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Preface

WHY WE WROTE THIS BOOK

Mass-market computing systems that combine multi-core CPUs and many-
core GPUs have brought terascale computing to the laptop and petascale
computing to clusters. Armed with such computing power, we are at the
dawn of pervasive use of computational experiments for science, engineer-
ing, health, and business disciplines. Many will be able to achieve break-
throughs in their disciplines using computational experiments that are of
unprecedented level of scale, controllability, and observability. This book
provides a critical ingredient for the vision: teaching parallel programming
to millions of graduate and undergraduate students so that computational
thinking and parallel programming skills will be as pervasive as calculus.

During the Christmas holiday of 2006, we were frantically working on
the lecture slides and lab assignments. David was working the system trying
to pull the early GeForce 8800 GTX GPU cards from customer shipments
to Illinois, which would not succeed until a few weeks after the semester
began. It also became clear that CUDA would not become public until a
few weeks after the start of the semester. We had to work out the legal
agreements so that we can offer the course to students under NDA for the
first few weeks. We also needed to get the words out so that students would
sign up since the course was not announced until after the pre-enrollment
period.

We gave our first lecture on January 16, 2007. Everything fell into
place. David commuted weekly to Urbana for the class. We had 52
students, a couple more than our capacity. We had draft slides for most
of the first 10 lectures. Wen-mei’s graduate student, John Stratton,
graciously volunteered as the teaching assistant and set up the lab. All students
signed NDA so that we can proceed with the first several lectures until
CUDA became public. We recorded the lectures but did not release them
on the Web until February. We had graduate students from physics, astron-
omy, chemistry, electrical engineering, mechanical engineering as well as
computer science and computer engineering. The enthusiasm in the room
made it all worthwhile.

Since then, we have taught the course three times in one-semester
format and two times in one-week intensive format. The ECE498AL course
has become a permanent course known as ECE408 of the University of
Illinois, Urbana-Champaign. We started to write up some early chapters
of this book when we offered ECE498AL the second time. We tested these
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chapters in our spring 2009 class and our 2009 Summer School. The first
four chapters were also tested in an MIT class taught by Nicolas Pinto in
spring 2009. We also shared these early chapters on the web and received
valuable feedback from numerous individuals. We were encouraged by
the feedback we received and decided to go for a full book. Here, we hum-
bly present our first edition to you.

TARGET AUDIENCE

The target audience of this book is graduate and undergraduate students
from all science and engineering disciplines the computational thinking
and parallel programming skills needed to use pervasive terascale comput-
ing hardware ito achieve breakthroughs in their.own disciplines. We assume
that the reader-has-at least some basic C programming experience and thus
are more advanced programmers, both within and outside of the field of
Computer Science. We especially target computational scientists in fields
such as mechanical engineering, civil engineering, electrical engineering,
bio-engineering, physics, and chemistry, who use computation to further
their field of research. As such, these scientists are both experts in their
domain as well as advanced programmers. The book takes the approach
of building on basic C programming skills, to teach parallel programming
in C. We use C for CUDA™, a parallel programming environment that
is supported on NVIDIA GPUs, and emulated on less parallel CPUs.
There are approximately 200 million of these processors in the hands of
consumers and professionals, and more than 40,000 programmers actively
using CUDA. The applications that you develop as part of the learning
experience will be able to run by a very large user community.

HOW TO USE THE BOOK

We would like to offer some of our experience in teaching ECE498AL
using the material is this book.

A Three-Phased Approach

In ECE498AL the lectures and programming assignments are balanced with
each other and organized into three phases:

Phase 1: One lecture based on Chapter 3 is dedicated to teaching the
basic CUDA memory/threading model, the CUDA extensions to the C
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language, and the basic programming/debugging tools. After the lecture,
students can write a naive parallel matrix multiplication code in a couple
of hours.

Phase 2: The next phase is a series of ten lectures that give students the
conceptual understanding of the CUDA memory model, the CUDA thread-
ing model, GPU hardware performance features, modern computer system
architecture, and the common data-parallel programming patterns needed
to develop a high-performance parallel application. These lectures are
based on Chapters 4 through 7. The performance of their matrix multiplica-
tion codes increases by about 10 times through this period. The students
also complete assignments on convolution, vector reduction, and prefix
scan through this period.

Phase 3: Once the students have established solid CUDA programming
skills, the remaining lectures cover computational thinking, a broader
range of parallel execution models, and parallel programming principles.
These lectures are based on Chapters 8 through 11. (The voice and video
recordings of these lectures are available on-line (http://courses.ece.
illinois.edu/ece498/al).

Tying It All Together: The Final Project

While the lectures, labs, and chapters of this book help lay the intellectual
foundation for the students, what brings the learning experience together
is the final project. The final project is so important to the course that it
is prominently positioned in the course and commands nearly two months’
focus. It incorporates five innovative aspects: mentoring, workshop, clinic,
final report, and symposium. (While much of the information about final
project is available at the ECE498AL web site (http://courses.ece.illinois.
edu/ece498/al), we would like to offer the thinking that was behind the
design of these aspects.)

Students are encouraged to base their final projects on problems that
represent current challenges in the research community. To seed the
process, the instructors recruit several major computational science research
groups to propose problems and serve as mentors. The mentors are asked to
contribute a one-to-two-page project specification sheet that briefly
describes the significance of the application, what the mentor would like
to accomplish with the student teams on the application, the technical skills
(particular type of Math, Physics, Chemistry courses) required to under-
stand and work on the application, and a list of web and traditional
resources that students can draw upon for technical background, general
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information, and building blocks, along with specific URLs or ftp paths to
particular implementations and coding examples. These project specifica-
tion sheets also provide students with learning experiences in defining their
own research projects later in their careers. (Several examples are available
at the ECE498AL course web site.)

Students are also encouraged to contact their potential mentors during
their project selection process. Once the students and the mentors agree
on a project, they enter into a close relationship, featuring frequent consul-
tation and project reporting. We the instructors attempt to facilitate the
collaborative relationship between students and their mentors, making it a
very valuable experience for both mentors and students.

The Project Workshop

The main vehicle for the whole class to contribute to each other’s final proj-
ect ideas is the project workshop. We usually dedicate six of the lecture
slots to project workshops. The workshops are designed for students’
benefit. For example, if a student has identified a project, the workshop
serves as a venue to present preliminary thinking, get feedback, and recruit
teammates. If a student has not identified a project, he/she can simply
attend the presentations, participate in the discussions, and join one of the
project teams. Students are not graded during the workshops, in order to
keep the atmosphere non-threatening and enable them to focus on a
meaningful dialog with the instructor(s), teaching assistants, and the rest
of the class.

The workshop schedule is designed so the instructor(s) and teaching
assistants can take some time to provide feedback to the project teams
and so that students can ask questions. Presentations are limited to 10 minutes
so there is time for feedback and questions during the class period. This
limits the class size to about 36 presenters, assuming 90-minute lecture
slots. All presentations are pre-loaded into a PC in order to control the
schedule strictly and maximize feedback time. Since not all students
present at the workshop, we have been able to accommodate up to 50
students in each class, with extra workshop time available as needed.

The instructor(s) and TAs must make a commitment to attend all the
presentations and to give useful feedback. Students typically need most
help in answering the following questions. First, are the projects too big
or too small for the amount of time available? Second, is there existing
work in the field that the project can benefit from? Third, are the computa-
tions being targeted for parallel execution appropriate for the CUDA
programming model?
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The Design Document

Once the students decide on a project and form a team, they are required to
submit a design document for the project. This helps them think through the
project steps before they jump into it. The ability to do such planning will
be important to their later career success. The design document should
discuss the background and motivation for the project, application-level
objectives and potential impact, main features of the end application, an
overview of their design, an implementation plan, their performance goals,
a verification plan and acceptance test, and a project schedule.

The teaching assistants hold a project clinic for final project teams
during the week before the class symposium. This clinic helps ensure that
students are on-track and that they have identified the potential roadblocks
early in the process. Student teams are asked to come to the clinic with an
initial draft of the following three versions of their application: (1) The best
CPU sequential code in terms of performance, with SSE2 and other optimi-
zations that establish a strong serial base of the code for their speedup
comparisons; (2) The best CDUA parallel code in terms of performance.
This version is the main output of the project; (3) A version of CPU sequen-
tial code that is based on the same algorithm as version 3, using single
precision. This version is used by the students to characterize the parallel
algorithm overhead in terms of extra computations involved

Student teams are asked to be prepared to discuss the key ideas used in
each version of the code, any floating-point precision issues, any compari-
son against previous results on the application, and the potential impact
on the field if they achieve tremendous speedup. From our experience,
the optimal schedule for the clinic is one week before the class symposium.
An earlier time typically results in less mature projects and less meaningful
sessions. A later time will not give students sufficient time to revise their
projects according to the feedback.

The Project Report

Students are required to submit a project report on their team’s key find-
ings. Six lecture slots are combined into a whole-day class symposium.
During the symposium, students use presentation slots proportional to the
size of the teams. During the presentation, the students highlight the best
parts of their project report for the benefit of the whole class. The presenta-
tion accounts for a significant part of students’ grades. Each student must
answer questions directed to him/her as individuals, so that different grades
can be assigned to individuals in the same team. We have recorded these
presentations for viewing by future students [where are they available?].
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The symposium is a major opportunity for students to learn to produce a
concise presentation that motivates their peers to read a full paper. After
their presentation, the students also submit a full report on their final
project.

ONLINE SUPPLEMENTS

The lab assignments, final project guidelines, and sample project specifica-
tions are available to instructors who use this book for their classes. While
this book provides the intellectual contents for these classes, the additional
material will be crucial in achieving the overall education goals. We would
like to invite you to take advantage of the on-line material that accompanies
this'book, whichiis available at the Publisher’s: Web site, [www.elsevierdir-
ect.com/9780123814722].

Finally, we encourage you to submit your feedback. We would like to
hear from you if you have any ideas for improving this book. We would
like to know how we can improve the supplementary on-line material. Of
course, we also like to know what you liked about the book. We look for-
ward to hearing from you.

