requires substantially greater engineering effort, thus favoring the

design of one processor array rather than two (or three, given the new

geometry stage). It became worthwhile to take on the engineering chal-

lenges of a unified processor—load balancing and recirculation of a logical

pipeline onto threads of the processor array—while seeking the benefits of

one processor design. Such design paved the way for using the programma-

ble GPU processor array for general numeric computing.
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s0035 2.1.4 GPGPU: An Intermediate Step

p0160 While the GPU hardware designs evolved toward more unified processors,

they increasingly resembled high-performance parallel computers. As

DirectX 9-capable GPUs became available, some researchers took notice

of the raw performance growth path of GPUs and began to explore the

use of GPUs to solve compute-intensive science and engineering problems;

however, DirectX 9 GPUs had been designed only to match the features

required by the graphics APIs. To access the computational resources, a

programmer had to cast his or her problem into native graphics operations

so the computation could be launched through OpenGL or DirectX API

calls. To run many simultaneous instances of a compute function, for exam-

ple, the computation had to be written as a pixel shader. The collection of

input data had to be stored in texture images and issued to the GPU by sub-

mitting triangles (with clipping to a rectangle shape if that was what was

desired). The output had to be cast as a set of pixels generated from the ras-

ter operations.

p0165 The fact that the GPU processor array and frame buffer memory inter-

face were designed to process graphics data proved too restrictive for gen-

eral numeric applications. In particular, the output data of the shader

programs are single pixels whose memory locations have been predeter-

mined; thus, the graphics processor array is designed with very restricted

memory reading and writing capability. Figure 2.6 illustrates the limited

Input Registers
per thread
per Shader

Fragment Program
Texture

per Context

Constants

Temp Registers

Output Registers

FB     Memory

f0035
FIGURE 2.6

The restricted input and output capabilities of a shader programming model.
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memory access capability of early programmable shader processor arrays;

shader programmers needed to use texture to access arbitrary memory loca-

tions for their input data. More importantly, shaders did not have the means

to perform writes with calculated memory addresses, referred to as scatter
operations, to memory. The only way to write a result to memory was to

emit it as a pixel color value, and configure the frame buffer operation stage

to write (or blend, if desired) the result to a two-dimensional frame buffer.

p0170 Furthermore, the only way to get a result from one pass of computation to

the next was to write all parallel results to a pixel frame buffer, then use that

frame buffer as a texture map as input to the pixel fragment shader of the next

stage of the computation. There was also no under-defined data types; most

data had to be stored in one-, two-, or four-component vector arrays. Mapping

general computations to a GPU in this era was quite awkward. Nevertheless,

intrepid researchers demonstrated a handful of useful applications with

painstaking efforts. This field was called “GPGPU,” for general-purpose

computing on GPUs.

s0040 2.2 GPU COMPUTING
p0175 While developing the Tesla� GPU architecture, NVIDIA realized its

potential usefulness would be much greater if programmers could think of

the GPU like a processor. NVIDIA selected a programming approach in

which programmers would explicitly declare the data-parallel aspects of

their workload.

p0180 For the DirectX 10 generation of graphics, NVIDIA had already begun

work on a high-efficiency floating-point and integer processor that could

run a variety of simultaneous workloads to support the logical graphics pipe-

line. The designers of the Tesla GPU architecture took another step. The

shader processors became fully programmable processors with large instruc-

tion memory, instruction cache, and instruction sequencing control logic.

The cost of these additional hardware resources was reduced by having mul-

tiple shader processors to share their instruction cache and instruction

sequencing control logic. This design style works well with graphics applica-

tions because the same shader program needs to be applied to a massive num-

ber of vertices or pixels. NVIDIA added memory load and store instructions

with random byte addressing capability to support the requirements of

compiled C programs. To non-graphics application programmers, the Tesla

GPU architecture introduced a more generic parallel programming model

with a hierarchy of parallel threads, barrier synchronization, and atomic
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operations to dispatch and manage highly parallel computing work. NVIDIA

