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Abstract

We present a compiler optimization approach that uses the simulated evolution

(SE) paradigm to enhance the finish time of heuristically scheduled computations
with communication times. This is specially beneficial to the class of Synchronous

dataflow computations which are generally compiled once and run many times over
different data sets. Unlike genetic approaches which generally use task swapping
to create differential variation our approach consists of adding pseudo-edges to the
task graph to guide the scheduler in the alignment and clustering of dominant tasks.
Added edges alter only the task graph without modifying the scheduler which pro-
vides useful flexibility in the implementation of compiler optimization option. The
intelligence of iterative methods is used by SE to reduce the run-time and to avoid
local minima by using the hill climbing property of search-based methods. Evalua-
tion is carried out for a wide category of computation graphs with communication
times which are studied for different levels of communication granularities and task
parallelisms. Statistical analysis of results shows that Edge Addition SE is capable
of finding near-optimum schedules as well as outperforming other known heuris-
tics like ETF , DLS, and GLS. Moreover, this approach is useful to complement
heuristics whose solution finish time cannot be guaranteed for arbitrary commu-
nication and parallelism. Since the performance of most scheduling heuristics is
profile-sensitive, optimizing the heuristic solutions through edge addition SE pro-
vides increased confidence on the quality of the solution.

Keywords: Distributed memories, heuristics, message-passing, perfor-
mance, scheduling, simulated evolution

1 Introduction
Compile-time scheduling of coarse-grained computations and communications [17, 4] is
one approach to exploit useful parallelism in distributed-memory systems. When the ex-
ecution behavior can be predicted by the compiler, scheduling can be made effective in
adapting the code to the underlying computation and communication subsystems. The
compiler estimates the computation and communication requirements and use the knowl-
edge to produce a schedule in which the communication overheads are hidden to some

∗Department of Computer Engineering, King Fahd University of Petroleum and Minerals, P.O. Box
787, Dhahran 31261, Saudi Arabia (Email: mayez@ccse.kfupm.edu.sa)

1



degree by computations. Optimizing code and extracting parallelism out of large scale
scientific computations is especially useful when the programs are compiled once and re-
peatedly executed over different data sets. Compile-time scheduling [16] can dramatically
reduce execution time of a class of computations known as Synchronous Dataflow [18] such
as those found in circuit behavioral description, digital signal processing, robot dynamics,
etc. Unfortunately scheduling is one NP-complete problem [6] which explains the benefit
of searching efficient scheduling heuristics.

It is well known that NP-hard complexity problems occur very frequently in many fields
of science and engineering such as travelling salesman, bipartite matching, placement of
cells, etc. For all these problems we have to content ourselves with heuristic solutions
which might significantly deviate from optimal solution in many cases. The search space
is very large and exhaustive searches can only be done for very small problems. For this
reason heuristics are used to prune the solution space by searching in a directed manner
and move towards the optimum. Because of the tremendous computational effort required
in reaching the optimum these heuristics stop if the solution satisfies some constraints.
Also it is known that greedy heuristics easily get stuck in a local minima because of
their very nature. The advantage with constructive or constructive-iterative techniques
is that they can produce a solution quickly. But generally there is no way to improve the
quality of the solution. Because of this, hill climbing heuristics like Simulated Annealing

(SA) [11] and Genetic Algorithm (GA) [7] produce much better solutions though they
may take more computational time to generate them.

Simulated Evolution (SE) is one proposed approach for solving combinatorial opti-
mization problems. SE algorithm mimics the natural evolution of biological species. It
is known that species continue to evolve under various constraints and become fitter and
fitter with respect to their environment. During this process of Natural Selection only
fitter individuals of a population are allowed to pass on their favorable characteristics to
the next generation. The individuals with unfavorable characteristics die without pass-
ing their disadvantageous characteristics to future generations. This process now results
in better and better populations as time progresses. Some times a trait which was not
present in any of the individuals of the parent population suddenly appears in the off-
spring. This process of introduction of new traits in a population is called mutation. Some
times mutations lead to a completely new species much better adapted to the environment
then its predecessor species. The predecessor species may die out altogether.

All the three discussed techniques have been used extensively to solve NP-Hard prob-
lems in the field of engineering and computer science. They have been used for computer
aided design of VLSI systems for placement of standard cells, routing, circuit partitioning
etc, [5], [1], [13], [12]. GA and SA were also used for scheduling and high level synthesis
of digital systems.

The choice between them is governed by the ease of implementation of each and the
run time needed. The SA algorithm is the easiest to implement because it does not need
analyzing a solution and identifying badly placed elements. This means that the problem
and the relationships between the elements of the solution need not be assessed at all
in SA. The solution is only characterized by its cost. The only requirement from the
designer is to find a suitable neighbor function which is required to traverse the search
space. The drawback is that more run time is needed to generate acceptable solutions.
A lot of experimentation and time is also needed to tune its parameters. Overall, SA is
profitable when the problem is intractable to analysis and the development of heuristics
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as well as run time are not a major concern.
The GA gives acceptable solutions much more quickly than SA because of the parallel

nature of GA search in which few solutions are present in each generation. This though
might requires a lot of memory. The problem need not be analyzed in any detail. The
issue instead is how to map the problem to a series of strings as genes and chromosomes
such that after applying the genetic operators we can easily get the resulting solution
and find its cost. The placement of each and every element of the solution needs not
be assessed and a solution is only characterized by its cost. The GA implementation is
more difficult than SA because it needs the solution to be represented in a particular way.
Generally, GA leads to lesser run time than SA for finding acceptable solutions.

The Simulated Evolution appears to be more intelligent than the above iterative meth-
ods. It takes much less time than both of them. The memory requirements are lower than
genetic algorithm but exceed that required by SA. Though SE uses only one solution, as
in SA, the goodness values of all elements must be saved. It requires an in depth analysis
of the problem to discriminate between good and bad placement of elements together
with the ability to evaluate the goodness of each element’s placement in the solution. It
permits the designer to decide about solution generation in an intelligent manner. There-
fore, implementing SE is more difficult than the others. It is a must if lower run-time is
needed in certain applications. Overall it is an improvement in both the time requirement
and the quality of the final solution.

In this paper we present a Simulated Evolution search-based scheduling approach.
This is in contrast to genetic algorithm and simulated annealing where the solutions are
generated totally randomly. Its advantage lies in the fact that it does not create totally
random solutions and then select from among them. Instead it does a directed search and
searches only among better solutions. Each solution is generated by using a priority-based
scheduling heuristic. Movement in the search space is controlled by simulated evolution.
This just increases the run-time of the algorithms. By using simulated evolution we find
a good schedule in an acceptable number of iterations.

The organization of this paper is as follows. Section 2 presents some background.
Section 3 presents scheduling of computations with communication times. Section 4
presents our proposed evolution-based scheduling. Section 5 presents the implementation
of our evolution-based scheduling. Section 6 presents the performance evaluation. We
conclude this work in Section 7.

2 Background
Genetic Algorithm (GA) was developed by Holland [7]. In GA there are a number of
solutions and each represents one solution of the problem. GA starts with random solu-
tions and the set of these solutions is called the population. Each solution is represented
in the form of a string of symbols, called genes. The string made up of genes is called a
chromosome.