David B. Kirk and Wen-mei W. Hwu
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soot0  INTRODUCTION

pooss  Microprocessors based on a single central processing unit (CPU), such as
those in the Intel® Pentium® family and the AMD® Opteron™ family,
drove rapid performance increases and cost reductions in computer applica-
tions for more than two decades. These microprocessors brought giga (bil-
lion) floating-point operations per second (GFLOPS) to the desktop and
hundreds of GFLOPS to cluster servers. This relentless drive of perfor-
mance improvement has allowed application software to provide more
functionality, have better user interfaces, and generate more useful results.
The users, in turn, demand even more improvements once they become
accustomed to these improvements, creating a positive cycle for the
computer industry.

p0050 During the drive, most software developers have relied on the advances
in hardware to increase the speed of their applications under the hood; the
same software simply runs faster as each new generation of processors
is introduced. This drive, however, has slowed since 2003 due to energy-
consumption and heat-dissipation issues that have limited the increase of
the clock frequency and the level of productive activities that can be
performed in each clock period within a single CPU. Virtually all micro-
processor vendors have switched to models where multiple processing
units, referred to as processor cores, are used in each chip to increase the
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processing power. This switch has exerted a tremendous impact on the
software developer community [Sutter 2005].

p0055 Traditionally, the vast majority of software applications are written as
sequential programs, as described in 1945 by von Neumann in his seminal
report [von Neumann 1945]. The execution of these programs can be under-
stood by a human sequentially stepping through the code. Historically,
computer users have become accustomed to the expectation that these pro-
grams run faster with each new generation of microprocessors. Such expec-
tation is no longer valid from this day onward. A sequential program will
only run on one of the processor cores, which will not become any faster
than those in use today. Without performance improvement, application
developers will no longer be able to introduce new features and capabilities
into their software as new microprocessors are introduced, thus reducing
the-growth opportunities-of the entire computer industry.

pO060 Rather, the applications software that will continue to enjoy perfor-
mance improvement with each new generation of microprocessors will be
parallel programs, in which multiple threads of execution cooperate to com-
plete the work faster. This new, dramatically escalated incentive for parallel
program development has been referred to as the concurrency revolution
[Sutter 2005]. The practice of parallel programming is by no means new.
The high-performance computing community has been developing parallel
programs for decades. These programs run on large-scale, expensive com-
puters. Only a few elite applications can justify the use of these expensive
computers, thus limiting the practice of parallel programming to a small
number of application developers. Now that all new microprocessors are
parallel computers, the number of applications that must be developed
as parallel programs has increased dramatically. There is now a great need
for software developers to learn about parallel programming, which is the
focus of this book.

o015 1.1 GPUs AS PARALLEL COMPUTERS

pooss  Since 2003, the semiconductor industry has settled on two main trajectories
for designing microprocessor [Hwu 2008]. The multicore trajectory seeks to
maintain the execution speed of sequential programs while moving into
multiple cores. The multicores began as two-core processors, with the
number of cores doubling with each semiconductor process generation.
A current exemplar is the recent Intel® Core™ i7 microprocessor, which
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1.1 GPUs as Parallel Computers 3

has four processor cores, each of which is an out-of-order, multiple-instruc-
tion issue processor implementing the full x86 instruction set; the micropro-
cessor supports hyperthreading with two hardware threads and is designed
to maximize the execution speed of sequential programs.

po070 In contrast, the many-core trajectory focuses more on the execution
throughput of parallel applications. The many-cores began as a large num-
ber of much smaller cores, and, once again, the number of cores doubles
with each generation. A current exemplar is the NVIDIA® GeForce®
GTX 280 graphics processing unit (GPU) with 240 cores, each of which
is a heavily multithreaded, in-order, single-instruction issue processor that
shares its control and instruction cache with seven other cores. Many-core
processors, especially the GPUs, have led the race of floating-point perfor-
mance since 2003. This phenomenon is illustrated in Figure 1.1. While the
performance, improvement of general-purpose microprocessors has slowed
significantly, the GPUs have continued to improve relentlessly. As of
2009, the ratio between many-core GPUs and multicore CPUs for peak
floating-point calculation throughput is about 10 to 1. These are not neces-
sarily achievable application speeds but are merely the raw speed that the
execution resources can potentially support in these chips: 1 teraflops
(1000 gigaflops) vs. 100 gigaflops in 2009.
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FIGURE 1.1
Enlarging performance gap between GPUs and CPUs.
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Such a large performance gap between parallel and sequential execution
has amounted to a significant “electrical potential” buildup, and at some
point something will have to give. We have reached that point now. To
date, this large performance gap has already motivated many applications
developers to move the computationally intensive parts of their software
to GPUs for execution. Not surprisingly, these computationally intensive
parts are also the prime target of parallel programming—when there is
more work to do, there is more opportunity to divide the work among coop-
erating parallel workers.

One might ask why there is such a large performance gap between
many-core GPUs and general-purpose multicore CPUs. The answer lies in
the differences in the fundamental design philosophies between the two
types of processors, as illustrated in Figure 1.2. The design of a CPU is
optimized: for sequential code performance. It makes use of sophisticated
control logic to allow instructions from a single thread of execution to exe-
cute in parallel or even out of their sequential order while maintaining the
appearance of sequential execution. More importantly, large cache mem-
ories are provided to reduce the instruction and data access latencies of
large complex applications. Neither control logic nor cache memories con-
tribute to the peak calculation speed. As of 2009, the new general-purpose,
multicore microprocessors typically have four large processor cores
designed to deliver strong sequential code performance.

Memory bandwidth is another important issue. Graphics chips have been
operating at approximately 10 times the bandwidth of contemporaneously
available CPU chips. In late 2006, the GeForce® 8800 GTX, or simply
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FIGURE 1.2
CPUs and GPUs have fundamentally different design philosophies.
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1.1 GPUs as Parallel Computers 5

G80, was capable of moving data at about 85 gigabytes per second (GB/s)
in and out of its main dynamic random access memory (DRAM). Because
of frame buffer requirements and the relaxed memory model—the way
various system software, applications, and input/output (I/O) devices expect
their memory accesses to work—general-purpose processors have to satisfy
requirements from legacy operating systems, applications, and I/O devices
that make memory bandwidth more difficult to increase. In contrast, with
simpler memory models and fewer legacy constraints, the GPU designers
can more easily achieve higher memory bandwidth. The more recent
NVIDIA® GT200 chip supports about 150 GB/s. Microprocessor system
memory bandwidth will probably not grow beyond 50 GB/s for about
3 years, so CPUs will continue to be at a disadvantage in terms of memory
bandwidth for some time.

p0090 The design philosophy of the GPUs is shaped by the fast growing video
game industry, which exerts tremendous economic pressure for the ability
to perform a massive number of floating-point calculations per video frame
in advanced games. This demand motivates the GPU vendors to look for
ways to maximize the chip area and power budget dedicated to floating-
point calculations. The prevailing solution to date is to optimize for the exe-
cution throughput of massive numbers of threads. The hardware takes
advantage of a large number of execution threads to find work to do when
some of them are waiting for long-latency memory accesses, thus minimiz-
ing the control logic required for each execution thread. Small cache mem-
ories are provided to help control the bandwidth requirements of these
applications so multiple threads that access the same memory data do not
need to all go to the DRAM. As a result, much more chip area is dedicated
to the floating-point calculations.

p0095 It should be clear now that GPUs are designed as numeric computing
engines, and they will not perform well on some tasks on which CPUs
are designed to perform well; therefore, one should expect that most appli-
cations will use both CPUs and GPUs, executing the sequential parts on the
CPU and numerically intensive parts on the GPUs. This is why the
CUDA™ (Compute Unified Device Architecture) programming model,
introduced by NVIDIA in 2007, is designed to support joint CPU/GPU exe-
cution of an application.'

fn0010 'See Chapter 2 for more background on the evolution of GPU computing and the creation
of CUDA.
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p0100 It is also important to note that performance is not the only decision
factor when application developers choose the processors for running their
applications. Several other factors can be even more important. First and
foremost, the processors of choice must have a very large presence in the
marketplace, referred to as the installation base of the processor. The reason
is very simple. The cost of software development is best justified by a very
large customer population. Applications that run on a processor with a
small market presence will not have a large customer base. This has been
a major problem with traditional parallel computing systems that have neg-
ligible market presence compared to general-purpose microprocessors.
Only a few elite applications funded by government and large corporations
have been successfully developed on these traditional parallel computing
systems. This has changed with the advent of many-core GPUs. Due to
their popularity in the PC market, hundreds of millions of GPUs have been
sold. Virtually all PCs have GPUs in them. The G80 processors and their
successors have shipped more than 200 million units to date. This is the
first time that massively parallel computing has been feasible with a
mass-market product. Such a large market presence has made these GPUs
economically attractive for application developers.

p0105 Other important decision factors are practical form factors and easy
accessibility. Until 2006, parallel software applications usually ran on
data-center servers or departmental clusters, but such execution environ-
ments tend to limit the use of these applications. For example, in an appli-
cation such as medical imaging, it is fine to publish a paper based on a
64-node cluster machine, but actual clinical applications on magnetic reso-
nance imaging (MRI) machines are all based on some combination of a PC
and special hardware accelerators. The simple reason is that manufacturers
such as GE and Siemens cannot sell MRIs with racks of clusters to clinical
settings, but this is common in academic departmental settings. In fact, the
National Institutes of Health (NIH) refused to fund parallel programming
projects for some time; they felt that the impact of parallel software would
be limited because huge cluster-based machines would not work in the
clinical setting. Today, GE ships MRI products with GPUs, and NIH funds
research using GPU computing.

p0110 Yet another important consideration in selecting a processor for exe-
cuting numeric computing applications is the support for the Institute of
Electrical and Electronics Engineers (IEEE) floating-point standard. The
standard makes it possible to have predictable results across processors
from different vendors. While support for the IEEE floating-point standard
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1.1 GPUs as Parallel Computers 7

was not strong in early GPUs, this has also changed for new generations of
GPUs since the introduction of the G80. As we will discuss in Chapter 7,
GPU support for the IEEE floating-point standard has become comparable
to that of the CPUs. As a result, one can expect that more numerical appli-
cations will be ported to GPUs and yield comparable values as the CPUs.
Today, a major remaining issue is that the floating-point arithmetic units
of the GPUs are primarily single precision. Applications that truly require
double-precision floating point were not suitable for GPU execution;
however, this has changed with the recent GPUs, whose double-precision
execution speed approaches about half that of single precision, a level that
high-end CPU cores achieve. This makes the GPUs suitable for even more
numerical applications.

p0115 Until 2006, graphics chips were very difficult to use because programmers
had to use-the equivalent of graphic application programming interface
(API) functions to access the processor cores, meaning that OpenGL® or
Direct3D® techniques were needed to program these chips. This technique
was called GPGPU, short for general-purpose programming using a graphics
processing unit. Even with a higher level programming environment, the
underlying code is still limited by the APIs. These APIs limit the kinds
of applications that one can actually write for these chips. That’s why only
a few people could master the skills necessary to use these chips to achieve
performance for a limited number of applications; consequently, it did not
become a widespread programming phenomenon. Nonetheless, this technol-
ogy was sufficiently exciting to inspire some heroic efforts and excellent
results.

p0120 Everything changed in 2007 with the release of CUDA [NVIDIA 2007].
NVIDIA actually devoted silicon area to facilitate the ease of parallel pro-
gramming, so this did not represent a change in software alone; additional
hardware was added to the chip. In the G80 and its successor chips for par-
allel computing, CUDA programs no longer go through the graphics inter-
face at all. Instead, a new general-purpose parallel programming interface
on the silicon chip serves the requests of CUDA programs. Moreover, all
of the other software layers were redone, as well, so the programmers can
use the familiar C/C++ programming tools. Some of our students tried to
do their lab assignments using the old OpenGL-based programming inter-
face, and their experience helped them to greatly appreciate the improve-
ments that eliminated the need for using the graphics APIs for computing
applications.
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8 CHAPTER 1 Introduction

so20 1.2 ARCHITECTURE OF A MODERN GPU

po12s  Figure 1.3 shows the architecture of a typical CUDA-capable GPU. It is
organized into an array of highly threaded streaming multiprocessors
(SMs). In Figure 1.3, two SMs form a building block; however, the number
of SMs in a building block can vary from one generation of CUDA GPUs
to another generation. Also, each SM in Figure 1.3 has a number of stream-
ing processors (SPs) that share control logic and instruction cache. Each
GPU currently comes with up to 4 gigabytes of graphics double data rate
(GDDR) DRAM, referred to as global memory in Figure 1.3. These GDDR
DRAMs differ from the system DRAMSs on the CPU motherboard in that
they are essentially the frame buffer memory that is used for graphics.
For graphics applications, they hold video images, and texture information
for- three-dimensional (3D) rendering, but for computing they function
as very-high-bandwidth, off-chip memory, though with somewhat more
latency than typical system memory. For massively parallel applications,
the higher bandwidth makes up for the longer latency.