also developed the CUDA C/Cþþ compiler, libraries, and runtime software

to enable programmers to readily access the new data-parallel computation

model and develop applications. Programmers no longer need to use the

graphics API to access the GPU parallel computing capabilities. The G80

chip was based on the Tesla architecture and was used in the GeForce

8800 GTX, which was followed later by G92 and GT200.

s0045 2.2.1 Scalable GPUs

p0185 Scalability has been an attractive feature of graphics systems from the

beginning. In the early days, workstation graphics systems gave customers

a choice in pixel horsepower by varying the number of pixel processor cir-

cuit boards installed. Prior to the mid-1990s, PC graphics scaling was

almost nonexistent. There was one option: the VGA controller. As

3D-capable accelerators began to appear, there was room in the market

for a range of offerings. In 1998, 3dfx introduced multiboard scaling with

their original Scan Line Interleave (SLI) on their Voodoo2, which held

the performance crown for its time. Also in 1998, NVIDIA introduced dis-

tinct products as variants on a single architecture with Riva TNT Ultra

(high-performance) and Vanta (low-cost), first by speed binning and pack-

aging, then with separate chip designs (GeForce 2 GTS and GeForce

2 MX). At present, for a given architecture generation, four or five separate

chip designs are needed to cover the range of desktop PC performance and

price points. In addition, there are separate segments in notebook and work-

station systems. After acquiring 3dfx in 2001, NVIDIA continued the multi-

GPU SLI concept; for example, the GeForce 6800 provides multi-GPU

scalability transparently to both the programmer and the user. Functional

behavior is identical across the scaling range; one application will run

unchanged on any implementation of an architectural family.

p0190 By switching to the multicore trajectory, CPUs are scaling to higher

transistor counts by increasing the number of constant-performance cores

on a die rather than increasing the performance of a single core. At this

writing, the industry is transitioning from quad-core to oct-core CPUs. Pro-

grammers are forced to find four- to eightfold parallelism to fully utilize

these processors. Many of them resort to coarse-grained parallelism strate-

gies where different tasks of an application are performed in parallel. Such

applications must be rewritten often to have more parallel tasks for each

successive doubling of core count. In contrast, the highly multithreaded

GPUs encourage the use of massive, fine-grained data parallelism in
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CUDA. Efficient threading support in GPUs allows applications to expose a

much larger amount of parallelism than available hardware execution

resources with little or no penalty. Each doubling of GPU core count pro-

vides more hardware execution resources that exploit more of the exposed

parallelism for higher performance; that is, the GPU parallel programming

model for graphics and parallel computing is designed for transparent and

portable scalability. A graphics program or CUDA program is written once

and runs on a GPU with any number of processors.

s0050 2.2.2 Recent Developments

p0195 Academic and industrial work on applications using CUDA has produced

hundreds of examples of successful CUDA programs. Many of these pro-

grams run the application tens or hundreds of times faster than multicore

CPUs are capable of running them. With the introduction of tools such as

MCUDA [Stratton2008], the parallel threads of a CUDA program can also

run efficiently on a multicore CPU, although at a lower speed than on GPUs

due to lower levels of floating-point execution resources. Examples of these

applications include n-body simulation, molecular modeling, computational

finance, and oil/gas reservoir simulation. Although many of these use sin-

gle-precision floating-point arithmetic, some problems require double pre-

cision. The arrival of double-precision floating point in GPUs enabled an

even broader range of applications to benefit from GPU acceleration.

p0200 For an exhaustive list and examples of current developments in applica-

tions that are accelerated by GPUs, visit CUDA Zone at http://www.nvidia.

com/CUDA. For resources in developing research applications, see CUDA

Research at http://www.cudaresearch.org.

s0055 2.3 FUTURE TRENDS
p0205 Naturally, the number of processor cores will continue to increase in propor-

tion to increases in available transistors as silicon processes improve. In addi-

tion, GPUs will continue to enjoy vigorous architectural evolution. Despite

their demonstrated high performance on data parallel applications, GPU core

processors are still of relatively simple design. More aggressive techniques

will be introduced with each successive architecture to increase the actual

utilization of the calculating units. Because scalable parallel computing on

GPUs is still a young field, novel applications are rapidly being created.

By studying them, GPU designers will discover and implement new machine

optimizations. Chapter 10 provides more details of such future trends.
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s0010 INTRODUCTION
p0065 To a CUDA� programmer, the computing system consists of a host, which is

a traditional central processing unit (CPU), such as an Intel� architecture

microprocessor in personal computers today, and one or more devices, which
are massively parallel processors equipped with a large number of arithmetic

execution units. In modern software applications, program sections often

exhibit a rich amount of data parallelism, a property allowingmany arithmetic

operations to be safely performed on program data structures in a simulta-

neous manner. The CUDA devices accelerate the execution of these applica-

tions by harvesting a large amount of data parallelism. Because data

parallelism plays such an important role in CUDA, we will first discuss the

concept of data parallelism before introducing the basic features of CUDA.

s0015 3.1 DATA PARALLELISM
p0070 Many software applications that process a large amount of data and thus

incur long execution times on today’s computers are designed to model

real-world, physical phenomena. Images and video frames are snapshots

Programming Massively Parallel Processors: A Hands-on Approach. DOI: 10.1016/B978-0-12-381472-2.00003-9
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of a physical world where different parts of a picture capture simultaneous,

independent physical events. Rigid body physics and fluid dynamics model

natural forces and movements that can be independently evaluated within

small time steps. Such independent evaluation is the basis of data parallel-

ism in these applications.