The solutions in a population interact among each other via chromosomes through
crossover operators. New characteristics are introduced via mutation operator. The solu-
tions on which these operators are applied are called parents and are chosen from amongst
the population probabilistically depending on their fitness. This results in the develop-
ment of a new set of solutions called the offspring. Now a population of the initial size is
again selected from the combined population. This selection is again probabilisetic and
depends on fitness. Measurement of fitness is usually based on the objective function. So
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in the scheduling context it can be the finish time of a schedule. Those individuals (solu-
tions) of the population which have low fitness value are given lesser chance of moving to
the next generation. The important point to note is that the selection for next generation
is not deterministic, rather it is probabilisetic. This means that solutions with low fitness
can also be selected but the probability of their selection is small and is proportional
to their low fitness. Another point to note is that new solutions are generated by only
crossover and mutation operators. Both of them operate in a totally random manner and
we do not invest any effort in building up a solution using any intelligence of our own.
The disadvantage is that this increases the search space even to those regions which are
unlikely to yield a good solution.

The Genetic algorithm has been used for many NP-hard problems successfully. It has
also been used for multiprocessor scheduling in [8].

Simulated Annealing was first proposed by Kirk-Patrick, Gelatt and Vecchi in 1983 [11].
This algorithm imitates the process of annealing metals which targets good crystal struc-
ture. The movement through the search space is done via the neighbor function. The
neighbor function operates by creating a random change in the current solution. This is
called neighbor function because we cannot jump from one solution to an entirely differ-
ent solution. Rather we make only a slight change from the present solution. This slight
change though may result in a large change in the objective function of the solution. The
objective function for a solution is referred to as its cost.

The main problem with SA is that the parameters are difficult to control. Also the
run-time of the algorithm is high. Again we see that when making moves via the neighbor
function we do not use any intelligence or heuristic. This is done totally randomly.

The Simulated Evolution (SE) algorithm was proposed by Kling and Banerjee [12],
[13] to the problem of standard cell placement in VLSI. This heuristic is based on an
analogy between the process of natural selection in natural environments. The Simulated
Evolution algorithm allows the use of some intelligence while generating new solutions.
SE attempts to combine the best of pure constructive-iterative and pure search-based
techniques because it heuristically prunes the search tree and as a result new solutions
are not randomly generated. SE combines the intelligence of iterative methods to reduce
the run-time and uses the hill climbing properties of search-based methods to avoid get-
ting stuck at local minima. The generalized simulated evolution algorithm is shown on
Figure 1.

An initial seed solution is provided with the objective of refining and modifying it
by evolution. The seed is generated by some constructive heuristics or randomly. A hill
climbing parameter cp0 is initialized. Generally, SE converges faster with increasing seed
goodness but seeds with lower goodness do not affect the quality of the final solution.
Mainly, SE has three phases which are: (1) evolution, (2) mutation, and (3) evaluation.
We briefly present each of the above phases.

In the Evolutionary phase the elements (tasks) which constitute the solution are asso-
ciated some goodness values which tell how far or how near an element is to its optimum
assignment. The normalized goodness associated to some element is the survival prob-
ability of that element. Elements with low goodness become extinct which means they
must be assigned new positions by using constructive techniques based on some local cost
function. The optimum assignment results in optimum solution.

In the Mutation phase some unpredictable alteration of the design of some elements is
done to avoid getting stuck at local minima. For this new features are introduced in some
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Simulated Evolution;
Begin

S0 := GenerateInitialSolution; /* may be constructive or random */
S := S0; /* solution S is initialized to S0 */
Sbest := S0; /* best solution is initialized to S0 */
cp := cp0; /* control parameter initialized cp0 */

For i := 1 to MaxIter do
Begin
Cpre := Cost(S);
FindGoodnes(S); /* evaluate goodness of all elements of
the solution S */
St := ConstructiveAssignment(S); /* Generate temporary
solution and store it in St*/
St := DoMutation(St); /* do mutation with small probability */
St := ReGenerate(St); /* make sure St is valid a solution */
Gain := Cost(Sbest) - Cost(St); /* find gain */
If (Cost(St)=Cpre) then cp := f(cp) /* increase hill climbing parameter */
else cp := cp0; /* keep cp at a minimum */
If (Gain > 0) then Sbest := St;
If (Gain >Random(−cp, 0)) then S := St;
End;

Return(Sbest);
End.

Figure 1: Generalized simulated evolution algorithm

elements through mutations which are made with low probability (below 5%) to keep the
search directed. The mutation rate is much lower than the evolution rate. This allows SE
to jump out local optimum and hopefully traverse the search space to reach better and
better solutions. The search space constitutes all the possible valid solutions.

In the Evaluation phase, SE examines the following cases. First, SE gets stuck in a
local minima if the cost of two successive solutions is the same which requires increasing
the value of the hill climbing parameter cp through f(cp) to escape. The control parameter
is reset to cp0 in the next iteration. Thus the basic strategy is to keep cp at a minimum
value and increase it only when it is necessary. Second, the new solution becomes best
solution if the gain is positive. Third, SE also accepts the new solution even with non-
positive gain if the new solution goodness is worse than current best by at most q, where
q is obtained by generating a random integer between 0 and −cp. Finally, SE checks for
the termination conditions. The stopping conditions can be monitored by measures such
as (1) the number of iterations, (2) the relative improvement over several steps or (3) the
number of steps since the best solution was found.

The SE algorithm is much faster than the previous SA and GA and gives much better
results too. Mainly, SE does not need the careful tuning of parameters as for SA and
the large memory space required for GA. Moreover, SE provides good results using lesser
CPU time. The SE algorithm has given better quality solutions in lesser run time than
SA and GA for VLSI cell placement, travelling salesman [5], and high level synthesis [1].
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Figure 2: Example of task graph

3 Scheduling with communication costs
A set Γ(T1, . . . , Tn) of n tasks (T ) with their precedence constraints and communication
costs are to be non-preemptively scheduled on a set of identical processors. The compu-
tation can be modeled [9] by using a directed acyclic task graph G(Γ,→, µ, C) where →,
µ(T ), and c(T, T ′) ∈ C denote the precedence constraints, the task execution time, and
number of messages to be sent from T to its successor T ′, respectively.

The multiprocessor is denoted by S(P,R) where p, p′ ∈ P are two processors and
r(p, p′) ∈ R is the time to transfer one unit of messages from p to p′ through the intercon-
nection network. Thus the communication model is based on the latency factors between
the processors which depend on the network topology. Assuming that the communication
media is contention-free, the transfer time of c(T, T ′) messages is c(T, T ′)×r(p(T ), p(T ′)),
where p(T ) and p(T ′) are the processors running T and T ′, respectively. Local message
transfer has zero cost (r(p, p) = 0).

The problem addressed in this paper consists of scheduling computations represented
by G(Γ,→, µ, C) over multiprocessor S(P,R) so that overall finish time is held to a mini-

mum. As example consider the task graph shown on Figure 2 for which the set of tasks is
Γ(T1, . . . , T10). The circled values are the task execution times (µ(T )) and the precedence
edges are labeled with the number of messages (c(T, T ′)). For example, edge T5 → T8

indicates that T8 cannot start before T5 completes and C(T5, T8) = 3 data messages are
transferred between p(T5) and p(T6). Given a set of processors S, the problem is to
schedule Γ(T1, . . . , T10) over S so that overall finish time is held to a minimum.