p0130 The G80 that introduced the CUDA architecture had 86.4 GB/s of mem-
ory bandwidth, plus an 8-GB/s communication bandwidth with the CPU.
A CUDA application can transfer data from the system memory at 4 GB/s
and at the same time upload data back to the system memory at 4 GB/s.
Altogether, there is a combined total of 8 GB/s. The communication band-
width is much lower than the memory bandwidth and may seem like
a limitation; however, the PCI Express® bandwidth is comparable to the
CPU front-side bus bandwidth to the system memory, so it’s really not the
limitation it would seem at first. The communication bandwidth is also
expected to grow as the CPU bus bandwidth of the system memory grows
in the future.

p0135 The massively parallel G80 chip has 128 SPs (16 SMs, each with 8 SPs).
Each SP has a multiply-add (MAD) unit and an additional multiply unit.
With 128 SPs, that’s a total of over 500 gigaflops. In addition, special-
function units perform floating-point functions such as square root (SQRT),
as well as transcendental functions. With 240 SPs, the GT200 exceeds 1 ter-
flops. Because each SP is massively threaded, it can run thousands of
threads per application. A good application typically runs 5000 to 12,000
threads simultaneously on this chip. For those who are used to simultaneous
multithreading, note that Intel CPUs support 2 or 4 threads, depending on
the machine model, per core. The G80 chip supports up to 768 threads
per SP, which sums up to about 12,000 threads for this chip. The more
recent GT200 supports 1024 threads per SP and up to about 30,000 threads
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10 CHAPTER 1 Introduction

for the chip. Thus, the level of parallelism supported by GPU hardware is
increasing quickly. It is very important to strive for such levels of parallelism
when developing GPU parallel computing applications.

soo2s 1.3 WHY MORE SPEED OR PARALLELISM?

po140  As we stated in Section 1.1, the main motivation for massively parallel pro-
gramming is for applications to enjoy a continued increase in speed in
future hardware generations. One might ask why applications will continue
to demand increased speed. Many applications that we have today seem to
be running quite fast enough. As we will discuss in the case study chapters,
when an application is suitable for parallel execution, a good implementa-
tion, on a-GPU can achieve more than 100-times, (100x)-speedup over
sequential execution. If the application includes what we call data parallel-
ism, it is often a simple task to achieve a 10x speedup with just a few hours
of work. For anything beyond that, we invite you to keep reading!

p0145 Despite the myriad computing applications in today’s world, many
exciting mass-market applications of the future will be what we currently
consider to be supercomputing applications, or super-applications. For
example, the biology research community is moving more and more into
the molecular level. Microscopes, arguably the most important instrument
in molecular biology, used to rely on optics or electronic instrumentation,
but there are limitations to the molecular-level observations that we can
make with these instruments. These limitations can be effectively addressed
by incorporating a computational model to simulate the underlying molec-
ular activities with boundary conditions set by traditional instrumentation.
From the simulation we can measure even more details and test more
hypotheses than can ever be imagined with traditional instrumentation
alone. These simulations will continue to benefit from the increasing com-
puting speed in the foreseeable future in terms of the size of the biological
system that can be modeled and the length of reaction time that can be
simulated within a tolerable response time. These enhancements will have
tremendous implications with regard to science and medicine.

p0150 For applications such as video and audio coding and manipulation, con-
sider our satisfaction with digital high-definition television (HDTV) vs.
older National Television System Committee (NTSC) television. Once we
experience the level of details offered by HDTV, it is very hard to go back
to older technology. But, consider all the processing that is necessary
for that HDTV. It is a very parallel process, as are 3D imaging and
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1.3 Why More Speed or Parallelism? 11

visualization. In the future, new functionalities such as view synthesis and
high-resolution display of low-resolution videos will demand that televisions
have more computing power.

p0155 Among the benefits offered by greater computing speed are much better
user interfaces. Consider the Apple® iPhone® interfaces; the user enjoys
a much more natural interface with the touch screen compared to other
cell phone devices, even though the iPhone has a limited-size window.
Undoubtedly, future versions of these devices will incorporate higher defi-
nition, three-dimensional perspectives, voice and computer vision based
interfaces, requiring even more computing speed.

p0160 Similar developments are underway in consumer electronic gaming.
Imagine driving a car in a game today; the game is, in fact, simply a prear-
ranged set of scenes. If your car bumps into an obstacle, the course of your
vehicle does not change; only the game score changes. Your wheels are not
bent or damaged, and it is no more difficult to drive, regardless of whether
you bumped your wheels or even lost a wheel. With increased computing
speed, the games can be based on dynamic simulation rather than prear-
ranged scenes. We can expect to see more of these realistic effects in the
future—accidents will damage your wheels, and your online driving expe-
rience will be much more realistic. Realistic modeling and simulation of
physics effects are known to demand large amounts of computing power.

p0165 All of the new applications that we mentioned involve simulating a con-
current world in different ways and at different levels, with tremendous
amounts of data being processed. And, with this huge quantity of data,
much of the computation can be done on different parts of the data in par-
allel, although they will have to be reconciled at some point. Techniques for
doing so are well known to those who work with such applications on a
regular basis. Thus, various granularities of parallelism do exist, but the
programming model must not hinder parallel implementation, and the data
delivery must be properly managed. CUDA includes such a programming
model along with hardware support that facilitates parallel implementation.
We aim to teach application developers the fundamental techniques for
managing parallel execution and delivering data.

p0170 How many times speedup can be expected from parallelizing these super
application? It depends on the portion of the application that can be paral-
lelized. If the percentage of time spent in the part that can be parallelized is
30%, a 100x speedup of the parallel portion will reduce the execution time
by 29.7%. The speedup for the entire application will be only 1.4x. In fact,
even an infinite amount of speedup in the parallel portion can only slash
less 30% off execution time, achieving no more than 1.43x speedup.
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On the other hand, if 99% of the execution time is in the parallel portion,
a 100x speedup will reduce the application execution to 1.99% of the
original time. This gives the entire application a 50x speedup; therefore,
it is very important that an application has the vast majority of its execution
in the parallel portion for a massively parallel processor to effectively
speedup its execution.

Researchers have achieved speedups of more than 100x for some appli-
cations; however, this is typically achieved only after extensive optimiza-
tion and tuning after the algorithms have been enhanced so more than
99.9% of the application execution time is in parallel execution. In general,
straightforward parallelization of applications often saturates the memory
(DRAM) bandwidth, resulting in only about a 10x speedup. The trick is
to figure out how to get around memory bandwidth limitations, which
involves -doing one of many transformations to utilize specialized GPU
on-chip memories to drastically reduce the number of accesses to the
DRAM. One must, however, further optimize the code to get around limita-
tions such as limited on-chip memory capacity. An important goal of this
book is to help you to fully understand these optimizations and become
skilled in them.

Keep in mind that the level of speedup achieved over CPU execution
can also reflect the suitability of the CPU to the application. In some appli-
cations, CPUs perform very well, making it more difficult to speed up per-
formance using a GPU. Most applications have portions that can be much
better executed by the CPU. Thus, one must give the CPU a fair chance
to perform and make sure that code is written in such a way that GPUs
complement CPU execution, thus properly exploiting the heterogeneous
parallel computing capabilities of the combined CPU/GPU system. This is
precisely what the CUDA programming model promotes, as we will further
explain in the book.

Figure 1.4 illustrates the key parts of a typical application. Much of the
code of a real application tends to be sequential. These portions are consid-
ered to be the pit area of the peach; trying to apply parallel computing tech-
niques to these portions is like biting into the peach pit—not a good feeling!
These portions are very difficult to parallelize. CPUs tend to do a very good
job on these portions. The good news is that these portions, although they
can take up a large portion of the code, tend to account for only a small por-
tion of the execution time of super-applications.

Then come the meat portions of the peach. These portions are easy to
parallelize, as are some early graphics applications. For example, most of
today’s medical imaging applications are still running on combinations of
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microprocessor clusters and special-purpose hardware. The cost and size
benefit of the GPUs can drastically improve the quality of these applica-
tions. As illustrated in Figure 1.4, early GPGPUs cover only a small portion
of the meat section, which is analogous to a small portion of the most excit-
ing applications coming in the next 10 years. As we will see, the CUDA
programming model is designed to cover a much larger section of the peach
meat portions of exciting applications.

1.4 PARALLEL PROGRAMMING LANGUAGES AND MODELS

Many parallel programming languages and models have been proposed in
the past several decades [Mattson 2004]. The ones that are the most widely
used are the Message Passing Interface (MPI) for scalable cluster com-
puting and OpenMP™ for shared-memory multiprocessor systems. MPI is
a model where computing nodes in a cluster do not share memory
[MPI 2009]; all data sharing and interaction must be done through explicit
message passing. MPI has been successful in the high-performance scien-
tific computing domain. Applications written in MPI have been known to
run successfully on cluster computing systems with more than 100,000
nodes. The amount of effort required to port an application into MPI,
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however, can be extremely high due to lack of shared memory across com-
puting nodes. CUDA, on the other hand, provides shared memory for par-
allel execution in the GPU to address this difficulty. As for CPU and
GPU communication, CUDA currently provides very limited shared mem-
ory capability between the CPU and the GPU. Programmers need to man-
age the data transfer between the CPU and GPU in a manner similar to
“one-sided” message passing, a capability whose absence in MPI has been
historically considered as a major weakness of MPIL.

OpenMP supports shared memory, so it offers the same advantage as
CUDA in programming efforts; however, it has not been able to scale
beyond a couple hundred computing nodes due to thread management over-
heads and cache coherence hardware requirements. CUDA achieves much
higher scalability with simple, low-overhead thread management and no
cache coherence hardware requirements. As we will see, however, CUDA
does not support as wide a range of applications as OpenMP due to these
scalability tradeoffs. On the other hand, many super-applications fit well
into the simple thread management model of CUDA and thus enjoy the
scalability and performance.

Aspects of CUDA are similar to both MPI and OpenMP in that the pro-
grammer manages the parallel code constructs, although OpenMP compi-
lers do more of the automation in managing parallel execution. Several
ongoing research efforts aim at adding more automation of parallelism
management and performance optimization to the CUDA tool chain. Devel-
opers who are experienced with MPI and OpenMP will find CUDA easy to
learn. Especially, many of the performance optimization techniques are
common among these models.