p0075 As we mentioned earlier, data parallelism refers to the program property

whereby many arithmetic operations can be safely performed on the data

structures in a simultaneous manner. We illustrate the concept of data par-

allelism with a matrix–matrix multiplication (matrix multiplication, for

brevity) example in Figure 3.1. In this example, each element of the product

matrix P is generated by performing a dot product between a row of input

matrix M and a column of input matrix N. In Figure 3.1, the highlighted

element of matrix P is generated by taking the dot product of the high-

lighted row of matrix M and the highlighted column of matrix N. Note that
the dot product operations for computing different matrix P elements can be

N

W
ID

T
H

M PM P

W
ID

T
H

WIDTH WIDTH

f0010
FIGURE 3.1

Data parallelism in matrix multiplication.

40 CHAPTER 3 Introduction to CUDA

B978-0-12-381472-2.00003-9, 00003

Kirk-Hwu, 978-0-12-381472-2



DO NOT DISTRIBUTE- COPYRIGHTED MATERIAL

Uncorrected proofs - for course adoption review only

Comp. by: pg1227Gkamatchi Stage: Proof ChapterID: 0001131916 Date:25/11/09 Time:14:26:42

simultaneously performed. That is, none of these dot products will affect

the results of each other. For large matrices, the number of dot products

can be very large; for example, a 1000 � 1000 matrix multiplication has

1,000,000 independent dot products, each involving 1000 multiply and

1000 accumulate arithmetic operations. Therefore, matrix multiplication

of large dimensions can have very large amount of data parallelism. By

executing many dot products in parallel, a CUDA device can significantly

accelerate the execution of the matrix multiplication over a traditional host

CPU. The data parallelism in real applications is not always as simple as

that in our matrix multiplication example. In a later chapter, we will discuss

these more sophisticated forms of data parallelism.

s0020 3.2 CUDA PROGRAM STRUCTURE
p0080 A CUDA program consists of one or more phases that are executed on

either the host (CPU) or a device such as a GPU. The phases that exhibit

little or no data parallelism are implemented in host code. The phases that

exhibit rich amount of data parallelism are implemented in the device code.

A CUDA program is a unified source code encompassing both host and

device code. The NVIDIA� C compiler (nvcc) separates the two during

the compilation process. The host code is straight ANSI C code; it is further

compiled with the host’s standard C compilers and runs as an ordinary CPU

process. The device code is written using ANSI C extended with keywords

for labeling data-parallel functions, called kernels, and their associated data

structures. The device code is typically further compiled by the nvcc and

executed on a GPU device. In situations where no device is available or

the kernel is more appropriately executed on a CPU, one can also choose

to execute kernels on a CPU using the MCUDA tool [Stratton 2008].

p0085 The kernel functions (or, simply, kernels) typically generate a large

number of threads to exploit data parallelism. In the matrix multiplication

example, the entire matrix multiplication computation can be implemented

as a kernel where each thread is used to compute one element of output

matrix P. In this example, the number of threads used by the kernel is a

function of the matrix dimension. For a 1000 � 1000 matrix multiplication,

the kernel that uses one thread to compute one P element would generate

1,000,000 threads when it is invoked. It is worth noting that CUDA threads

are of much lighter weight than the CPU threads. CUDA programmers can

assume that these threads take very few cycles to generate and schedule due

to efficient hardware support. This is in contrast with the CPU threads that

typically require thousands of clock cycles to generate and schedule.
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p0090 The execution of a typical CUDA program is illustrated in Figure 3.2.

The execution starts with host (CPU) execution. When a kernel function is

invoked, or launched, the execution is moved to a device (GPU), where a

large number of threads are generated to take advantage of abundant data par-

allelism. All the threads that are generated by a kernel during an invocation

are collectively called a grid. Figure 3.2 shows the execution of two grids

of threads. We will discuss how these grids are organized soon. When all

threads of a kernel complete their execution, the corresponding grid termi-

nates, and the execution continues on the host until another kernel is invoked.

s0025 3.3 A MATRIX–MATRIX MULTIPLICATION EXAMPLE
p0095 At this point, it is worthwhile to introduce a code example that concretely

illustrates the CUDA program structure. Figure 3.3 shows a simple main

function skeleton for the matrix multiplication example. For simplicity,

we assume that the matrices are square in shape, and the dimension of each

matrix is specified by the parameter Width.

p0100 The main program first allocates the M, N, and P matrices in the host

memory and then performs I/O to read in M and N in Part 1. These are

ANSI C operations, so we are not showing the actual code for the sake of

brevity. The detailed code of the main function and some user-defined

ANSI C functions is shown in Appendix A. Similarly, after completing

the matrix multiplication, Part 3 of the main function performs I/O to write

the product matrix P and to free all the allocated matrices. The details of

Part 3 are also shown in Appendix A. Part 2 is the main focus of our

CPU Serial Code
Grid 0

. . .