Since the scheduling problem is NP-complete it is useful to design scheduling heuristics
that are capable of delivering near-optimal solutions. In the following we review three
scheduling heuristics which are ETF, DLS, and GLS.
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3.1 Earliest-task-first

Selecting tasks and processors according to the principle of earliest-task-first is the strategy
used by ETF [9]. The objective function is to minimize processor idle times through
selection of a task T and a processor p for which the earliest-starting-time (est(T, p(T )))
of T on p is the least among all ready tasks and processors. Let T be a ready task and
denote by Pred(T ) its set of predecessors. The earliest-starting-time est(T, p(T )) is the
earliest time at which the latest message from the predecessors arrives to p(T ):

est(T, p(T )) = max
T ′∈Pred(T )

{ct(T ′, p(T ′)) + c(T ′, T ) × r(p(T ), p(T ′))} (1)

where ct(T ′, p(T ′)) is the completion time of predecessor T ′. Note that est(T, p(T )) is nil
if T has no predecessors. There exists at least one processor p∗, that is free at time t(p∗),
for which T can start at the earliest est(T, p∗) among all the available processors:

est(T, p∗) = minp{max{est(T, p(T )), t(p)} } (2)

In ETF task and processor selection are based on finding the earliest startable task
and its best suited processor. Its main strategy is to use the knowledge of local task
starting times to minimize processor idle times by trying to maximize the overlap between
computation and communication. Consider the task graph of Figure 2 and assume the
following completion times ct(T1, p1) = 2, ct(T2, p2) = 4, ct(T3, p3) = 5, and ct(T4, p4) = 2.
The ready tasks are T5 and T6. Using Equation 2, ETF evaluates est(T5, (p = 1, 2, 3, 4)) =
(7, 7, 7, 7) and est(T6, (p = 1, 2, 3, 4)) = (8, 6, 8, 8). Thus ETF selects T6 first and assigns
it to p2 and then T5 which is assigned to p1.

ETF is based on Graham’s list-scheduling [6] in which the scheduler tracks the increas-
ing sequence of processors’ completion times by using a global time. Thus the starting
times of successively scheduled tasks form a non-decreasing sequence in time. This enabled
finding a worst-case bound [9] on the schedule length.

3.2 Dynamic level scheduling

Another priority-based scheduling approach is dynamic level scheduling (DLS) [18]. In
DLS, the largest sum of computations along a path going from a task to exit node is
considered as the static task-level. DLS evaluates a dynamic task-level for each ready task
as a function of static task-level and task starting time. Task and processor selections
are based on selecting the task and processor for which the dynamic task-level is the
largest. For the task graph of Figure 2, DLS evaluates the static task-levels of T5 and T6

as level(T5) = µ(T5) + µ(T8) + µ(T10) = 11 and level(T6) = µ(T6) + µ(T8) + µ(T10) = 12.
The decision function is based on selecting T and p for which DLS(T, p) = level(T ) −
est(T, p) is the highest. Using the values of est(T, p) found in Sub-Section 3.1 we obtain
DLS(T5, (p = 1, 2, 3, or 4)) = 4 and DLS(T5, p = 2) = 6. Thus DLS assigns T6 to p2 and
T5 to p1.

Unfortunately, the evaluation of static task-levels for computations with communica-
tion times does not provide effective task priority because the task-level strongly depends
on mapping tasks to processors and their implied communications.
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3.3 Generalized list scheduling

Generalized list scheduling (GLS) [2, 3] uses a decision function based on Highest-Level-

Earliest-Task-First HLETF which augments the ETF discipline with a task-level priority
function to improve its performance. GLS iteratively schedules the forward and backward

computation graphs. The task completion time achieved in some scheduling iteration is
used as task-level in the next scheduling iteration. In each forward or backward scheduling
iteration, GLS selects a task T ∗ and a processor p∗ such that cti−1(T

∗) − esti(T
∗, p∗) is

the highest among all ready-to-run tasks, where cti−1(T
∗) is the achieved completion time

of (T ∗) in the (i − 1)th iteration and esti(T
∗, p∗) is the earliest-starting time of the same

task found in current scheduling iteration (i). The task completion time cti−1(T
∗) is used

as an approximation of the longest distance from entry node to T ∗ in iteration i− 1. But
in the ith iteration cti−1(T

∗) represents the longest distance from T ∗ to exit node which
is similar to the task-level used in list scheduling [6].

Using the task graph of Figure 2, GLS evaluates its decision function for T5 and T6 in
the ith iteration (forward or backward) as d(T, p) = cti−1(T )−est(T, p). This is similar to
DLS but with the difference that level(T ) in DLS is replaced here by cti−1(T ) to account
for some communication on a path from T to exit node. This approach enables searching
and optimizing solutions as the result of using more refined task-level in each scheduling
iteration.

Though [2] GLS was originally proposed for two-iteration scheduling we use it here as
an iterative scheduling approach with arbitrary number of iterations to allow exploring a
space of solutions. The main advantage of GLS is its ability to find local solution with
probable refinement of the solution finish time through the iterations.

More generally search-based methods like branch-and-bound [15], simulated anneal-
ing [19, 11], and genetic algorithm [8] were proposed for finding good mapping and par-
titioning of computations. Scheduling based on task duplication over idle processors was
proposed [14] to reduce the communication without excessively increasing overhead in
managing duplicated data. Linear clustering [10] consists of iteratively clustering the
tasks along the most communicating chains on one processor. Clustering over unbounded
number of processors [17] consists of partitioning the set of tasks into clusters of sequen-
tial tasks and reducing the number of clusters to the number of processors by merging
clusters. The dominant sequence clustering (DSC) [20] is a low complexity clustering that
accepts merging of a task to a cluster only if it decreases the length of the dominant chain
to which the task belongs to decreases.

In the next section we present our proposed approach to formulate and implement the
simulated evolution algorithm on the top of arbitrary scheduling heuristics.

4 Evolution-based scheduling
The simulated evolution is based on two fundamental features which are the hereditary

variation and differential reproduction. Hereditary variation refers to an evolutionary
process that changes in time by transiting into a series of states and each next state is
similar to the previous one in some aspects and yet different. Differential reproduction
implies that transfer from one state to the other is subject to an evaluation process that
probabilistically discards inferior elements of current state and retains superior elements
for regeneration of next state.

Here we consider the problem of scheduling precedence-constrained computations
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with communication times with the objective of minimizing overall schedule time over
a bounded number of processors. Constructive approaches use greedy heuristics in grad-
ually building a solution while meeting a set of constraints in scheduling each task. The
precedence constraints and communication costs are among the most important con-
straints to be considered by the scheduler in order to generate valid solution. In our case,
maintaining similarity in transiting from one solution to another is done by using one
single constructive scheduling heuristic, i.e. the logic used to constructively generate all
solutions is the same. Therefore, SE is meant to complement constructive scheduling ap-
proaches which may produce good and bad assignments because of its greedy nature and
the limitation of its logic. In this case, transfer from one solution to another is subject
to evaluation of current solution so that we probabilistically retain or discards elements
of current solution depending on how well they may contribute in the optimum solution.
Discarding some poor elements of the current solution requires detecting them, evaluation
of their goodness, and modifying some of their constraints so as to direct the heuristic not
to poorly perform with respect to these elements in subsequent solution. Retaining some
elements of current solution means keeping unchanged their local constraints and relying
on the heuristic in generating similar good assignments for these elements.

The heuristic always applies the same logic in constructing the solution but overall
finish time depends on many factors, among them the local performance of dominant
tasks. The ideal assignment is quite complex. A dominant task is one that has zero slack
in a given schedule. Our effort will be concentrated on dominant tasks and dominant chain
of tasks with no explicit action on the other tasks. The quality of the solution is strongly
dependent on how efficient is the performance of the heuristic in assigning the chain of
dominant tasks which directly controls the finish time. Therefore, the way dominant tasks
are assigned with respect to each other must be considered as an element of the solution.
An element of the solution is the assignment of some immediate dominant tasks that
is done by the heuristic. For example three immediate dominant tasks T1 → T2 → T3

provides two elements: elm(T1 → T2) and elm(T2 → T3). The goodness of elm(T1 →
T2) is function of: (1) whether T1 and T2 must communicate (different processors), and
(2) whether the starting of T2 is tight by the completion of T1 (or its communication).
Different elements may also be defined in the case of two dominant predecessors T1 →
T and T2 → T which require defining new element elm(T1, T2 → T ). Two dominant
successors T → T1 and T → T2 represents the dual case and require defining element
elm(T → T1, T2).