More recently, several major industry players, including Apple, Intel,
AMDY/ATI, and NVIDIA, have jointly developed a standardized program-
ming model called OpenCL™ [Khronos 2009]. Similar to CUDA, the
OpenCL programming model defines language extensions and runtime
APIs to allow programmers to manage parallelism and data delivery in
massively parallel processors. OpenCL is a standardized programming
model in that applications developed in OpenCL can run without modi-
fication on all processors that support the OpenCL language extensions
and APL

The reader might ask why the book is not based on OpenCL. The main
reason is that OpenCL was still in its infancy when this book was written.
The level of programming constructs in OpenCL is still at a lower level
than CUDA and much more tedious to use. Also, the speed achieved in
an application expressed in OpenCL is still much lower than in CUDA on
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the platforms that support both. Because programming massively parallel
processors is motivated by speed, we expect that most who program mas-
sively parallel processors will continue to use CUDA for the foreseeable
future. Finally, those who are familiar with both OpenCL and CUDA
know that there is a remarkable similarity between the key features of
OpenCL and CUDA; that is, a CUDA programmer should be able to
learn OpenCL programming with minimal effort. We will give a more
detailed analysis of these similarities later in the book.

soo3s 1.5 OVERARCHING GOALS

p0220  Our primary goal is to teach you, the reader, how to program massively par-
allel processors to: achieve high-performance,-and our approach will not
require a great deal of hardware expertise. Someone once said that if you
don’t care about performance parallel programming is very easy. You can
literally write a parallel program in an hour. But, we’re going to dedicate
many pages to materials on how to do high-performance parallel program-
ming, and we believe that it will become easy once you develop the right
insight and go about it the right way. In particular, we will focus on compu-
tational thinking techniques that will enable you to think about problems in
ways that are amenable to high-performance parallel computing.

p0225 Note that hardware architecture features have constraints. High-
performance parallel programming on most of the chips will require some
knowledge of how the hardware actually works. It will probably take
10 more years before we can build tools and machines so most program-
mers can work without this knowledge. We will not be teaching computer
architecture as a separate topic; instead, we will teach the essential
computer architecture knowledge as part of our discussions on high-
performance parallel programming techniques.

p0230 Our second goal is teach parallel programming for correct functionality and
reliability, which constitute a subtle issue in parallel computing. Those who
have worked on parallel systems in the past know that achieving initial per-
formance is not enough. The challenge is to achieve it in such a way that
you can debug the code and support the users. We will show that with the
CUDA programming model that focuses on data parallelism, one can achieve
both high performance and high reliability in their applications.

p0235 Our third goal is achieving scalability across future hardware generations
by exploring approaches to parallel programming such that future machines,
which will be more and more parallel, can run your code faster than today’s
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machines. We want to help you to master parallel programming so your
programs can scale up to the level of performance of new generations of
machines.

p0240 Much technical knowledge will be required to achieve these goals, so we
will cover quite a few principles and patterns of parallel programming in
this book. We cannot guarantee that we will cover all of them, however,
so we have selected several of the most useful and well-proven techniques
to cover in detail. To complement your knowledge and expertise, we
include a list of recommended literature. We are now ready to give you a
quick overview of the rest of the book.

soo40. | 1.6 ORGANIZATION OF THE BOOK

po245  Chapter 2 reviews the history of GPU computing. It begins with a brief
summary of the evolution of graphics hardware toward greater programma-
bility and then discusses the historical GPGPU movement. Many of the cur-
rent features and limitations of CUDA GPUs have their roots in these
historic developments. A good understanding of these historic develop-
ments will help the reader to better understand the current state and the
future trends of hardware evolution that will continue to impact the types
of applications that will benefit from CUDA.

p0250 Chapter 3 introduces CUDA programming. This chapter relies on the
fact that students have had previous experience with C programming. It
first introduces CUDA as a simple, small extension to C that supports het-
erogeneous CPU/GPU joint computing and the widely used single-program,
multiple-data (SPMD) parallel programming model. It then covers the
thought processes involved in: (1) identifying the part of application pro-
grams to be parallelized, (2) isolating the data to be used by the parallelized
code by using an API function to allocate memory on the parallel comput-
ing device, (3) using an API function to transfer data to the parallel com-
puting device, (4) developing a kernel function that will be executed by
individual threads in the parallelized part, (5) launching a kernel function
for execution by parallel threads, and (6) eventually transferring the data
back to the host processor with an API function call. Although the objective
of Chapter 3 is to teach enough concepts of the CUDA programming model
so students can write a simple parallel CUDA program, it actually covers
several basic skills needed to develop a parallel application based on any
parallel programming model. We use a running example of matrix—matrix
multiplication to make this chapter concrete.
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p0255 Chapters 4 through 7 are designed to give the readers more in-depth
understanding of the CUDA programming model. Chapter 4 covers the
thread organization and execution model required to fully understand the
execution behavior of threads and basic performance concepts. Chapter 5
is dedicated to the special memories that can be used to hold CUDA vari-
ables for improved program execution speed. Chapter 6 introduces the
major factors that contribute to the performance of a CUDA kernel func-
tion. Chapter 7 introduces the floating-point representation and concepts
such as precision and accuracy. Although these chapters are based on
CUDA, they help the readers build a foundation for parallel programming
in general. We believe that humans understand best when we learn from
the bottom up; that is, we must first learn the concepts in the context of a
particular programming model, which provides us with a solid footing to
generalize our knowledge to other programming models. ‘As we do so, we
can draw on our concrete experience from the CUDA model. An in-depth
experience with the CUDA model also enables us to gain maturity, which
will help us learn concepts that may not even be pertinent to the CUDA
model.

p0260 Chapters 8 and 9 are case studies of two real applications, which take the
readers through the thought processes of parallelizing and optimizing their
applications for significant speedups. For each application, we begin by
identifying alternative ways of formulating the basic structure of the paral-
lel execution and follow up with reasoning about the advantages and disad-
vantages of each alternative. We then go through the steps of code
transformation necessary to achieve high performance. These two chapters
help the readers put all the materials from the previous chapters together
and prepare for their own application development projects.

p0265 Chapter 10 generalizes the parallel programming techniques into prob-
lem decomposition principles, algorithm strategies, and computational
thinking. It does so by covering the concept of organizing the computation
tasks of a program so they can be done in parallel. We begin by discussing
the translational process of organizing abstract scientific concepts into
computational tasks, an important first step in producing quality application
software, serial or parallel. The chapter then addresses parallel algorithm
structures and their effects on application performance, which is grounded
in the performance tuning experience with CUDA. The chapter concludes
with a treatment of parallel programming styles and models, allowing the
readers to place their knowledge in a wider context. With this chapter,
the readers can begin to generalize from the SPMD programming style to
other styles of parallel programming, such as loop parallelism in OpenMP
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and fork—join in p-thread programming. Although we do not go into
these alternative parallel programming styles, we expect that the readers
will be able to learn to program in any of them with the foundation gained
in this book.

p0270 Chapter 11 introduces the OpenCL programming model from a CUDA
programmer’s perspective. The reader will find OpenCL to be extremely
similar to CUDA. The most important difference arises from OpenCL’s
use of API functions to implement functionalities such as kernel launching
and thread identification. The use of API functions makes OpenCL more
tedious to use; nevertheless, a CUDA programmer has all the knowledge
and skills necessary to understand and write OpenCL programs. In fact, we
believe that the best way to teach OpenCL programming is to teach CUDA
first. We demonstrate this with a chapter that relates all major OpenCL
features to their corresponding CUDA features. We-also illustrate the use of
these features by adapting our simple CUDA examples into OpenCL.

p0275 Chapter 12 offers some concluding remarks and an outlook for the
future of massively parallel programming. We revisit our goals and summa-
rize how the chapters fit together to help achieve the goals. We then present
a brief survey of the major trends in the architecture of massively parallel
processors and how these trends will likely impact parallel programming
in the future. We conclude with a prediction that these fast advances in
massively parallel computing will make it one of the most exciting areas
in the coming decade.
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soot0  INTRODUCTION

pooso  To CUDA™ and OpenCL™ programmers, graphics processing units (GPUs)
are massively parallel numeric computing processors programmed in C with
extensions. One need not understand graphics algorithms or terminology in
order to be able to program these processors. However, understanding the
graphics heritage of these processors illuminates the strengths and weak-
nesses of these processors with respect to major computational patterns. In
particular, the history helps to clarify the rationale behind major architectural
design decisions of modern programmable GPUs: massive multithreading,
relatively small cache memories compared to central processing units
(CPUs), and bandwidth-centric memory interface design. Insights into the
historical developments will also likely give the reader the context needed
to project the future evolution of GPUs as computing devices.

s0ts 2.1 EVOLUTION OF GRAPHICS PIPELINES

pooes  Three-dimensional (3D) graphics pipeline hardware evolved from the large
expensive systems of the early 1980s to small workstations and then PC
accelerators in the mid- to late 1990s. During this period, the performance-
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leading graphics subsystems decreased in price from $50,000 to $200.
During the same period, the performance increased from 50 million pixels
per second to 1 billion pixels per second and from 100,000 vertices per
second to 10 million vertices per second. Although these advancements have
much to do with the relentlessly shrinking feature sizes of semiconductor
devices, they also have resulted from innovations in graphics algorithms
and hardware design that have shaped the native hardware capabilities of
modern GPUs.

The remarkable advancement of graphics hardware performance has
been driven by the market demand for high-quality, real-time graphics in
computer applications. In an electronic gaming application, for example,
one needs to render ever more complex scenes at an ever-increasing resolu-
tion at a rate of 60 frames per second. The net result is that over the last
30 years-graphics architecture has evolved from being a simple pipeline
for drawing wire-frame diagrams to a highly parallel design consisting of
several deep parallel pipelines capable of rendering the complex interactive
imagery of 3D scenes. Concurrently, many of the hardware functionalities
involved became far more sophisticated and user programmable.

2.1.1 The Era of Fixed-Function Graphics Pipelines

From the early 1980s to the late 1990s, the leading performance graphics
hardware was fixed-function pipelines that were configurable but not pro-
grammable. In that same era, major graphics application programming
interface (API) libraries became popular. An API is a standardized layer
of software (i.e., a collection of library functions) that allows applications
(such as games) to use software or hardware services and functionality.
An API, for example, can allow a game to send commands to a graphics
processing unit to draw objects on a display. One such API is DirectX™,
Microsoft’s proprietary API for media functionality. The Direct3D® com-
ponent of DirectX provides interface functions to graphics processors.
The other major API is OpenGL®, an open standard API supported by
multiple vendors and popular in professional workstation applications. This
era of fixed-function graphics pipeline roughly corresponds to the first
seven generations of DirectX.

Figure 2.1 shows an example fixed-function graphics pipeline in early
NVIDIA® GeForce® GPUs. The host interface receives graphics commands
and data from the CPU. The commands are typically given by application
programs by calling an API function. The host interface typically contains
a specialized direct memory access (DMA) hardware to efficiently transfer

Kirk-Hwu, 978-0-12-381472-2



B978-0-12-381472-2.00002-7, 00002
|

2.1 Evolution of Graphics Pipelines 23

CPU

GPU

Vertex
Cache

Sher Texture
Cache

FIGURE 2.1
A fixed-function NVIDIA GeForce graphics pipeline.

f0010

bulk data to and from the host system memory to the graphics pipeline.
The host interface also communicates back the status and result data of
executing the commands.

p0085 Before we describe the other stages of the pipeline, we should clarify
that the term vertex usually refers to the corner of a polygon. The GeForce
graphics pipeline is designed to render triangles, so the term vertex is typi-
cally used in this case to refer to the corners of a triangle. The surface of
an object is drawn as a collection of triangles. The finer the sizes of the
triangles are, the better the quality of the picture typically becomes. The
vertex control stage in Figure 2.1 receives parameterized triangle data from
the CPU. The vertex control stage then converts the triangle data into a
form that the hardware understands and places the prepared data into the
vertex cache.

p0090 The vertex shading, transform, and lighting (VS/T&L) stage in Figure 2.1
transforms vertices and assigns per-vertex values (e.g., colors, normals,
texture coordinates, tangents). The shading is done by the pixel shader hard-
ware. The vertex shader can assign a color to each vertex, but color is not
applied to triangle pixels until later. The triangle setup stage further creates
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edge equations that are used to interpolate colors and other per-vertex data
(such as texture coordinates) across the pixels touched by the triangle. The
raster stage determines which pixels are contained in each triangle. For each
of these pixels, the raster stage interpolates per-vertex values necessary for
shading the pixel, including the color, position, and texture position that will
be shaded (painted) on the pixel.