CPU Serial Code

. . .

Grid 1

GPU Parallel Kernel
KernelA<<< nBlK, nTid >>>(args);

GPU Parallel Kernel
KernelA<<< nBlK, nTid >>>(args);

f0015
FIGURE 3.2

Execution of a CUDA program.
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example. It calls a function, MatrixMultiplication(), to perform matrix

multiplication on a device.

p0105 Before we explain how to use a CUDA device to execute the matrix

multiplication function, it is helpful to first review how a conventional CPU-only

matrix multiplication function works. A simple version of a CPU-only matrix

multiplication function is shown in Figure 3.4. The MatrixMultiplication()

function implements a straightforward algorithm that consists of three loop

levels. The innermost loop iterates over variable k and steps through one

row of matrix M and one column of matrix N. The loop calculates a dot

product of the row of M and the column of N and generates one element

of P. Immediately after the innermost loop, the P element generated is

written into the output P matrix.

p0110 The index used for accessing the M matrix in the innermost loop

is i*Widthþk. This is because the M matrix elements are placed into the

system memory that is ultimately accessed with a linear address. That is,

every location in the system memory has an address that ranges from 0 to

the largest memory location. For C programs, the placement of a 2-dimen-

sional matrix into this linear addressed memory is done according to the

row-major convention, as illustrated in Figure 3.5.1 All elements of a row

are placed into consecutive memory locations. The rows are then placed

one after another. Figure 3.5 shows an example where a 4�4 matrix is

fn0010
1Note that FORTRAN adopts the column–major placement approach: All elements of a

column are first placed into consecutive locations, and all columns are then placed in their

numerical order.

f0020
FIGURE 3.3

A simple main function for the matrix multiplication example.
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void MatrixMultiplication(float* M, float* N, float* P, int Width)
{
   for (int i = 0 ; i < Width; ++i)   
       for (int j = 0 ; j < Width; ++j) {
           double sum = 0;
       for (int k  = 0; k < Width; ++k) {
             double a = M[i * width + k];
             double b = N[k * width + j];
             sum + =a * b;
      }
      P[i * Wid
      }
}

k

i

f0025
FIGURE 3.4

A simple matrix multiplication function with only host code.
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f0030
FIGURE 3.5

Placement of two-dimensional array elements into the linear address system

memory.
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placed into 16 consecutive locations, with all elements of row 0 first

followed by the four elements of row 1, etc. Therefore, the index for an

M element in row i and column k is i*Widthþk. The i*Width term skips

over all elements of the rows before row i. The k term then selects the

proper element within the section for row i.
p0115 The outer two (i and j) loops in Figure 3.4 jointly iterate over all rows of

M and all columns of N; each joint iteration performs a row–column dot

product to generate one P element. Each i value identifies a row. By sys-

tematically iterating all M rows and all N columns, the function generates

all P elements. We now have a complete matrix multiplication function that

executes solely on the CPU. Note that all of the code that we have shown so

far is in standard C.

p0120 Assume that a programmer now wants to port the matrix multiplication

function into CUDA. A straightforward way to do so is to modify

the MatrixMultiplication() function to move the bulk of the calculation

to a CUDA device. The structure of the revised function is shown in

Figure 3.6. Part 1 of the function allocates device (GPU) memory to hold

copies of the M, N, and P matrices and copies these matrices over to the

device memory. Part 2 invokes a kernel that launches parallel execution

of the actual matrix multiplication on the device. Part 3 copies the product

matrix P from the device memory back to the host memory.

p0125 Note that the revised MatrixMultiplication() function is essentially an

outsourcing agent that ships input data to a device, activates the calculation on

the device, and collects the results from the device. The agent does so in such

f0035
FIGURE 3.6

Outline of a revised host code MatrixMultiplication() that moves the matrix

multiplication to a device.
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a way that the main program does not have to even be aware that the matrix

multiplication is now actually done on a device. The details of the revised

function, as well as the way to compose the kernel function, will serve as illus-

trations as we introduce the basic features of the CUDA programming model.

s0030 3.4 DEVICE MEMORIES AND DATA TRANSFER
p0130 In CUDA, the host and devices have separate memory spaces. This reflects

the reality that devices are typically hardware cards that come with their

own dynamic random access memory (DRAM). For example, the NVIDIA

T10 processor comes with up to 4 GB (billion bytes, or gigabytes) of

DRAM. In order to execute a kernel on a device, the programmer needs

to allocate memory on the device and transfer pertinent data from the

host memory to the allocated device memory. This corresponds to Part 1

of Figure 3.6. Similarly, after device execution, the programmer needs to

transfer result data from the device memory back to the host memory and

free up the device memory that is no longer needed. This corresponds to

Part 3 of Figure 3.6. The CUDA runtime system provides application

programming interface (API) functions to perform these activities on behalf

of the programmer. From this point on, we will simply say that a piece of

data is transferred from host to device as shorthand for saying that the piece

of data is transferred from the host memory to the device memory.