4.1 Dominant tasks

Task mobility is one quantifier of task priority. To define task mobility consider the task-
processor mapping as generated by some deterministic heuristic. Each processor receives
a set of ordered tasks. While honoring all precedence and communication constraints some
tasks can be pulled up to some later time without increasing the schedule time. By this
way, each task T can be associated a non-negative time slack called mobility that is the
maximum task mobility defined by m(T ) = lst(T ) − est(T ), where est(T ) and lst(T ) are
the earliest and latest starting times of T in a given schedule. Clearly, a schedule can
be used to find out the relative importance of the tasks based on the schedule mobility
values. For example, the schedule finish time is necessarily constrained by any chain of
immediate tasks from entry node to exit node which all have zero mobility. Such chain of
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tasks must be considered as dominant if the average mobilities of its individual tasks are
nil or relatively very low when obtained from different schedules. Delaying a dominant
task (zero mobility) beyond its assigned time is likely to cause the schedule overall time
to increase. A non-dominant task may occasionally get zero or low mobility value out of
one schedule but its average mobility is likely to be relatively large. Dominant chains are
among the most important contributors to overall schedule length.

Therefore, one way to find shorter schedule time is to assign dominant tasks to shorten
the sum of computations and communications along dominant chains. This can be done by
increasing the priority of dominant tasks in the next scheduling pass which might shorten
dominant chains. It is also possible that some secondary chains become dominant in the
newly generated schedule.

As example recall the task graph of 10 tasks (Figure 2) and its schedules on four fully
connected processors that are shown on Figure 3-(a) and (b). The schedule finish time is
22 (Figure 3-(a)) and the starting time of task T is denoted by ste(T ). The task-processor
assignments remain unchanged. Starting from exit nodes we build up a schedule by pulling
the tasks towards the end of schedule mark as much as possible while preserving: (1) the
schedule length, and (2) all precedence and communication constraints. Denote by stl(T )
the starting time of T in the new schedule which is shown on Figure 3-(b). The tasks
having zero mobility are shown in bold.
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4.2 Evaluation of task mobilities

Generalized list scheduling (GLS) [2] is used here for searching local schedules from where
to evaluate the average mobility. GLS generates a solution in each iteration. We try
keeping a tab on the mobility of each task by running GLS for N iterations and averaging
the mobility mi(T ) of T out of the schedule generated from each iteration. The average
mobility will be am(T ) = (

∑
1≤i≤N mi(T ))/N . The tasks having low am(T ) values were

on dominant chain (zero-mobility chain) in the majority of the generated schedules. Tasks
having higher values of am(T ) almost always were lying on secondary chains. Therefore,
we are entitled to modify the scheduling process in such a way that we get better solutions
using am(T ).

4.3 The edge addition approach

The strategy is to keep the scheduling heuristic unchanged but slightly modify the original
task graph to enforce some scheduling decision to be taken by GLS iterative scheduling.
Adding a pseudo-edge to a pair of tasks in the task graph allows a lot of control over the
scheduling process. A pair of tasks linked by pseudo edges become constrained to carry
out some dummy communication of some weight. The scheduler does not distinguish
pseudo-edges from precedence edges and therefore assigns two tasks linked by an infinitely
weighted pseudo-edge on the same processor while preserving all precedence constraints.
Formally, a pseudo-edge (T → T ′) is an edge that carries infinite communication weight
which forces some scheduling heuristic to assign both tasks T and T ′ to the same processor.
Thus adding a pseudo-edge between any pair of tasks lead these tasks to run on the same
processor provided that no cycles are introduced by the pseudo-edge.

The advantage is that some local desired action can be injected for a subset of dominant
tasks while leaving the remaining tasks under competition as dictated by the scheduling
heuristic. The evolution process can associate a performance measure for each pseudo edge
and then try to mix and match between the available set of individual edges. Adding edges
can result in a sort of chains through the graph and these pseudo edges will enforce the
tasks of these chains or part of chains to be on one processor in a definite precedence order.
There can be more than one chain and all the tasks of a given chain will be scheduled on
the same processor.

The edge addition approach is useful to enforce some dominant tasks to be assigned
on the same processor, while leaving all the flexibility to the scheduler for finding to
which processor they could be better assigned. Thus implied inter-task communication
is eliminated. Some genetic approaches swap task-processor assignments in an attempt
to introduce variation in the schedule. In addition to limiting the number swapped tasks
it also requires propagating the effect of task swapping into the entire schedule. The
edge addition approach is much more flexible than task swapping because a constructive
scheduler can be run again on the computation graph with added edges and then attempt
to find a new solution.

The problem is to find a systematic method for improving the schedule finish time
through analysis of mobility confidence and adding pseudo-edges. For this we use GLS
iterative scheduling that can be run for a number of iterations which allows collecting the
am(T ) values for all the tasks and identification of dominant tasks.

In the next sub-sections we explain our approach to enforce some pseudo-edges between
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Figure 5: Assignment of tasks for one dominant predecessor

immediate dominant tasks to guide the GLS iterative scheduling towards the optimum
solution.

4.3.1 Goodness of one dominant predecessor

Rule 1 is to evaluate the goodness associated to an element elm(T1, T ) defined by two
immediate dominant tasks T1 and T . Element elm(T1, T ) can be assigned by the scheduler
according to one of the cases shown in Figure 5. In the following we analyze the above
cases. First, we need to distinguish the case where both tasks are assigned to one single
processor (Figure 5(b), (c), (e), and (f)) or to two distinct processors (Figure 5(a) and
(d)). Second, elm(T1, T ) can be found with a pseudo-edge already in place or not. Third,
the starting of successor task T can be bound by the completion of T1 (Figure 5(c),
(d), and (f)) or not (Figure 5(a), (b), and (e)). Assigning immediate dominant tasks
to distinct processors is likely is to increase the schedule length because of the need for
communication.

One strategy to cancel the need for communication is to enforce these immediate tasks
to be scheduled on the same processor in the next schedule generation. Our approach
is based on modifying the problem constraints to promote clustering these tasks in a
probabilistic manner. This can be done by enforcing an infinite weight to edge (T1 → T )
so that the scheduler will necessarily schedule T1 and T on the same processor to avoid
infinite communication. The enforcement rule consists of assigning a large weight pseudo-

edge to element elm(T1, T ). Under this condition, the scheduler still have the liberty to
insert tasks between T1 and T as required. The only constraint introduced is that T
must be assigned to the processor that was assigned T1. The enforcement of pseudo-edge
must be reversible because the need of some edges at some solution state might be offset
by other newly assigned edges at other states. The idea is that a pseudo-edge that is
becoming useless must be removed in order not to block the search for optimum solution.
The goodness must be low for some element only when the scheduler is poorly performing
with respect to this element. The enforcement rule is one local strategy to eliminate the
dominant communication but one may also find instances for which the effect of single
processor assignment is of no benefit. In the following we analyse a number of cases in
order to evaluate the goodness of the constructive scheduler with respect to elements of
the solution.