The shader stage in Figure 2.1 determines the final color of each pixel.
This can be generated as a combined effect of many techniques: interpola-
tion of vertex colors, texture mapping, per-pixel lighting mathematics,
reflections, and more. Many effects that make the rendered images more
realistic are incorporated in the shader stage. Figure 2.2 illustrates texture
mapping, one of the shader stage functionalities. It shows an example in
which a world map texture is mapped onto a sphere object. Note that the
sphere object-is described as a large collection-of triangles. Although
the shader stage must perform only a small number of coordinate transform

texture image

Sphere with texture

FIGURE 2.2

Texture mapping example: painting a world map texture image onto a globe
object.
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calculations to identify the exact coordinates of the texture point that will
be painted on a point in one of the triangles that describes the sphere object,
the sheer number of pixels covered by the image requires the shader stage
to perform a very large number of coordinate transforms for each frame.

p0100 The raster operation (ROP) stage in Figure 2.2 performs the final raster
operations on the pixels. It performs color raster operations that blend the
color of overlapping/adjacent objects for transparency and anti-aliasing
effects. It also determines the visible objects for a given viewpoint and
discards the occluded pixels. A pixel becomes occluded when it is blocked
by pixels from other objects according to the given view point.

p0105 Figure 2.3 illustrates anti-aliasing, one the of ROP stage operations.
Notice the three adjacent triangles with a black background. In the aliased
output, each pixel assumes the color of one of the objects or the back-
ground. The limited resolution makes the edges look crooked and the
shapes of the objects distorted. The problem is that many pixels are partly
in one object and partly in another object or the background. Forcing these
pixels to assume the color of one of the objects introduces distortion into
the edges of the objects. The anti-aliasing operation gives each pixel a color
that is blended, or linearly combined, from the colors of all the objects and
background that partially overlap the pixel. The contribution of each object
to the color of the pixel is the amount of the pixel that the object overlaps.

p0110 Finally, the frame buffer interface (FBI) stage in Figure 2.1 manages
memory reads from and writes to the display frame buffer memory. For
high-resolution displays, there is a very high bandwidth requirement in

Triangle Geometry Aliased Anti-Aliased

FIGURE 2.3
Example of anti-aliasing operations.

f0020
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accessing the frame buffer. Such bandwidth is achieved by two strategies.
One is that graphics pipelines typically use special memory designs that
provide higher bandwidth than the system memories. Second, the FBI
simultaneously manages multiple memory channels that connect to multiple
memory banks. The combined bandwidth improvement of multiple chan-
nels and special memory structures gives the frame buffers much higher
bandwidth than their contemporaneous system memories. Such high mem-
ory bandwidth has continued to this day and has become a distinguishing
feature of modern GPU design.

p0115 For two decades, each generation of hardware and its corresponding
generation of API brought incremental improvements to the various stages
of the graphics pipeline. Although each generation introduced additional
hardware resources and configurability to the pipeline stages, developers
were growing more sophisticated and-asking for more new features than
could be reasonably offered as built-in fixed functions. The obvious next
step was to make some of these graphics pipeline stages into programmable
processors.

so02s  2.1.2 Evolution of Programmable Real-Time Graphics

po120  In 2001, the NVIDIA GeForce 3 took the first step toward achieving true
general shader programmability. It exposed the application developer to
what had been the private internal instruction set of the floating-point vertex
engine (VS/T&L stage). This coincided with the release of Microsoft’s
DirectX 8 and OpenGL vertex shader extensions. Later GPUs, at the time
of DirectX 9, extended general programmability and floating-point capa-
bility to the pixel shader stage and made texture accessible from the vertex
shader stage. The ATI Radeon™ 9700, introduced in 2002, featured a pro-
grammable 24-bit floating-point pixel shader processor programmed with
DirectX 9 and OpenGL. The GeForce FX added 32-bit floating-point pixel
processors. These programmable pixel shader processors were part of a
general trend toward unifying the functionality of the different stages as seen
by the application programmer. The GeForce 6800 and 7800 series were
built with separate processor designs dedicated to vertex and pixel proces-
sing. The XBox® 360 introduced an early unified processor GPU in 2003,
allowing vertex and pixel shaders to execute on the same processor.

p0125 In graphics pipelines, certain stages do a great deal of floating-point arith-
metic on completely independent data, such as transforming the positions of
triangle vertices or generating pixel colors. This data independence as the
dominating application characteristic is a key difference between the design
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assumption for GPUs and CPUs. A single frame, rendered in 1/60th of a
second, might have a million triangles and 6 million pixels. The opportunity
to use hardware parallelism to exploit this data independence is tremendous.

p0130 The specific functions executed at a few graphics pipeline stages vary
with rendering algorithms. Such variation has motivated the hardware
designers to make those pipeline stages programmable. Two particular
programmable stages stand out: the vertex shader and the pixel shader.
Vertex shader programs map the positions of triangle vertices onto the
screen, altering their position, color, or orientation. Typically, a vertex
shader thread reads a floating-point (x, y, z, w) vertex position and computes
a floating-point (x, y, z) screen position. Geometry shader programs operate
on primitives defined by multiple vertices, changing them or generating
additional primitives. Vertex shader programs and geometry shader pro-
grams execute on the vertex shader (VS/T&L) stage of the graphics pipeline.

p0135 Pixel shader programs each shade one pixel, computing a floating-point
red, green, blue, alpha (RGBA) color contribution to the rendered image at
its pixel sample (x, y) image position. These programs execute on the
shader stage of the graphics pipeline. For all three types of graphics shader
programs, program instances can be run in parallel, because each works on
independent data, produces independent results, and has no side effects.
This property has motivated the design of the programmable pipeline stages
into massively parallel processors.

p0140 Figure 2.4 shows an example of a programmable pipeline that employs a
vertex processor and a fragment (pixel) processor. The programmable vertex
processor executes the programs designated to the vertex shader stage, and
the programmable fragment processor executes the programs designated to
the (pixel) shader stage. Between these programmable graphics pipeline
stages are dozens of fixed-function stages that perform well-defined tasks
far more efficiently than a programmable processor could and which would
benefit far less from programmability. For example, between the geometry
processing stage and the pixel processing stage is a rasterizer, a complex
state machine that determines exactly which pixels (and portions thereof)
lie within each geometric primitive’s boundaries. Together, the mix of
programmable and fixed-function stages is engineered to balance extreme
performance with user control over the rendering algorithms.

p0145 Common rendering algorithms perform a single pass over input primi-
tives and access other memory resources in a highly coherent manner. That
is, these algorithms tend to simultaneously access contiguous memory loca-
tions, such as all triangles or all pixels in a neighborhood. As a result, these
algorithms exhibit excellent efficiency in memory bandwidth utilization
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2.1 Evolution of Graphics Pipelines 29

and are largely insensitive to memory latency. Combined with a pixel
shader workload that is usually compute limited, these characteristics have
guided GPUs along a different evolutionary path than CPUs. In particular,
whereas the CPU die area is dominated by cache memories, GPUs are
dominated by floating-point datapath and fixed-function logic. GPU mem-
ory interfaces emphasize bandwidth over latency (as latency can be readily
hidden by massively parallel execution); indeed, bandwidth is typically
many times higher than that for a CPU, exceeding 100 GB/s in more recent
designs.

so030  2.1.3 Unified Graphics and Computing Processors

po150  Introduced in 2006, the GeForce 8800 GPU mapped the separate program-
mable graphics stages to an array of unified processors; the logical graphics
pipeline is physically a recirculating path that visits these processors three
times, with much fixed-function graphics logic between visits. This is illu-
strated in Figure 2.5. The unified processor array allows dynamic partition-
ing of the array to vertex shading, geometry processing, and pixel
processing. Because different rendering algorithms present wildly different
loads among the three programmable stages, this unification allows the
same pool of execution resources to be dynamically allocated to different
pipeline stages and achieve better load balance.

p0155 The GeForce 8800 hardware corresponds to the DirectX 10 API genera-
tion. By the DirectX 10 generation, the functionality of vertex and pixel
shaders had been made identical to the programmer, and a new logical stage
was introduced, the geometry shader, to process all the vertices of a primi-
tive rather than vertices in isolation. The GeForce 8800 was designed with
DirectX 10 in mind. Developers were coming up with more sophisticated
shading algorithms, and this motivated a sharp increase in the available
shader operation rate, particularly floating-point operations. NVIDIA pur-
sued a processor design with higher operating clock frequency than what
was allowed by standard-cell methodologies in order to deliver the desired
operation throughput as area efficiently as possible. High-clock-speed
design requires substantially greater engineering effort, thus favoring the
design of one processor array rather than two (or three, given the new
geometry stage). It became worthwhile to take on the engineering chal-
lenges of a unified processor—load balancing and recirculation of a logical
pipeline onto threads of the processor array—while seeking the benefits of
one processor design. Such design paved the way for using the programma-
ble GPU processor array for general numeric computing.
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s0035  2.1.4 GPGPU: An Intermediate Step

poteo  While the GPU hardware designs evolved toward more unified processors,
they increasingly resembled high-performance parallel computers. As
DirectX 9-capable GPUs became available, some researchers took notice
of the raw performance growth path of GPUs and began to explore the
use of GPUs to solve compute-intensive science and engineering problems;
however, DirectX 9 GPUs had been designed only to match the features
required by the graphics APIs. To access the computational resources, a
programmer had to cast his or her problem into native graphics operations
so the computation could be launched through OpenGL or DirectX API
calls. To run many simultaneous instances of a compute function, for exam-
ple, the computation had to be written as a pixel shader. The collection of
input data had to be stored in texture images. and issued to the GPU by sub-
mitting triangles (with clipping to a rectangle shape if that was what was
desired). The output had to be cast as a set of pixels generated from the ras-
ter operations.

p0165 The fact that the GPU processor array and frame buffer memory inter-
face were designed to process graphics data proved too restrictive for gen-
eral numeric applications. In particular, the output data of the shader
programs are single pixels whose memory locations have been predeter-
mined; thus, the graphics processor array is designed with very restricted
memory reading and writing capability. Figure 2.6 illustrates the limited

O

per thread
Input Registers | per Context
<—| Texture |

<—>| Temp Registers |

|

| Output Registers |

| FB M Memory |

10035 FIGURE 2.6

The restricted input and output capabilities of a shader programming model.
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memory access capability of early programmable shader processor arrays;
shader programmers needed to use texture to access arbitrary memory loca-
tions for their input data. More importantly, shaders did not have the means
to perform writes with calculated memory addresses, referred to as scatter
operations, to memory. The only way to write a result to memory was to
emit it as a pixel color value, and configure the frame buffer operation stage
to write (or blend, if desired) the result to a two-dimensional frame buffer.

Furthermore, the only way to get a result from one pass of computation to
the next was to write all parallel results to a pixel frame buffer, then use that
frame buffer as a texture map as input to the pixel fragment shader of the next
stage of the computation. There was also no under-defined data types; most
data had to be stored in one-, two-, or four-component vector arrays. Mapping
general computations to a GPU in this era was quite awkward. Nevertheless,
intrepid researchers demonstrated a handful- of useful applications with
painstaking efforts. This field was called “GPGPU,” for general-purpose
computing on GPUs.

2.2 GPU COMPUTING

While developing the Tesla™ GPU architecture, NVIDIA realized its
potential usefulness would be much greater if programmers could think of
the GPU like a processor. NVIDIA selected a programming approach in
which programmers would explicitly declare the data-parallel aspects of
their workload.