The same holds for the opposite data transfer direction.

p0135 Figure 3.7 shows an overview of the CUDA device memory model for

programmers to reason about the allocation, movement, and usage of the var-

ious memory types of a device. At the bottom of the figure, we see global

memory and constant memory. These are the memories that the host code

can transfer data to and from the device, as illustrated by the bidirectional

arrows between these memories and the host. Constant memory allows

read-only access by the device code and is described in Chapter 5. For now,

we will focus on the use of global memory. Note that the host memory is

not explicitly shown in Figure 3.7 but is assumed to be contained in the host.2

p0140 The CUDA memory model is supported by API functions that help

CUDA programmers to manage data in these memories. Figure 3.8 shows

the API functions for allocating and deallocating device global memory.

The function cudaMalloc() can be called from the host code to allocate

fn0015
2Note that we have omitted the texture memory from Figure 3.7 for simplicity. We will

introduce texture memory later.
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a piece of global memory for an object. The reader should be able to notice

the striking similarity between cudaMalloc() and the standard C runtime

library Malloc(). This is intentional; CUDA is C with minimal extensions.

CUDA uses the standard C runtime library Malloc() function to manage

R/W per-thread registers

(Device) Grid

Block (0, 0) Block (1, 0)

Shared Memory

Registers Registers

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Transfer data to/from per-grid
global and constant memories 

Global
MemoryHost

Constant
Memory

R/W per-thread local memory

R/W per-block shared memory

R/W per-grid global memory

Read only per-grid constant
memory

–

–

–

–

–

–

Host code can

Device code can:•

•

f0040
FIGURE 3.7

Overview of the CUDA device memory model.
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•
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cudaFree()

Frees object from device
global memory
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f0045
FIGURE 3.8

CUDA API functions for device global memory management.
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the host memory and adds cudaMalloc() as an extension to the C runtime

library. By keeping the interface as close to the original C runtime libraries

as possible, CUDA minimizes the time that a C programmer needs to

relearn the use of these extensions.

p0145 The first parameter of the cudaMalloc() function is the address of a

pointer variable that must point to the allocated object after allocation.

The address of the pointer variable should be cast to (void **) because

the function expects a generic pointer value; the memory allocation func-

tion is a generic function that is not restricted to any particular type of

objects. This address allows the cudaMalloc() function to write the address

of the allocated object into the pointer variable.3 The second parameter of

the cudaMalloc() function gives the size of the object to be allocated, in

terms of bytes. The usage of this second parameter is consistent with the

size parameter of the C Malloc() function.

p0150 We now use a simple code example illustrate the use of cudaMalloc().

This is a continuation of the example in Figure 3.6. For clarity, we will end

a pointer variable with the letter “d” to indicate that the variable is used to

point to an object in the device memory space. The programmer passes the

address of Md (i.e., &Md) as the first parameter after casting it to a void

pointer; that is, Md is the pointer that points to the device global memory

region allocated for the M matrix. The size of the allocated array will

be Width*Width*4 (the size of a single-precision floating number). After

the computation, cudaFree() is called with pointer Md as input to free

the storage space for the M matrix from the device global memory:

u0015 float *Md

u0020 int size ¼ Width * Width * sizeof(float);

u0025 cudaMalloc((void**)&Md, size);

u0030 . . .

u0035 cudaFree(Md);

p0180 The reader should complete Part 1 of the MatrixMultiplication() exam-

ple in Figure 3.6 with similar declarations of anNd and aPd pointer variable as

fn0020
3Note that cudaMalloc() has a different format from the C Malloc() function. The

C Malloc() function returns a pointer to the allocated object. It takes only one

parameter that specifies the size of the allocated object. The cudaMalloc() function

writes to the pointer variable whose address is given as the first parameter. As a result,

the cudaMalloc() function takes two parameters. The two-parameter format of cuda-
Malloc() allows it to use the return value to report any errors in the same way as other

CUDA API functions.
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well as their corresponding cudaMalloc() calls. Furthermore, Part 3 in

Figure 3.6 can be completed with the cudaFree() calls for Nd and Pd.
p0185 Once a program has allocated device global memory for the data

objects, it can request that data be transferred from host to device. This is

accomplished by calling one of the CUDA API functions, cudaMemcpy(),

for data transfer between memories. Figure 3.9 shows the API function

for such a data transfer. The cudaMemcpy() function takes four parameters.