In the case no pseudo-edge is initially set for elm(T1, T ), the goodness of the scheduler
can be considered as satisfactory with respect to elm(T1, T ) as long as the starting time of
T is not tight by the completion of T1 or its communication. Formally, element elm(T1, T )
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Procedure Goodness one pred(elm,Edge,Gooodness);
Begin /* Dominant predecessor-successor */

If (Edge) then /*There is already an edge */
Goodness := µ(T1)/(µ(T1) + st(T ) − ct(T1));

Else /*No pseudo-edge */
Goodness := µ(T1)/(µ(T1) + c(T1, T ) × r(p(T1), p(T ));

End

Figure 6: Evaluation of Goodness for one dominant predecessor

is said to be tight if st(T ) = ct(T1) + c(T1, T ) × r(p(T1), p(T )). The cases where element
elm(T1, T ) is not tight are shown in Figure 5-(a) and -(b). The reason the goodness
must be high in this case is that T1 by its computation and its communication is not
directly responsible of delaying T but there must be another reason for which T is delayed.
Therefore, the goodness must be high (survive) whenever the element is not tight and
there is no pseudo-edge which is already set. It is clear that adopting this approach
means that the reason for the delay of a dominant task which is not tight is to be found
elsewhere.

In the case the starting of T is found to be tight and there is no pseudo-edge, then the
survival of element elm(T1, T ) depends on the scheduler’s goodness in assigning the tasks
of this element. If the goodness is high (Figure 5-(c)), then the scheduler is performing
well with respect to this element and nothing need to be done. On the other hand, finding
low goodness (Figure 5-(d)) is an indicator of poor performance of the scheduler at this
precise element which requires some action. Clearly, as far as no pseudo-edge is set the
goodness can be expressed as µ(T1)/(µ(T1) + c(T1, T ) × r(p(T1), p(T )).

In the case a pseudo-edge is already set for elm(T1, T ) the scheduler will necessarily
assign T1 and T on the same processor and no communication will be needed for these
tasks. If elm(T1, T ) is tight then we are achieving our local objective because this is
the local optimum for this element. In this case, the goodness must be high and the
pseudo-edge is to be kept. On the other hand, finding elm(T1, T ) not tight means that
there is no benefit from setting the pseudo-edge because T is delayed anyway by some
other reason. The penalty for this case is the delay from completion of T1 to starting of
T and that the associated goodness must be low to enable removal of the unnecessary
pseudo-edge. Therefore, when there is one already set pseudo-edge the goodness can be
evaluated as µ(T1)/(µ(T1) + st(T ) − ct(T1)). Evaluation of the goodness for the case of
one dominant predecessor is shown in Figure 6. It is assumed that elm is a data structure
that contains: 1) pointers to immediate dominant tasks, 2) task time and communication,
3) task starting time and assignment as per current solution. Edge is a Boolean that is
true only when there is pseudo-edge which is already set for the present element elm.

The state diagram of element’s evolution is shown in Figure 7 and the code of the
corresponding procedure (Element Evolution) is shown in Figure 8. An element that is
tight (Boolean T ight = True) but without pseudo-edge (Boolean Edge = False) would
require no pseudo-edge with a probability that is its goodness. On the other hand, an
element that is not tight (T ight = false) but with a pseudo-edge (Edge = True) would
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Figure 7: Evolution of element of solution

Procedure Element Evolution(T ight,Edge,Goodness);
Begin

If (Not Edge) and (T ight) and (Rand(0, 1) ≤ Goodness) then

Edge = True; /* Set posted pseudo-edge (extinct) */
If (Edge) and (Not T ight) and (Rand(0, 1) ≤ Goodness) then

Edge = False; /* Remove pseudo-edge (re-generate) */
End

Figure 8: Evolution of element as function of state and goodness

require keeping its pseudo-edge with a probability that is its goodness.

4.4 Goodness of two dominant predecessors

Another important element is the assignment of two dominant predecessors T1 and T2

with respect to their dominant successor T . This defines element elm(T1, T2, T ) for which
the possible assignments are shown on Figure 9. The objective is to find evolutionary
conditions for this type of elements in order to promote the performance of the scheduler
through the possibility of creating pseudo-edges T1 → T2. For this, we analyse a num-
ber of cases in order to evaluate the goodness of the scheduler with respect to element
elm(T1, T2, T ) of a given solution.

Assuming no pseudo-edge is initially set for elm(T1, T2, T ), the scheduler can be consid-
ered as performing well as far as the starting of successor T is not tight by its predecessors
T1 nor T2. Element elm(T1, T2, T ) is said to be tight if st(T ) = maxTt∈{T1,T2}{ct(Tt) +
c(Tt, T )×r(p(Tt), p(T ))} which corresponds to the cases shown in 9(c) and (d). In the case
the element is not tight, the goodness must be high because there must be other reasons,
than the assignment of T1 or T2, for which T was delayed. If the starting of T is found to
be tight (Figure 9(c) and (d)) and there is no pseudo-edge, then again the survival of this
element without pseudo-edge depends on the scheduler’s goodness in assigning element
elm(T1, T2, T ).

In the case a pseudo-edge is already set among predecessors T1 and T2 the scheduler
will necessarily assign these tasks to the same processor (serializing them). Once a solution
is generated after setting the pseudo-edge, then element elm(T1, T ) can be found as tight
(Figure 9(f)) or not (Figure 9(e)). The goodness must be high if we are achieving best local
performance which corresponds to finding tight element. Therefore, the pseudo-edge must
be kept if the element is tight and pseudo-edge is already set. However, if this element
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Figure 9: Assignment of tasks for two dominant predecessors

is not, then there is no benefit from maintaining the pseudo-edge because T is delayed
anyway by some other reason. Therefore, the goodness must be low to enable removal of
the unnecessary pseudo-edge. As one can see the evolution of element elm(T1, T2, T ) is
again the one described in Figure 8.

Another important case is the assignment of two dominant successors which is denoted
by element elm(T, T1, T2). It can be easily shown that element elm(T, T1, T2) is the dual
of element elm(T1, T2, T ). One element can be obtained from the other if we reverse
the direction of the dependence edges and appropriately rename the tasks. In any case,
the evolution mechanism of elements is the same for all the studied type of elements
as depicted in Figure 8. The difference among the various elements’ types lies in the
evaluation of the goodness associated for each type of elements.

The goodness associated to the assignment of two dominant predecessors is the quo-
tient of time cost in optimum assignment to time cost achieved by the scheduler for the
same assignment. Finding time in optimum assignment for two dominant predecessors
or two dominant successors present special cases of the problems of optimally scheduling
join or a fork task graphs that were studied in [20]. Function Goodness two pred for
evaluation of goodness is displayed in Figure 10.

We define the time achieved by the scheduler in assigning element elm(T1, T2, T ) as the
union of all time points during which there is computation (T1 and T2) or communication
due to precedence T1 → T and T2 → T . Step 1 of function Goodness two pred allows
evaluation of the union of active times for both predecessors, which we call activity.
It first sorts T1 and T2 in non-increasing order of their last-message-time lmt(Tt, T ) =
ct(Tt) + c(Tt, T )× r(p(Tt), p(T )), where ct(Tt) is the completion time predecessor Tt, and
c(Tt, T ) × r(p(Tt), p(T )) is the time to send c(Tt, T ) messages from Tt to T .

To evaluate the union of active times, the predecessor with largest lmt, called last,
allows initializing the activity to lmt(last, T ) − st(last) that is sum of all active times
for edge (last → T ). Next we examine whether the other task (first) overlaps with
the active time of last or not. If it overlaps (lmt(first, T ) > st(last)), then activity
must be incremented by st(last)− st(first) only when task first starts earlier than last.
If it does not overlap (lmt(first, T ) ≤ st(last)), then activity must be incremented by
lmt(first, T ) − st(first) which accounts for all active times for the edge (first → T ).