For the DirectX 10 generation of graphics, NVIDIA had already begun
work on a high-efficiency floating-point and integer processor that could
run a variety of simultaneous workloads to support the logical graphics pipe-
line. The designers of the Tesla GPU architecture took another step. The
shader processors became fully programmable processors with large instruc-
tion memory, instruction cache, and instruction sequencing control logic.
The cost of these additional hardware resources was reduced by having mul-
tiple shader processors to share their instruction cache and instruction
sequencing control logic. This design style works well with graphics applica-
tions because the same shader program needs to be applied to a massive num-
ber of vertices or pixels. NVIDIA added memory load and store instructions
with random byte addressing capability to support the requirements of
compiled C programs. To non-graphics application programmers, the Tesla
GPU architecture introduced a more generic parallel programming model
with a hierarchy of parallel threads, barrier synchronization, and atomic
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operations to dispatch and manage highly parallel computing work. NVIDIA
also developed the CUDA C/C++ compiler, libraries, and runtime software
to enable programmers to readily access the new data-parallel computation
model and develop applications. Programmers no longer need to use the
graphics API to access the GPU parallel computing capabilities. The G80
chip was based on the Tesla architecture and was used in the GeForce
8800 GTX, which was followed later by G92 and GT200.

soo4s 2.2.1 Scalable GPUs

po185  Scalability has been an attractive feature of graphics systems from the
beginning. In the early days, workstation graphics systems gave customers
a choice in pixel horsepower by varying the number of pixel processor cir-
cuit boards-installed. Prior to the mid-1990s, PC graphics scaling-was
almost nonexistent. There was one option: the VGA controller. As
3D-capable accelerators began to appear, there was room in the market
for a range of offerings. In 1998, 3dfx introduced multiboard scaling with
their original Scan Line Interleave (SLI) on their Voodoo2, which held
the performance crown for its time. Also in 1998, NVIDIA introduced dis-
tinct products as variants on a single architecture with Riva TNT Ultra
(high-performance) and Vanta (low-cost), first by speed binning and pack-
aging, then with separate chip designs (GeForce 2 GTS and GeForce
2 MX). At present, for a given architecture generation, four or five separate
chip designs are needed to cover the range of desktop PC performance and
price points. In addition, there are separate segments in notebook and work-
station systems. After acquiring 3dfx in 2001, NVIDIA continued the multi-
GPU SLI concept; for example, the GeForce 6800 provides multi-GPU
scalability transparently to both the programmer and the user. Functional
behavior is identical across the scaling range; one application will run
unchanged on any implementation of an architectural family.

p0190 By switching to the multicore trajectory, CPUs are scaling to higher
transistor counts by increasing the number of constant-performance cores
on a die rather than increasing the performance of a single core. At this
writing, the industry is transitioning from quad-core to oct-core CPUs. Pro-
grammers are forced to find four- to eightfold parallelism to fully utilize
these processors. Many of them resort to coarse-grained parallelism strate-
gies where different tasks of an application are performed in parallel. Such
applications must be rewritten often to have more parallel tasks for each
successive doubling of core count. In contrast, the highly multithreaded
GPUs encourage the use of massive, fine-grained data parallelism in

Kirk-Hwu, 978-0-12-381472-2



34

s0050

p0195

p0200

s0055

p0205

B978-0-12-381472-2.00002-7, 00002

CHAPTER 2 History of GPU Computing

CUDA. Efficient threading support in GPUs allows applications to expose a
much larger amount of parallelism than available hardware execution
resources with little or no penalty. Each doubling of GPU core count pro-
vides more hardware execution resources that exploit more of the exposed
parallelism for higher performance; that is, the GPU parallel programming
model for graphics and parallel computing is designed for transparent and
portable scalability. A graphics program or CUDA program is written once
and runs on a GPU with any number of processors.

2.2.2 Recent Developments

Academic and industrial work on applications using CUDA has produced
hundreds of examples of successful CUDA programs. Many of these pro-
grams run the application tens or hundreds jof times faster than multicore
CPUs ‘are capable of running them. With the introduction of tools such'as
MCUDA [Stratton2008], the parallel threads of a CUDA program can also
run efficiently on a multicore CPU, although at a lower speed than on GPUs
due to lower levels of floating-point execution resources. Examples of these
applications include n-body simulation, molecular modeling, computational
finance, and oil/gas reservoir simulation. Although many of these use sin-
gle-precision floating-point arithmetic, some problems require double pre-
cision. The arrival of double-precision floating point in GPUs enabled an
even broader range of applications to benefit from GPU acceleration.

For an exhaustive list and examples of current developments in applica-
tions that are accelerated by GPUs, visit CUDA Zone at http://www.nvidia.
com/CUDA. For resources in developing research applications, see CUDA
Research at http://www.cudaresearch.org.

2.3 FUTURE TRENDS

Naturally, the number of processor cores will continue to increase in propor-
tion to increases in available transistors as silicon processes improve. In addi-
tion, GPUs will continue to enjoy vigorous architectural evolution. Despite
their demonstrated high performance on data parallel applications, GPU core
processors are still of relatively simple design. More aggressive techniques
will be introduced with each successive architecture to increase the actual
utilization of the calculating units. Because scalable parallel computing on
GPUs is still a young field, novel applications are rapidly being created.
By studying them, GPU designers will discover and implement new machine
optimizations. Chapter 10 provides more details of such future trends.
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soot0  INTRODUCTION

pooes  Toa CUDA™ programmer, the computing system consists of a host, which is
a traditional central processing unit (CPU), such as an Intel® architecture
microprocessor in personal computers today, and one or more devices, which
are massively parallel processors equipped with a large number of arithmetic
execution units. In modern software applications, program sections often
exhibit a rich amount of data parallelism, a property allowing many arithmetic
operations to be safely performed on program data structures in a simulta-
neous manner. The CUDA devices accelerate the execution of these applica-
tions by harvesting a large amount of data parallelism. Because data
parallelism plays such an important role in CUDA, we will first discuss the
concept of data parallelism before introducing the basic features of CUDA.

soot5 3.1 DATA PARALLELISM

poo7o  Many software applications that process a large amount of data and thus
incur long execution times on today’s computers are designed to model
real-world, physical phenomena. Images and video frames are snapshots

Programming Massively Parallel Processors: A Hands-on Approach. DOI: 10.1016/B978-0-12-381472-2.00003-9 39
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of a physical world where different parts of a picture capture simultaneous,
independent physical events. Rigid body physics and fluid dynamics model
natural forces and movements that can be independently evaluated within
small time steps. Such independent evaluation is the basis of data parallel-
ism in these applications.

p0075 As we mentioned earlier, data parallelism refers to the program property
whereby many arithmetic operations can be safely performed on the data
structures in a simultaneous manner. We illustrate the concept of data par-
allelism with a matrix—matrix multiplication (matrix multiplication, for
brevity) example in Figure 3.1. In this example, each element of the product
matrix P is generated by performing a dot product between a row of input
matrix M and a column of input matrix N. In Figure 3.1, the highlighted
element of matrix P is generated by taking the dot product of the high-
lighted row of matrix M-and the highlighted column of matrix N. Note that
the dot product operations for computing different matrix P elements can be

A
v
A
v

FIGURE 3.1
Data parallelism in matrix multiplication.
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simultaneously performed. That is, none of these dot products will affect
the results of each other. For large matrices, the number of dot products
can be very large; for example, a 1000 x 1000 matrix multiplication has
1,000,000 independent dot products, each involving 1000 multiply and
1000 accumulate arithmetic operations. Therefore, matrix multiplication
of large dimensions can have very large amount of data parallelism. By
executing many dot products in parallel, a CUDA device can significantly
accelerate the execution of the matrix multiplication over a traditional host
CPU. The data parallelism in real applications is not always as simple as
that in our matrix multiplication example. In a later chapter, we will discuss
these more sophisticated forms of data parallelism.

soo20, 3.2 CUDA PROGRAM STRUCTURE

pooso A CUDA program consists of one or more phases that are executed on
either the host (CPU) or a device such as a GPU. The phases that exhibit
little or no data parallelism are implemented in host code. The phases that
exhibit rich amount of data parallelism are implemented in the device code.
A CUDA program is a unified source code encompassing both host and
device code. The NVIDIA® C compiler (nvcc) separates the two during
the compilation process. The host code is straight ANSI C code; it is further
compiled with the host’s standard C compilers and runs as an ordinary CPU
process. The device code is written using ANSI C extended with keywords
for labeling data-parallel functions, called kernels, and their associated data
structures. The device code is typically further compiled by the nvcc and
executed on a GPU device. In situations where no device is available or
the kernel is more appropriately executed on a CPU, one can also choose
to execute kernels on a CPU using the MCUDA tool [Stratton 2008].

p0085 The kernel functions (or, simply, kernels) typically generate a large
number of threads to exploit data parallelism. In the matrix multiplication
example, the entire matrix multiplication computation can be implemented
as a kernel where each thread is used to compute one element of output
matrix P. In this example, the number of threads used by the kernel is a
function of the matrix dimension. For a 1000 x 1000 matrix multiplication,
the kernel that uses one thread to compute one P element would generate
1,000,000 threads when it is invoked. It is worth noting that CUDA threads
are of much lighter weight than the CPU threads. CUDA programmers can
assume that these threads take very few cycles to generate and schedule due
to efficient hardware support. This is in contrast with the CPU threads that
typically require thousands of clock cycles to generate and schedule.

Kirk-Hwu, 978-0-12-381472-2



B978-0-12-381472-2.00003-9, 00003

42

f0015

p0090

s0025

p0095

p0100

CHAPTER 3 Introduction to CUDA

CPU Serial Code

GPU Parallel Kernel
KernelA<<< nBIK, nTid >>>(args);

CPU Serial Code

GPU Parallel Kernel
KernelA<<< nBIK, nTid >>>(args);

FIGURE 3.2
Execution of a CUDA program.

The execution of a typical CUDA program is illustrated in Figure 3.2.
The execution starts with host (CPU) execution. When a kernel function is
invoked, or launched, the execution is moved to a device (GPU), where a
large number of threads are generated to take advantage of abundant data par-
allelism. All the threads that are generated by a kernel during an invocation
are collectively called a grid. Figure 3.2 shows the execution of two grids
of threads. We will discuss how these grids are organized soon. When all
threads of a kernel complete their execution, the corresponding grid termi-
nates, and the execution continues on the host until another kernel is invoked.

3.3 A MATRIX-MATRIX MULTIPLICATION EXAMPLE

At this point, it is worthwhile to introduce a code example that concretely
illustrates the CUDA program structure. Figure 3.3 shows a simple main
function skeleton for the matrix multiplication example. For simplicity,
we assume that the matrices are square in shape, and the dimension of each
matrix is specified by the parameter Width.

The main program first allocates the M, N, and P matrices in the host
memory and then performs I/O to read in M and N in Part 1. These are
ANSI C operations, so we are not showing the actual code for the sake of
brevity. The detailed code of the main function and some user-defined
ANSI C functions is shown in Appendix A. Similarly, after completing
the matrix multiplication, Part 3 of the main function performs I/O to write
the product matrix P and to free all the allocated matrices. The details of
Part 3 are also shown in Appendix A. Part 2 is the main focus of our
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3.3 A Matrix—Matrix Multiplication Example

int main(void) {
1. //Allocateandinitialize thematricesM, N, P
// 1/0 to read the input matrices Mand N

2. //M*Non the device
MatrixMultiplication(M, N, P, Width);

3. //1/0towrite the output matrix P
// Free matrices M, N, P

return 0;

}

FIGURE 3.3
A simple main function for the matrix multiplication example.

example. It calls a function, MatrixMultiplication(), to perform matrix
multiplication on a device.

Before we explain how to use a CUDA device to execute the matrix
multiplication function, it is helpful to first review how a conventional CPU-only
matrix multiplication function works. A simple version of a CPU-only matrix
multiplication function is shown in Figure 3.4. The MatrixMultiplication()
function implements a straightforward algorithm that consists of three loop
levels. The innermost loop iterates over variable k and steps through one
row of matrix M and one column of matrix N. The loop calculates a dot
product of the row of M and the column of N and generates one element
of P. Immediately after the innermost loop, the P element generated is
written into the output P matrix.