The first parameter is a pointer to the source data object to be copied. The

second parameter points to the destination location for the copy operation.

The third parameter specifies the number of bytes to be copied. The fourth

parameter indicates the types of memory involved in the copy: from host

memory to host memory, from host memory to device memory, from

device memory to host memory, and from device memory to device mem-

ory. For example, the memory copy function can be used to copy data from

one location of the device memory to another location of the device mem-

ory. Please note that cudaMemcpy Au1cannot be used to copy between different

GPUs in multi-GPU systems.

p0190 For thematrixmultiplication example, the host code calls the cudaMemcpy()

function to copy the M and N matrices from the host memory to the device

memory before the multiplication and then to copy the P matrix from

the device memory to the host memory after the multiplication is done.

• cudaMemcpy()

memory data transfer
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Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)
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– Host to Host
– Host to Device
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Global
Memory

–
– Device to Device

– Transfer is asynchronous Memory

Registers Registers Registers

f0050
FIGURE 3.9

CUDA API functions for data transfer between memories.
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Assume that M, P, Md, Pd, and size have already been set as we discussed

before; the two function calls are shown below. Note that the two symbolic

constants, cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost, are

recognized, predefined constants of the CUDA programming environment.

The same function can be used to transfer data in both directions by properly

ordering the source and destination pointers and using the appropriate

constant for the transfer type:

u0040 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

u0045 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

p0205 To summarize, the main program in Figure 3.3 calls MatrixMultiplication

(), which is also executed on the host. MatrixMultiplication(), as out-

lined in Figure 3.6, is responsible for allocating devicememory, performing data

transfers, and activating the kernel that performs the actualmatrixmultiplication.

We often refer to this type of host code as the stub function for invoking a

kernel. After the matrix multiplication, MatrixMultiplication() also copies

result data from device to the host. We show a more fleshed out version of

the MatrixMultiplication() function in Figure 3.10.

p0210 Compared to Figure 3.6, the revised MatrixMultiplication() function

is complete in Part 1 and Part 3. Part 1 allocates device memory for Md,

f0055
FIGURE 3.10

The revised MatrixMultiplication() function.
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Nd, and Pd, the device counterparts of M, N, and P, and transfers M to Md
and N to Nd. This is accomplished with calls to the cudaMalloc()

and cudaMemcpy() functions. The readers are encouraged to write their

own function calls with the appropriate parameter values and compare their

code with that shown in Figure 3.10. Part 2 invokes the kernel and will be

described in the following text. Part 3 reads the product data from device

memory to host memory so the value will be available to main(). This is

accomplished with a call to the cudaMemcpy() function. It then frees Md,
Nd, and Pd from the device memory, which is accomplished with calls to

the cudaFree() functions.

s0035 3.5 KERNEL FUNCTIONS AND THREADING
p0215 We are now ready to discuss more about the CUDA kernel functions and

the effect of invoking these kernel functions. In CUDA, a kernel function

specifies the code to be executed by all threads during a parallel phase.

Because all of these threads execute the same code, CUDA programming

is an instance of the well-known single-program, multiple-data (SPMD)

parallel programming style [Atallah 1998], a popular programming style

for massively parallel computing systems.4

p0220 Figure 3.11 shows the kernel function for matrix multiplication. The syn-

tax is ANSI C with some notable extensions. First, there is a CUDA-specific

keyword “__global__” in front of the declaration of MatrixMulKernel().

This keyword indicates that the function is a kernel and that it can be called

from a host functions to generate a grid of threads on a device.

p0225 In general, CUDA extends C function declarations with three qualifier

keywords. The meanings of these keywords are summarized in Figure 3.12.

The __global__ keyword indicates that the function being declared is a

CUDA kernel function. The function will be executed on the device and

can only be called from the host to generate a grid of threads on a device.