Step 2 of function Goodness two pred allows the evaluation of the time cost in opti-
mum assignment of elm(T1, T2, T ). To minimize the starting time of T , predecessors T1

and T2 can be ideally arranged in sequence, in which case the above tasks execute one
after the other on the same processor and will be called Ts1 and Ts2, or in parallel and
will be called Ts1 and Tp.
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Procedure Bound two pred(elm(T1, T2, T ),bound,edge);
Begin /* evaluate bound and best pseudo-edge */

Ts1 := T2; Tp := T1; Ts2 := ∅;
If (act(Tp, T ) ≥ act(Ts1, T ) then Exchange(Ts1, Tp);
If (µ(Ts1) ≤ c(Tp, T ) × r(p(Tp), p(T )) then /* Ts1 and Ts1 are serial */

Ts2 := Tp; Tp := ∅; bound := µ(Ts1) + µ(Ts2); edge:=(T1 → T2);
Else /* Ts1 and Ts2 must run in parallel */

bound := Max{µ(Ts1), act(Ts2, T )}; edge:=(T1 → T );
End

Procedure Goodness two pred (elm(T1, T2, T ),bound,Goodness);
Begin /* two dominant predecessors-successor */

/* Step 1: evaluate scheduler time for elm(T1, T2, T ) */
last := T2;last := T1;
If (lmt(last, T ) < lmt(first, T )) then Exchange(last, first);
activity = lmt(last, T ) − st(last);
If (lmt(first, T ) > st(last)) then /* first overlap with last */

If (st(first) < st(last)) then

activity = activity + st(last) − st(first); /* first starts earlier */
Else /* first and last do not overlap */

activity = activity + lmt(first, T ) − st(first);
/* Step 2: evaluate goodness of elm(T1, T2, T ) */
Goodness = bound/activity;

End

Figure 10: Evaluation of goodness for two dominant predecessors

The ideal arrangement is governed by the tasks’ execution times and their communica-
tion costs and allows the least value of union of active times for the predecessors. Clearly
the ideal arrangement allows starting T at the earliest if one assumes that T will be as-
signed by the scheduler to run on processor p(Ts1). Denote by act(Tt, T ) = µ(Tt)+c(Tt, T )
the worst active computation and communication time for predecessor Tt. It can be easily
shown that Ts1 must be the task with largest value of act(Tt, T ). Now we need to decide
whether the other task (now called Tp) should run in sequence or in parallel with Ts1.

If the communication cost c(Tp, T ) covers (larger) computation µ(Ts1) then arranging
both predecessors in sequence gives shorter overall activity (Ts2 = Tp). Therefore, the
least union of activity is bound = µ(T1) + µ(T2). If there is no edge already set in current
state and if for any reason the goodness is low and a pseudo-edge is set then this pseudo-
edge must be edge(Ts1, Ts2). Such an edge enforces the scheduler to sequentially assign
the above predecessors.

On the other hand, if communication c(Tp, T ) covers computation µ(Ts1) then assign-
ing the other predecessor in parallel gives the least overall activity. The least union of
activity in this case is then bound = max{µ(Ts1), µ(Tp) + c(Tp, T )}.

The goodness of element elm(T1, T2, T ) is simply Goodness = bound/activity which
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can be used by procedure Element Evolution shown in Figure 8. The performance of
the scheduler with respect to element elm(T1, T2, T ) will be probabilistically subject to
the following three cases: (1) no change if goodness is high, (2) setting of pseudo-edge if
the goodness is low and there is no edge, and (3) removal of currently set pseudo-edge
if the goodness is low. Note that the whole processing of two-dominant-predecessors is
identical to the case of two-dominant-successors if one takes the dual representation the
associated dependence edges.

5 Implementation
In this section we present our simulated evolution scheduling algorithm which we call (SE-
Schedule). The pseudo-code of SE-Schedule is shown in Figure 11. We briefly explain
the steps of the algorithm which has two sections: (1) initialization, and (2) evolution.

In the initialization section, the process begins by getting the initial set of task priority
(task-level) values from the procedure GetInitialLevels. This procedure takes as input the
reverse graph Gr and the multiprocessor S(P,R). It does one pass of earliest-task-first

ETF scheduling and returns the set of task completion time (ct(T )) as task-priorities which
are stored into set L. We then do K runs of GLS iterative scheduling using L for the
first run. GLS takes four parameters namely: G, the graph; S(P,R), the multiprocessor;
L the set of task-levels; and the number of iterations K. This procedure returns its
best solution in Sbest after exploring 10 (K = 10) scheduling iterations because extensive
testing showed that the probability of finding noticeably shorter finish time than the best
generated out of the first 10 iterations is very small [3]. It also returns the zero mobility
confidence set ZMC which is evaluated from all the generated schedules. The set of all
possible dominant elements (ElmSet) is found by using procedure FindDominant which
takes as argument the current task graph. Procedure FindBound uses set ElmSet and G
in evaluating the previously defined activity time that corresponds to optimum placement
of each dominant element. Set ElmSet Edge consists of a set of Boolean that indicates
whether a given pseudo-edge ElmSet Edge(elm) is set or not. All pseudo-edges are reset
(ElmSet Edge(elm) = ∅) at the start of the SE algorithm. Finally, the initial value of
the control parameter is set at 1% of the best solution cost.

Now the simulated evolution section of the program begins. This section consists of five
phases: (1) the evaluation phase for finding goodness of new solution, (2) the evolutionary

phase to do evolution of dominant elements based on their goodness, (3) mutation phase,
(4) the regeneration phase to build new solution, and (5) the selection phase to carry out
evolutionary selection of the solution.

In the evaluation phase, a procedure FindPerformance uses a new solution S (if
any) and bounds ElmSet Bound to evaluate the performance of elements of ElmSet
and their goodness (ElmSet Goodness). Similarly, procedure FindTight examines how
the successor task for the elements of ElmSet are set in the solution S. A Boolean
ElmSet T ight(elm) is set by FindTight when the starting time of successor task is the
completion time of its latest dominant: (1) predecessor, or (2) predecessor communication
as previously explained.

In the evolutionary phase we examine evolution of each dominant element. Here,
the evolution of each element consists of setting or resetting of its pseudo-edge with a
probability that is equal to the goodness of the element. This means that an element
elm having a good individual performance has a higher chance of selection. This is done
by using the procedure Element Evolution which examines each dominant element elm
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Program: Evolution-Based Edge Addition Scheduling (SE − Schedule);
Begin

(1) Initialization:
nedges := 0;
L := GetInitialLevels(Gr, S(P,R)); /* using constructive ETF on Gr */
(Sbest, ZMC) := GLS(G,S(P,R),L,K); /*return best

solution so far and zero-mobility confidence ZMC */
S := Sbest; New Solution:=True;
ElmSet := FindDominant(G,ZMC); /* find set of dominant elements */
ElmSet Bound := FindBound(ElmSet,G); /* find least activity of dominant elements */
ElmSet Edge := ∅; /* initially no pseudo-edges */
cp0 := Cost(Sbest)/100 ; /* initial value of control parameter */
cp := cp0; /* control parameter initialized to cp0 */

(2) Evolution:
For i := 1 to MaxIter do

Begin
Cpre := Cost(S);
Evaluation phase:

If New Solution then /* do evaluation only if new solution is admitted */
Begin

ElmSet Goodness:=FindPerformance(ElmSet,S,ElmSet Bound);
/* evaluate performance of elements and their goodness */

ElmSet T ight := FindTight(ElmSet,S); /* find placement of each element */
New Solution:=False;

End
Evolutionary phase:

For each elm ∈ ElmSet do /* do evolutionary phase for each element */
Element Evolution (ElmSet T ight(elm),ElmSet Edge(elm),ElmSet Goodness(elm))

end
Mutation phase:

Mutation(ElmSet,ElmSet Edge) /* do mutation of the set of elements */
Regeneration phase:

Stemp := GLS(G,S(P,R),ElmSet Edge);
Selection phase:

Gain := Cost(Sbest) - Cost(Stemp); /* find gain */
If (Gain > 0) then Sbest := Stemp; /* a better solution is found */
If (Cost(St) = Cpre) then cp := f(cp) /* f(cp) = 1.2 × cp */
else cp := cp0;
If (Gain > Random(−cp, 0)) then
Begin

S := Stemp; /* accept new solution */
New Solution:=True;

End;
Return(Sbest);

End.