The index used for accessing the M matrix in the innermost loop
is i*Width+k. This is because the M matrix elements are placed into the
system memory that is ultimately accessed with a linear address. That is,
every location in the system memory has an address that ranges from O to
the largest memory location. For C programs, the placement of a 2-dimen-
sional matrix into this linear addressed memory is done according to the
row-major convention, as illustrated in Figure 3.5." All elements of a row
are placed into consecutive memory locations. The rows are then placed
one after another. Figure 3.5 shows an example where a 4x4 matrix is

'Note that FORTRAN adopts the column—major placement approach: All elements of a
column are first placed into consecutive locations, and all columns are then placed in their
numerical order.
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void MatrixMultiplication(float* M, float* N, float* P, int Width)
{

for (int 1 =0 ; i < Width; ++) Il
for (int j =0 ; j < Width; ++j) |
double sum = 0; k
for (int k = 0; k < Width; ++k) {
double a = M[i * width + kI; -
double b = N[k * width + jI; J
sum + =a * b;
}
PLi * Wid
}
}
A
A
i
k
A
FIGURE 3.4

f0025

A simple matrix multiplication function with only host code.

M
WO LR WX LLEXY Mo, 1 (M1 4 Mo 4 Mg 4 Moo My 5 My M3, Mg g My Mg Mg
10030 FIGURE 3.5
Placement of two-dimensional array elements into the linear address system
memory.
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placed into 16 consecutive locations, with all elements of row 0 first
followed by the four elements of row 1, etc. Therefore, the index for an
M element in row i and column k£ is i*Width+k. The i*Width term skips
over all elements of the rows before row i. The k term then selects the
proper element within the section for row i.

p0115 The outer two (i and j) loops in Figure 3.4 jointly iterate over all rows of
M and all columns of N; each joint iteration performs a row—column dot
product to generate one P element. Each i value identifies a row. By sys-
tematically iterating all M rows and all N columns, the function generates
all P elements. We now have a complete matrix multiplication function that
executes solely on the CPU. Note that all of the code that we have shown so
far is in standard C.

p0120 Assume that a programmer now wants to port the matrix multiplication
function into CUDA.- A straightforward way to do so-is to modify
the MatrixMultiplication() function to move the bulk of the calculation
to a CUDA device. The structure of the revised function is shown in
Figure 3.6. Part 1 of the function allocates device (GPU) memory to hold
copies of the M, N, and P matrices and copies these matrices over to the
device memory. Part 2 invokes a kernel that launches parallel execution
of the actual matrix multiplication on the device. Part 3 copies the product
matrix P from the device memory back to the host memory.

p0125 Note that the revised MatrixMultiplication() function is essentially an
outsourcing agent that ships input data to a device, activates the calculation on
the device, and collects the results from the device. The agent does so in such

void MatrixMultiplication(float* M, float* N, float* P, int Width)
{

int size =Width * Width * sizeof(float);

float* Md, Nd, Pd;

1. // Allocate device memory for M, N, and P
// copy M, N, and P to allocated device memory locations

2. // Kernel invocation code - to have the device to perform
// the actual matrix multiplication

3. // copy P from the device memory
// Free device matrices
}

FIGURE 3.6

Outline of a revised host code MatrixMultiplication() that moves the matrix
multiplication to a device.

f0035
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a way that the main program does not have to even be aware that the matrix
multiplication is now actually done on a device. The details of the revised
function, as well as the way to compose the kernel function, will serve as illus-
trations as we introduce the basic features of the CUDA programming model.

o030 3.4 DEVICE MEMORIES AND DATA TRANSFER

po130  In CUDA, the host and devices have separate memory spaces. This reflects
the reality that devices are typically hardware cards that come with their
own dynamic random access memory (DRAM). For example, the NVIDIA
T10 processor comes with up to 4 GB (billion bytes, or gigabytes) of
DRAM. In order to execute a kernel on a device, the programmer needs
to allocate memory on the device, and: transfer pertinent 'data from/ the
host memory to the allocated device memory. This corresponds to Part 1
of Figure 3.6. Similarly, after device execution, the programmer needs to
transfer result data from the device memory back to the host memory and
free up the device memory that is no longer needed. This corresponds to
Part 3 of Figure 3.6. The CUDA runtime system provides application
programming interface (API) functions to perform these activities on behalf
of the programmer. From this point on, we will simply say that a piece of
data is transferred from host to device as shorthand for saying that the piece
of data is transferred from the host memory to the device memory.
The same holds for the opposite data transfer direction.

p0135 Figure 3.7 shows an overview of the CUDA device memory model for
programmers to reason about the allocation, movement, and usage of the var-
ious memory types of a device. At the bottom of the figure, we see global
memory and constant memory. These are the memories that the host code
can transfer data to and from the device, as illustrated by the bidirectional
arrows between these memories and the host. Constant memory allows
read-only access by the device code and is described in Chapter 5. For now,
we will focus on the use of global memory. Note that the host memory is
not explicitly shown in Figure 3.7 but is assumed to be contained in the host.?

p0140 The CUDA memory model is supported by API functions that help
CUDA programmers to manage data in these memories. Figure 3.8 shows
the API functions for allocating and deallocating device global memory.
The function cudaMalloc() can be called from the host code to allocate

fn0015 Note that we have omitted the texture memory from Figure 3.7 for simplicity. We will
introduce texture memory later.
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¢ Device code can: (Device) Grid

— R/W per-thread registers Block (0, 0) Block (1, 0)

— Read only per-grid constant I I I

memory Thread (0, 0) | Thread (1, 0)|| | Thread (0, 0) || Thread (1, 0)

— R/W per-thread local memory
— R/W per-block shared memory

— R/W per-grid global memory

¢ Host code can

— Transfer data to/from per-grid Host
global and constant memories

FIGURE 3.7
Overview of the CUDA device memory model.

f0040

Grid

e cudaMalloc()

— Allocates object in the device
global memory

— Two parameters

Block (0, 0) Block (1, 0)

|

Thread (0, 0) | Thread (1, 0) || || Thread (0, 0) || Thread (1, 0)

o Address of a pointe|
allocated object

¢ Size of of allocated object in
terms of bytes

4 % % %

e cudaFree()

— Frees object from device
global memory

¢ Pointer to freed object

FIGURE 3.8
CUDA API functions for device global memory management.

f0045

a piece of global memory for an object. The reader should be able to notice
the striking similarity between cudaMalloc() and the standard C runtime
library Ma1loc (). This is intentional; CUDA is C with minimal extensions.
CUDA uses the standard C runtime library Malloc() function to manage
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the host memory and adds cudaMalloc() as an extension to the C runtime
library. By keeping the interface as close to the original C runtime libraries
as possible, CUDA minimizes the time that a C programmer needs to
relearn the use of these extensions.

The first parameter of the cudaMalloc() function is the address of a
pointer variable that must point to the allocated object after allocation.
The address of the pointer variable should be cast to (void **) because
the function expects a generic pointer value; the memory allocation func-
tion is a generic function that is not restricted to any particular type of
objects. This address allows the cudaMalloc() function to write the address
of the allocated object into the pointer variable.? The second parameter of
the cudaMalloc() function gives the size of the object to be allocated, in
terms of bytes. The usage of this second parameter is consistent with the
size parameter-of the CMallac() function.

We now use a simple code example illustrate the use of cudaMalloc().
This is a continuation of the example in Figure 3.6. For clarity, we will end
a pointer variable with the letter “d” to indicate that the variable is used to
point to an object in the device memory space. The programmer passes the
address of Md (i.e., &Md) as the first parameter after casting it to a void
pointer; that is, Md is the pointer that points to the device global memory
region allocated for the M matrix. The size of the allocated array will
be Width*Width*4 (the size of a single-precision floating number). After
the computation, cudaFree() is called with pointer Md as input to free
the storage space for the M matrix from the device global memory:

float *Md
int size =Width * Width * sizeof(float);
cudaMalloc((void**)&Md, size);

cudaFree(Md);

The reader should complete Part 1 of the MatrixMultiplication() exam-
ple in Figure 3.6 with similar declarations of an Nd and a Pd pointer variable as

*Note that cudaMalloc () has a different format from the C Malloc () function. The
C Malloc() function returns a pointer to the allocated object. It takes only one
parameter that specifies the size of the allocated object. The cudaMalloc() function
writes to the pointer variable whose address is given as the first parameter. As a result,
the cudaMalloc() function takes two parameters. The two-parameter format of cuda -
Malloc() allows it to use the return value to report any errors in the same way as other
CUDA API functions.
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well as their corresponding cudaMalloc() calls. Furthermore, Part 3 in
Figure 3.6 can be completed with the cudaFree() calls for Nd and Pd.

p0185 Once a program has allocated device global memory for the data
objects, it can request that data be transferred from host to device. This is
accomplished by calling one of the CUDA API functions, cudaMemcpy (),
for data transfer between memories. Figure 3.9 shows the API function
for such a data transfer. The cudaMemcpy () function takes four parameters.
The first parameter is a pointer to the source data object to be copied. The
second parameter points to the destination location for the copy operation.
The third parameter specifies the number of bytes to be copied. The fourth
parameter indicates the types of memory involved in the copy: from host
memory to host memory, from host memory to device memory, from
device memory to host memory, and from device memory to device mem-
ory. For example, the memory copy function can be used to-copy data from
one location of the device memory to another location of the device mem-
ory. Please note that cudaMemcpy cannot be used to copy between different
GPUs in multi-GPU systems.

p0190 For the matrix multiplication example, the host code calls the cudaMemcpy ()
function to copy the M and N matrices from the host memory to the device
memory before the multiplication and then to copy the P matrix from
the device memory to the host memory after the multiplication is done.

(Device) Grid
¢ cudaMemcpy()
— memory data transfer Block (0, 0) Block (1, 0)
— Requires four parameters
* Pointer to destination SR ) ST ey
¢ Pointer to source
o Number of bytes copied Registers Registers Registers Registers

* Type of transfer Thread (0, 0) || Thread (1, 0) || | Thread (0, 0) | Thread (1, 0)

— Host to Host
— Host to Device I I I
— Device to Host

— Device to Device

— Transfer is asynchronous

FIGURE 3.9
CUDA API functions for data transfer between memories.

f0050
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Assume that M, P, Md, Pd, and size have already been set as we discussed
before; the two function calls are shown below. Note that the two symbolic
constants, cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost, are
recognized, predefined constants of the CUDA programming environment.
The same function can be used to transfer data in both directions by properly
ordering the source and destination pointers and using the appropriate
constant for the transfer type:

u0040 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
u0045 cudaMemcpy (P, Pd, size, cudaMemcpyDeviceToHost);
p0205 To summarize, the main program in Figure 3.3 callsMatrixMultiplication

(), which is also executed on the host. MatrixMultiplication(), as out-
lined in Figure 3.6, is responsible for allocating device memory, performing data
transfers, and activating the kernel that performs the actual matrix- multiplication.
We often refer to this type of host code as the stub function for invoking a
kernel. After the matrix multiplication, MatrixMultiplication() also copies
result data from device to the host. We show a more fleshed out version of
the MatrixMultiplication() function in Figure 3.10.

p0210 Compared to Figure 3.6, the revised MatrixMultiplication() function
is complete in Part 1 and Part 3. Part 1 allocates device memory for Md,

void MatrixMultiplication(float* M, float* N, float* P, int Width)
t

int size=Width * Width * sizeof(float);

float* Md, Nd, Pd;

1. // Transfer Mand N to device memory
cudaMalloc(Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
cudaMalloc(Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device
cudaMalloc(Pd, size);

2. // Kernel invocation code - to be shown Tater

3. // Transfer P fromdevice to host
cudaMemcpy (P, Pd, size, cudaMemcpyDeviceToHost);
// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}

FIGURE 3.10
The revised MatrixMultiplication() function.