We will show the host code syntax for calling a kernel function later in

Figure 3.14. The __device__ keyword indicates that the function being

declared is a CUDA device function. A device function executes on a

fn0025
4Note that SPMD is not the same as single-instruction, multiple-data (SIMD). In an

SPMD system, the parallel processing units execute the same program on multiple parts

of the data; however, these processing units do not have to be executing the same instruc-

tion at the same time. In an SIMD system, all processing units are executing the same

instruction at any instant.
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CUDA device and can only be called from a kernel function or another

device function. Device functions can have neither recursive function calls

nor indirect function calls through pointers in them. The __host__ keyword

indicates that the function being declared is a CUDA host function. A host

function is simply a traditional C function that executes on the host and can

only be called from another host function. By default, all functions in a

CUDA program are host functions if they do not have any of the CUDA

keywords in their declaration. This makes sense, as many CUDA applica-

tions are ported from CPU-only execution environments. The programmer

would add kernel functions and device functions during the porting process.

f0060
FIGURE 3.11

The matrix multiplication kernel function.

f0065
FIGURE 3.12

CUDA extensions to C functional declaration.
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The original functions remain as host functions. Having all functions

default into host functions spares the programmer the tedious work of

changing all original function declarations.

p0230 Note that one can use both __host__ and __device__ in a function

declaration. This combination triggers the compilation system to generate

two versions of the same function. One is executed on the host and can only

be called from a host function. The other is executed on the device and can

only be called from a device or kernel function. This supports a common

use when the same function source code can be simply recompiled to gen-

erate a device version. Many user library functions will likely fall into this

category.

p0235 Other notable extensions of ANSI C, in this example, are the

keywords threadIdx.x and threadIdx.y, which refer to the thread indices

of a thread. Note that all threads execute the same kernel code. There needs

to be a mechanism to allow them to distinguish themselves and direct them-

selves toward the particular parts of the data structure that they are desig-

nated to work on. These keywords identify predefined variables that

allow a thread to access the hardware registers at runtime that provide the

identifying coordinates to the thread. Different threads will see different

values in their threadIdx.x and threadIdx.y variables. For simplicity,

we will refer to a thread as ThreadthreadIdx.x, threadIdx.y. Note that the coordi-
nates reflect a multidimensional organization for the threads. We will come

back to this point soon.

p0240 A quick comparison of Figure 3.4 and Figure 3.11 reveals an important

insight for CUDA kernel functions and CUDA kernel invocation. The ker-

nel function in Figure 3.11 has only one loop, which corresponds to the

innermost loop in Figure 3.4. The readers should ask where the other two

levels of outer loops go. The answer is that the outer two loop levels are

now replaced with the grid of threads. The entire grid forms the equivalent

of the two-level loop. Each thread in the grid corresponds to one of the

iterations of the original two-level loop. The original loop variables i and
j are now replaced with threadIdx.x and threadIdx.y. Instead of having

the loop increment the values of i and j for use in each loop iteration, the

CUDA threading hardware generates all of the threadIdx.x and threadIdx.y
values for each thread.

p0245 In Figure 3.11, each thread uses the threadIdx.x and threadIdx.y to iden-

tify the row of Md and the column of Nd to perform the dot product opera-

tion. It should be clear that they simply take over the role of variables i and
j in Figure 3.8. Note that we assigned threadIdx.x to the automatic C vari-

able tx and threadIdx.y to variable ty for brevity in Figure 3.8. Each thread

533.5 Kernel Functions and Threading

B978-0-12-381472-2.00003-9, 00003

Kirk-Hwu, 978-0-12-381472-2



DO NOT DISTRIBUTE- COPYRIGHTED MATERIAL

Uncorrected proofs - for course adoption review only

Comp. by: pg1227Gkamatchi Stage: Proof ChapterID: 0001131916 Date:25/11/09 Time:14:26:45

also uses its threadIdx.x and threadIdx.y values to select the Pd element

that it is responsible for; for example, Thread2,3 will perform a dot product

between row 2 of Md and column 3 of Nd and write the result into element

(2,3) of Pd. This way, the threads collectively generate all the elements of

the Pd matrix.

p0250 When a kernel is invoked, or launched, it is executed as grid of parallel

threads. In Figure 3.13, the launch of Kernel 1 creates Grid 1. Each CUDA

thread grid typically is comprised of thousands to millions of lightweight

GPU threads per kernel invocation. Creating enough threads to fully utilize

the hardware often requires a large amount of data parallelism; for example,

each element of a large array might be computed in a separate thread.

p0255 Threads in a grid are organized into a two-level hierarchy, as illustrated

in Figure 3.13. For simplicity, a small number of threads are shown in

Figure 3.13. In reality, a grid will typically consist of many more threads.

At the top level, each grid consists of one or more thread blocks. All blocks

in a grid have the same number of threads. In Figure 3.13, Grid 1is org-

anized as a 2�2 array of 4 blocks. Each block has a unique two-dimensional

coordinate given by the CUDA specific keywords blockIdx.x and block-

Idx.y. All thread blocks must have the same number of threads

organized in the same manner.