Figure 11: Evolution-Based Edge Addition Scheduling
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of ElmSet together with its goodness value and tightness state and decides whether the
pseudo-edge should be: (1) set, (2) removed, or (3) left unchanged. This procedure
updates the state of edges ElmSet Edge.

In the mutation phase, the edge state of a randomly selected element is switched. For
example if the selected element elm is found with an already set pseudo-edge, then we
delete this pseudo-edge with some probability.

In the regeneration phase we use a procedure GLS to carry out K iterative scheduling
of task graph G over system S(P,R) after augmenting G with the set of pseudo-edges
defined in ElmSet Edge. This allows searching for the optimum solution starting from
the current solution S and enforcing the scheduling decisions as dictated by the pseudo-
edges. Some added pseudo-edges may not be valid because they introduce cycling in the
graph. In this case we reject all the edges that were added to current solution and restart
again the evolutionary phase with the current solution. To save time, the detection is
done within the scheduler when the set of tasks that are ready for next scheduling is
empty but there are still unscheduled tasks. A task that is ready for scheduling has all its
predecessors already assigned. If there is no cycling procedure GLS returns the solution
with the shortest finish time (Stemp).

In the Selection phase we compare the cost of the best solution found Stemp with
cost of current best solution Sbest to find out whether the simulated evolution should
accept Stemp. If cost of Stemp is lesser than that of Sbest, then we accept the new solution
as well as the present set of pseudo-edges. This means that Stemp and current edge
state values ElmSet Edge become a starting point for the evolutionary iteration. We
increase the control parameter if the cost of Stemp is equal to cost of previous solution
(Sprev). Finally, we accept the new solution Stemp even with non-positive gain if the new
solution goodness is worst than current best solution by at most q, where q is obtained
by generating a random integer between 0 and −cp. We restart the evolutionary section
if a new solution is accepted but we skip the evaluation phase if no solution accepted. If
no solution is accepted, we restart the evolutionary phase with the current solution. The
solution is returned after we have exhausted MaxIter = 80 iterations. We experimentally
determined [3] that running beyond MaxIter = 80 is unlikely to find solutions with
shorter finish times for the set of studied instances of task parallelism and communication
granularity.

The complexity of ETF [9], DLS [18], and GLS [2] is O(pn2), where n and p are
the number of tasks and the number of processors, respectively. The initialization of edge
addition SE (step 1 of SE−schedule) is dominated by O(pn2K), where K is the number of
forward-backward iterations of GLS and O(pn2) is the complexity of one GLS scheduling
iteration. The main loop of edge addition SE (step 2 of SE − schedule) is dominated by
O(p × n2 × K × MaxIter), where MaxIter is the allowed number of iterations.

6 Performance evaluation
The objective is to compare performance of local scheduling heuristics and the proposed
approach which is based on pre-evaluation of the task-priority and generalized list schedul-
ing. We compare our approach to some scheduling heuristics which use bounded number
of processors which are: ETF [9], DLS [18], and GLS [2], and our edge addition SE
scheduler.

A random graph generator (RGG) is used for generating computation graphs with
few hundred tasks and with task computation time ranging from 10 to 190 time units.
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The average communication cost, number of levels, and the number of processors are
indirectly controlled using three parameters. The average communication to the average
computation is denoted by α = ΣT,T ′c(T ′, T )rmin / ΣT µ(T ) = cedge/µT , where rmin is the
least time to transfer a unit of data between two processors (set to 1).

The graph parallelism is the average number of tasks that can be made ready to run
at the same time. This can be measured by using the ratio of the sum of all computation
times in the problem over the sum of computation times along the longest chain (Xlongest).
Xlongest is a chain of immediate tasks starting at entry node and ending at exit node such
that the sum of all its task times is the largest among all available chains. In other words,
the graph parallelism is

∑
T∈Γ µ(T )/

∑
T∈Xlongest

µ(T ). We define the degree of parallelism
(β) as the task graph parallelism over the number of processors (p):

β =

∑
T∈Γ µ(T )

p ×
∑

T∈Xlongest
µ(T )

(3)

The degree of parallelism is an indicator of the average number of tasks that can be
made ready per processor. It also indicates the average number of tasks that may compete
for each processor. The simulator assumes a number of independent processors connected
by using a fully connected network (r(p, p′) = 1). The values of parameters studied are
α ∈ [0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0] and β ∈ [1, 2, 2.5, 3, 4, 5]. The variance on Cedge is set to
50% of the current average of Cedge. Each graph has at least 6 levels and 70% of the
outgoing edges from one level are incoming edges to the next level and the remaining 30%
reach arbitrary forward levels. For each instance of α, β, and topology (126 instances),
the RGG uses the uniform distribution to generate 40 random computation graphs that
are scheduled by each of the previously defined heuristics.

Using the RGG, the simulator used is schematically described by the flow-chart shown
on Figure 12. The simulation uses as input the statistical profiles (communication and
parallelism) of the graph problems to be generated. For each profile instance RGG gener-
ates 40 graph problems that are scheduled by each of the algorithms ETF , DLS, GLS,
and our SE-Schedule. The length of shortest finish time solution is denoted by (ωb). We
store the relative percentage deviation from (ωb) of each heuristic h, that is (ωh/ωb−1)100,
for each studied instance of communication (α) and parallelism (β). Each plotted point
results from averaging the heuristic finish times for 40 generated problems. Figures 13,
14, 15, and 16 show the percentage deviation of the above scheduling approaches from
best known solutions. Figure 17 shows the average number of iterations needed for our
SE-Schedule to find its best solution.

ETF (Figure 13) can perform well only when there is enough task parallelism to cover
available communication. However, ETF finish time significantly degrades when (1) the
available parallelism is relatively low, or (2) the amount of communication is relatively
large compared to available task parallelism. The results is that the schedule length of
ETF may deviate by more than 20% from best known solution for the studied ranges of
α and β.

DLS (Figure 14) uses a simple but more balanced decision function (d(T ) = DL(T )−
est(T, p)) than ETF which is rewarded by noticeable improvement in performance espe-
cially when the parallelism is low. DLS may deviate by more than 10% from best known
solution especially when communication (α) is relatively large compared to available task
parallelism (β). However, the finish time of DLS schedules seem to be much less sensitive
to computation profile than in the case of ETF . Like ETF , the heuristic DLS gives its
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Figure 12: Flowchart of testing ETF, DLS, GLS, and SE by using the RGG

best when the parallelism is large enough to cover the needed communications. The time
spent by DLS to find its solution is nearly 2 times the time spent by ETF because DLS
needs one pass on the task graph to compute the task-levels prior to scheduling.