f0055
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Nd, and Pd, the device counterparts of M, N, and P, and transfers M to Md
and N to Nd. This is accomplished with calls to the cudaMalloc()
and cudaMemcpy () functions. The readers are encouraged to write their
own function calls with the appropriate parameter values and compare their
code with that shown in Figure 3.10. Part 2 invokes the kernel and will be
described in the following text. Part 3 reads the product data from device
memory to host memory so the value will be available to main(). This is
accomplished with a call to the cudaMemcpy () function. It then frees Md,
Nd, and Pd from the device memory, which is accomplished with calls to
the cudaFree() functions.

so035 — 3.9 KERNEL FUNCTIONS AND THREADING

p0215 — We are now ready to discuss more about the' CUDA kernel functions-and
the effect of invoking these kernel functions. In CUDA, a kernel function
specifies the code to be executed by all threads during a parallel phase.
Because all of these threads execute the same code, CUDA programming
is an instance of the well-known single-program, multiple-data (SPMD)
parallel programming style [Atallah 1998], a popular programming style
for massively parallel computing systems.

p0220 Figure 3.11 shows the kernel function for matrix multiplication. The syn-
tax is ANSI C with some notable extensions. First, there is a CUDA-specific
keyword “__global__" in front of the declaration of MatrixMulKernel ().
This keyword indicates that the function is a kernel and that it can be called
from a host functions to generate a grid of threads on a device.

p0225 In general, CUDA extends C function declarations with three qualifier
keywords. The meanings of these keywords are summarized in Figure 3.12.
The __global__ keyword indicates that the function being declared is a
CUDA kernel function. The function will be executed on the device and
can only be called from the host to generate a grid of threads on a device.
We will show the host code syntax for calling a kernel function later in
Figure 3.14. The __device__ keyword indicates that the function being
declared is a CUDA device function. A device function executes on a

fn0025 “Note that SPMD is not the same as single-instruction, multiple-data (SIMD). In an
SPMD system, the parallel processing units execute the same program on multiple parts
of the data; however, these processing units do not have to be executing the same instruc-
tion at the same time. In an SIMD system, all processing units are executing the same
instruction at any instant.
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// Matrixmultiplication kernel - thread specification

{

}

global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

// 2D Thread ID
int tx =threadldx.x;
int ty = threadldx.y;

// Pvalue stores the Pd element that is computed by the thread
float Pvalue=0;

for (int k=0; k <Width; ++k)

{
float Mdelement =Md[ty * Width + k];
float Ndelement = Nd[k * Width + tx];
Pvalue +=Mdelement * Ndelement;

}

// Write the matrix to device memory each thread writes one element
Pdlty * Width + tx]-=Pvalue;

FIGURE 3.11

The matrix multiplication kernel function.

Executed Only callable

on the: from the:
__device__float DeviceFunc() device device
__global__void KernelFunc() device host
__host__ float HostFunc() host host

FIGURE 3.12

CUDA extensions to C functional declaration.

CUDA device and can only be called from a kernel function or another
device function. Device functions can have neither recursive function calls
nor indirect function calls through pointers in them. The __host__ keyword
indicates that the function being declared is a CUDA host function. A host
function is simply a traditional C function that executes on the host and can
only be called from another host function. By default, all functions in a
CUDA program are host functions if they do not have any of the CUDA
keywords in their declaration. This makes sense, as many CUDA applica-
tions are ported from CPU-only execution environments. The programmer
would add kernel functions and device functions during the porting process.
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The original functions remain as host functions. Having all functions
default into host functions spares the programmer the tedious work of
changing all original function declarations.

p0230 Note that one can use both _ host_ and _ device__ in a function
declaration. This combination triggers the compilation system to generate
two versions of the same function. One is executed on the host and can only
be called from a host function. The other is executed on the device and can
only be called from a device or kernel function. This supports a common
use when the same function source code can be simply recompiled to gen-
erate a device version. Many user library functions will likely fall into this
category.

p0235 Other notable extensions of ANSI C, in this example, are the
keywords threadIdx.x and threadIdx.y, which refer to the thread indices
of a thread. Note that all threads execute the same kernel code. There needs
to be a mechanism to allow them to distinguish themselves and direct them-
selves toward the particular parts of the data structure that they are desig-
nated to work on. These keywords identify predefined variables that
allow a thread to access the hardware registers at runtime that provide the
identifying coordinates to the thread. Different threads will see different
values in their threadldx.x and threadlIdx.y variables. For simplicity,
we will refer to a thread as Thread, eqatax.x, threadrar.y- Note that the coordi-
nates reflect a multidimensional organization for the threads. We will come
back to this point soon.

p0240 A quick comparison of Figure 3.4 and Figure 3.11 reveals an important
insight for CUDA kernel functions and CUDA kernel invocation. The ker-
nel function in Figure 3.11 has only one loop, which corresponds to the
innermost loop in Figure 3.4. The readers should ask where the other two
levels of outer loops go. The answer is that the outer two loop levels are
now replaced with the grid of threads. The entire grid forms the equivalent
of the two-level loop. Each thread in the grid corresponds to one of the
iterations of the original two-level loop. The original loop variables i and
j are now replaced with threadldx.x and threadldx.y. Instead of having
the loop increment the values of i and j for use in each loop iteration, the
CUDA threading hardware generates all of the threadldx.x and threadldx.y
values for each thread.

p0245 In Figure 3.11, each thread uses the threadldx.x and threadldx.y to iden-
tify the row of Md and the column of Nd to perform the dot product opera-
tion. It should be clear that they simply take over the role of variables i and
j in Figure 3.8. Note that we assigned threadldx.x to the automatic C vari-
able tx and threadldx.y to variable ty for brevity in Figure 3.8. Each thread
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also uses its threadldx.x and threadldx.y values to select the Pd element
that it is responsible for; for example, Thread, ; will perform a dot product
between row 2 of Md and column 3 of Nd and write the result into element
(2,3) of Pd. This way, the threads collectively generate all the elements of
the Pd matrix.

When a kernel is invoked, or launched, it is executed as grid of parallel
threads. In Figure 3.13, the launch of Kernel 1 creates Grid 1. Each CUDA
thread grid typically is comprised of thousands to millions of lightweight
GPU threads per kernel invocation. Creating enough threads to fully utilize
the hardware often requires a large amount of data parallelism; for example,
each element of a large array might be computed in a separate thread.

Threads in a grid are organized into a two-level hierarchy, as illustrated
in Figure 3.13. For simplicity, a small number of threads are shown in
Figure 3.13. In reality, a-grid will typically consist-of many more threads.
At the top level, each grid consists of one or more thread blocks. All blocks
in a grid have the same number of threads. In Figure 3.13, Grid lis org-
anized as a 22 array of 4 blocks. Each block has a unique two-dimensional
coordinate given by the CUDA specific keywords blockIdx.x and block-
Idx.y. All thread blocks must have the same number of threads
organized in the same manner.

e A thread block is a batch Host RIS
of threads that can Grid1
cooperate with each
other by: Kernel L_L__ 4 | Block || Block
1 0,00 || (1,0)
— Synchronizing their o k// ook \
3 [o]e) OCl
\
execution oA a1 \
» For hazard-free shared o am— 1
/ \
memory accesses /6” 9z /, ||! \\
e i
— Efficiently sharing data Komel Bl / | \\
through a low latency 2 L 2 |
Block (1, 1)
shared memory N0.01)/(10.1) /(2.01)/(3.0.1)
e Two threads from two
different blocks cannot T(g,rg,%[; ‘(r%e’g? g‘fg? T(grg?f;
cooperate —
Tzfead Thread| Thread | Thread
0,1,0f (1,1,0| (2,1,0)] (3,1,0)
Courtesy: NDVIA
FIGURE 3.13

CUDA thread organization.
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p0260 Each thread block is in turn organized as a three-dimensional array of
threads with a total size of up to 512 threads. The coordinates of threads
in a block are uniquely defined by three thread indices: threadIdx.Xx,
threadIdx.y, and threadIdx.z. Not all applications will use all three
dimensions of a thread block. In Figure 3.12, each thread block is organized
into a 4x2x2 three-dimensional array of threads. This gives Grid 1 a total
of 4%16 = 64 threads. This is obviously a simplified example.

p0265 In the matrix multiplication example, a grid is invoked to compute the
product matrix. The code in Figure 3.11 does not use any block index in
accessing input and output data. Threads with the same threadIdx values
from different blocks would end up accessing the same input and output
data elements. As a result, the kernel can use only one thread block. The
threadIdx.x and threadIdx.y values are used to organize the block
into a two-dimensional array of threads. Because a thread block can-have
only up to 512 threads, and each thread calculates one element of the prod-
uct matrix in Figure 3.11, the code can only calculate a product matrix of
up to 512 elements. This is obviously not acceptable. As we explained
before, the product matrix must have millions of elements in order to have
a sufficient amount of data parallelism to benefit from execution on a
device. We will address this issue in Chapter 4 using multiple blocks.

p0270 When the host code invokes a kernel, it sets the grid and thread block
dimensions via execution configuration parameters. This is illustrated in
Figure 3.14. Two struct variables of type dim3 are declared. The first
is for describing the configuration of blocks, which are defined as
16x16 groups of threads. The second variable, dimGrid, describes the con-
figuration of the grid. In this example, we only have one (1x1) block in
each grid. The final line of code invokes the kernel. The special syntax
between the name of the kernel function and the traditional C parameters
of the function is a CUDA extension to ANSI C. It provides the dimensions
of grids in terms of number of blocks and the dimensions of blocks in terms
of number of threads.

// Setup the execution configuration
dim3 dimBlock(WIDTH, WIDTH);
dim3 dimGrid(1, 1);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd);

FIGURE 3.14
Example of host code that launches a kernel.

f0075
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3.6 SUMMARY

This chapter serves as a quick overview of the CUDA programming model.
CUDA extends the C language to support parallel computing. The exten-
sions discussed in this chapter are summarized below.

3.6.1 Function Declarations

CUDA extends the C function declaration syntax to support heterogeneous
parallel computing. The extensions are summarized in Figure 3.12. Using
one of __global__, __device__, or __host__, a CUDA programmer can
instruct the compiler to generate a kernel function, a device function, or a
host function. All function declarations without any. If both _ host__
and._—device~ are-used in a function declaration; the ,compiler generates
two  versions of ‘the function, one for the device and one for the host.
If a function declaration does not have any CUDA extension keyword,
the function defaults into a host function.

3.6.2 Kernel Launch

CUDA extends C function call syntax with kernel execution configuration
parameters surrounded by <<< and >>>. These execution configuration
parameters are only used during a call to a kernel function, or a kernel
launch. We discussed the execution configuration parameters that define
the dimensions of the grid and the dimensions of each block. The reader
should refer to the CUDA Programming Guide [NVIDIA 2007] for more
details regarding the kernel launch extensions as well as other types of
execution configuration parameters.

3.6.3 Predefined Variables

CUDA kernels can access a set of predefined variables that allow each
thread to distinguish among themselves and to determine the area of data
each thread is to work on. We discussed the threadIdx variable in this
chapter. In Chapter 4, we will further discuss blockIdx, gridDim, and
blockDim variables.

3.6.4 Runtime API

CUDA supports a set of application programming interface (API) functions
to provide services to CUDA programs. The services that we discussed in
this chapter are cudaMalloc() and cudaMemcpy() functions. These
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functions allocate device memory and transfer data between the host and
device on behalf of the calling program. The reader is referred to the CUDA
Programming Guide [NVIDIA 2007] for other CUDA API functions.

p0300 Our goal for this chapter was to introduce the fundamental concepts
of the CUDA programming model and the essential CUDA extensions to
C for writing a simple CUDA program. The chapter is by no means a com-
prehensive account of all CUDA features. Some of these features will be
covered in the rest of the book; however, our emphasis will be on key
concepts rather than details. In general, we would like to encourage the
reader to always consult the CUDA Programming Guide for more details
on the concepts that we cover.
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