• A  thread block is a batch
     of threads that can
     cooperate with each
     other by:

Host Device

– Synchronizing their
      execution 

Kernel 
1

Block
(0, 0)

Block
(1, 0)

Block Block

• For hazard-free shared
     memory accesses 

– Efficiently sharing data
through a low latency
shared memory 

Kernel 

(0, 1) (1, 1)

Grid 2

• Two threads from two
     different blocks cannot
     cooperate  

Block (1, 1)

Thread Thread

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Courtesy: NDVIA

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Grid1

(2,0,0) (3,0,0)

2

Thread Thread
(0,0,0) (1,0,0)

Thread
(0,1,0)

f0070
FIGURE 3.13

CUDA thread organization.
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p0260 Each thread block is in turn organized as a three-dimensional array of

threads with a total size of up to 512 threads. The coordinates of threads

in a block are uniquely defined by three thread indices: threadIdx.x,

threadIdx.y, and threadIdx.z. Not all applications will use all three

dimensions of a thread block. In Figure 3.12, each thread block is organized

into a 4�2�2 three-dimensional array of threads. This gives Grid 1 a total

of 4*16 ¼ 64 threads. This is obviously a simplified example.

p0265 In the matrix multiplication example, a grid is invoked to compute the

product matrix. The code in Figure 3.11 does not use any block index in

accessing input and output data. Threads with the same threadIdx values

from different blocks would end up accessing the same input and output

data elements. As a result, the kernel can use only one thread block. The

threadIdx.x and threadIdx.y values are used to organize the block

into a two-dimensional array of threads. Because a thread block can have

only up to 512 threads, and each thread calculates one element of the prod-

uct matrix in Figure 3.11, the code can only calculate a product matrix of

up to 512 elements. This is obviously not acceptable. As we explained

before, the product matrix must have millions of elements in order to have

a sufficient amount of data parallelism to benefit from execution on a

device. We will address this issue in Chapter 4 using multiple blocks.

p0270 When the host code invokes a kernel, it sets the grid and thread block

dimensions via execution configuration parameters. This is illustrated in

Figure 3.14. Two struct variables of type dim3 are declared. The first

is for describing the configuration of blocks, which are defined as

16�16 groups of threads. The second variable, dimGrid, describes the con-

figuration of the grid. In this example, we only have one (1�1) block in

each grid. The final line of code invokes the kernel. The special syntax

between the name of the kernel function and the traditional C parameters

of the function is a CUDA extension to ANSI C. It provides the dimensions

of grids in terms of number of blocks and the dimensions of blocks in terms

of number of threads.

f0075
FIGURE 3.14

Example of host code that launches a kernel.
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s0040 3.6 SUMMARY
p0275 This chapter serves as a quick overview of the CUDA programming model.

CUDA extends the C language to support parallel computing. The exten-

sions discussed in this chapter are summarized below.

s0045 3.6.1 Function Declarations

p0280 CUDA extends the C function declaration syntax to support heterogeneous

parallel computing. The extensions are summarized in Figure 3.12. Using

one of __global__, __device__, or __host__, a CUDA programmer can

instruct the compiler to generate a kernel function, a device function, or a

host function. All function declarations without any Au2. If both __host__

and __device__ are used in a function declaration, the compiler generates

two versions of the function, one for the device and one for the host.

If a function declaration does not have any CUDA extension keyword,

the function defaults into a host function.

s0050 3.6.2 Kernel Launch

p0285 CUDA extends C function call syntax with kernel execution configuration

parameters surrounded by <<< and >>>. These execution configuration

parameters are only used during a call to a kernel function, or a kernel

launch. We discussed the execution configuration parameters that define

the dimensions of the grid and the dimensions of each block. The reader

should refer to the CUDA Programming Guide [NVIDIA 2007] for more

details regarding the kernel launch extensions as well as other types of

execution configuration parameters.

s0055 3.6.3 Predefined Variables

p0290 CUDA kernels can access a set of predefined variables that allow each

thread to distinguish among themselves and to determine the area of data

each thread is to work on. We discussed the threadIdx variable in this

chapter. In Chapter 4, we will further discuss blockIdx, gridDim Au3, and

blockDim variables.

s0060 3.6.4 Runtime API

p0295 CUDA supports a set of application programming interface (API) functions

to provide services to CUDA programs. The services that we discussed in

this chapter are cudaMalloc() and cudaMemcpy() functions. These
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functions allocate device memory and transfer data between the host and

device on behalf of the calling program. The reader is referred to the CUDA
Programming Guide [NVIDIA 2007] for other CUDA API functions.

p0300 Our goal for this chapter was to introduce the fundamental concepts

of the CUDA programming model and the essential CUDA extensions to

C for writing a simple CUDA program. The chapter is by no means a com-

prehensive account of all CUDA features. Some of these features will be

covered in the rest of the book; however, our emphasis will be on key

concepts rather than details. In general, we would like to encourage the

reader to always consult the CUDA Programming Guide for more details

on the concepts that we cover.
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