GLS (Figure 15) uses has a decision function that incorporates a more effective task-
level than DLS in addition to the traditional earliest-startable-task discipline. GLS
deviates by about 5% from best known solutions. Here, the number of iterations is 10
for each run of GLS which means that the time spent by GLS to find its solution is 10
times and 5 times the time spent by ETF and DLS, respectively. Its worst deviation is
recorded when the communication are relatively large and task parallelism is relatively
low. However, it can be considered as near optimum for computation having low commu-
nication and large task parallelism. We believe that the reason for this due to: (1) the
use of a task-level (ct(T ) of previous iteration) that accounts for the computations and
communications, and (2) its iterative nature which allows it to sharpen its solution.

The proposed SE-Schedule (Figure 11) has the lowest average deviation from best
known solutions compare to ETF , DLS, and GLS. It outperforms GLS by a few percents
only because GLS already generates near-optimum schedules in most cases. However,
GLS does not provide full guarantee of performance because of its slight dependence on
the computation profile. For example, GLS may have greater deviation if task-parallelism
is limited in the presence of large communication. Thus SE-Schedule is one tool to
complement GLS and to optimize its solutions especially for difficult instances such as
large average communication compared to average computation.

There are a number of observations on the best schedules generated by SE-Schedule.
A graph giving its best in a forward run would keep doing so irrespective of the iterations
we do on it. The same will happen for a graph giving its best in backward scheduling.

21



0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3

A
v.

 P
er

ce
nt

 D
ev

ia
tio

n

Av. Arc Communication / Av. Task Computation

ETF compared to best solution

Par = 1.0
Par = 2.0
Par = 2.5
Par = 3.0
Par = 4.0
Par = 5.0

Figure 13: Percentage deviation of ETF schedules from best known solutions
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Figure 14: Percentage deviation of DLS schedules from best known solutions

This categorizes our graphs in two groups; ones which give their best solution in forward
schedules and the others which do so in reverse schedules. The edge addition operations
are found to be different for each group. The addition of pseudo-edges was further sub-
divided into two categories. It was observed that we should concentrate on tasks which
are in the first level for task graph which are of the forward type and on bottom level
tasks for the graphs which give their best on the reverse schedule.

The number of iterations NSE−Schedule needed for SE-Schedule to generate its the
best solution is shown on Figure 17. The function NSE−Schedule depends on the compu-
tation profile. Computation with larger communications require more iterations because
there are many edge addition, that significantly affect the finish time, to be tried by
SE-Schedule. On the other hand, increasing task parallelism helps shortening of the
number of iterations because it provides more alternatives (more freedom) to cover com-
munications. Figure 18 summarizes overall results across all values of parallelism and
communications.
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Figure 15: Percentage deviation of GLS schedules from best known solutions
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Figure 16: Percentage deviation of Edge Addition SE schedules from best known solutions

We study the time spent in each iteration of SE-Schedule. We refer to the main loop
of the edge addition SE algorithm shown on Figure 11. Generally, most of the dominant
pair of tasks are properly aligned by the GLS and only a small fraction of these dominant
pair of tasks need to be handled through SE mechanism (Elm). This explains why the
running times of phases like the evaluation, evolution, and mutation are dominated by the
running time of the regeneration (mainly GLS) because the number of elements (Elm)
that are manipulated in the above phases is a small fraction of the total number of tasks.
Thus the time spent in each iteration of SE-Schedule is largely dominated by the running
time of GLS. On the other hand, GLS can be considered as equivalent to running ETF for
K iterations. Due to computation of static levels, each run of DLS is about the running
of two iterations of ETF. In other words, the time spent by one iteration of SE-Schedule
is nearly 1:1, 1:5, and 1:10 the time spent by GLS, DLS, and ETF , respectively.
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Figure 17: Number of iterations for Edge Addition SE scheduling

7 Conclusion
Synchronous dataflow computations is a class of programs that are generally compiled
once and run many times over different data sets. In this paper we presented a compiler
optimization approach that uses the simulated evolution SE paradigm to enhance the finish
time of heuristically scheduled synchronous dataflow computations with communication
times. Unlike genetic approaches which generally use task swapping to create differential
variations our approach consists of adding pseudo-edges to the task graph to guide the
scheduler in the alignment and clustering of dominant tasks. Edge addition SE provides a
flexible formulation to the optimization problems of a class of graph-based computations
because added edges alter only the task graph without modifying the heuristic that finds
guided solutions.

The edge addition SE scheduling is useful to complement scheduling heuristics whose
finish time performance cannot be guaranteed for arbitrary communication granularity
and parallelism profile. For example the finish time of ETF solutions deviates by more
than 20% from optimum when task parallelism is not large enough to cover the com-
munication [3]. In general, heuristic solutions do not provide reliable performance. Im-
plementing the edge addition SE on the top of a scheduling heuristic like GLS enables
optimizing the solution finish time as well as statistically guaranteeing that the SE solution
outperforms other solutions generated by heuristics like ETF, DLS, and GLS. Although
these heuristics are capable of finding good solutions optimizing the solution through edge
addition SE search provides more confidence in the quality of the solution.

The edge addition SE scheduler is a flexible compiler optimization approach that is
capable of finding near-optimum schedules as well as providing higher confidence in the
performance of profile-sensitive scheduling heuristics.
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Heuristic % of Cases % Deviation

ETF = DLS 3.1 0.00
ETF better than DLS 17.3 2.23
DLS better than ETF 79.6 8.18
ETF = GLS 1.7 0.00
ETF better than GLS 0.06 0.23
GLS better than ETF 98.24 11.83
ETF = Edge Addition SE 1.70 0.00
ETF better than Edge Addition SE 0.00 0.00
Edge Addition SE better than ETF 98.30 12.40
DLS = GLS 16.76 0.00
DLS better than GLS 1.86 0.29
GLS better than DLS 81.38 7.23
DLS = Edge Addition SE 3.57 0.00
DLS better than Edge Addition SE 0.06 0.04
Edge Addition SE better than DLS 96.37 9.25
GLS = Edge Addition SE 34.49 0.00
GLS better than Edge Addition SE 0.41 1.05
Edge Addition SE better than GLS 65.10 3.72

Figure 18: Pairwise comparison between heuristics on fully-connected topology
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NOMENCLATURE

Symbol Meaning
SE Simulated evolution
GA Genetic algorithm
SA Simulated annealing
S Schedule solution
S0 Initial solution
Sbest Best solution found so far (shortest finish time)
cp Control parameter
Gain Difference in cost between current and best solutions
Γ(T1, . . . , Tn) Set of tasks T1, . . . , Tn

P Set of processors
T1 → T2 Precedence relationship (T1 is a predecessor of T2)
µ(T ) Execution time of task T
S(P,R) Set of processors P and their routing network R
c(T, T ′) Number of messages produced by T for its successor T ′

r(p, p′) Time to route a unit of message between processors p and p′

Pred(T ) Set of predecessor tasks of T
p(T ) Processor running task T
ct(T, p(T )) Completion time of T on p(T )
est(T, p(T )) Earliest starting time of T on p(T )
EST A scheduling heuristic called Earliest-Task-First
DLS A scheduling heuristic called Dynamic Level Scheduling
GLS A scheduling heuristic called Generalized List Scheduling
elm(T1 → T2) Sub-graph formed by T1 → T2

m(T ) Maximum mobility of task T
am(T ) Average mobility of task T
ste(T ) Earliest time of T without delaying the schedule
ste(T ) Latest time of T without delaying the schedule
di(T ) Value of decision function applied to task T at the ith iteration
Edge A Boolean used to state whether a directed edge is set or not
st(T ) Starting time of T
lmt(T1, T2) Time at which the latest message from T1 reaches T2
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