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Abstract: The serialization of memory accesses and network conflicts are two major limiting factors in
lock-step parallel memories. We derive conditions for accessing parallel memories which is free of
both network and memory conflicts. This applies to accessing arbitrary sets of linear data patterns.
We also combine different access patterns (NP-complete) into one single compiler address
transformation. The synthesized storage scheme applies to arbitrary linear patterns, arbitrary
multistage networks, and arbitrary number of power-of-2 memories. We propose a new heuristic for
synthesizing combined XOR-matrices. Performance of optimized storage schemes is presented for
sorting and for combining arbitrary sets of power-of-2 patterns.
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Abstract

The serialization of memory eccesses and network
conflicts are two major limiting factors in lock-step
parallel memories. We derive conditions for access-
ing parallel memories which is free of both network
and memory conflicts. This applies to accessing ar-
batrary sets of hinear data palterns. We also combine
different access patterns [NP-complete) inta ome sm-
gle compiler address transformation, The synthesized
storoge scheme apples fo arbilrary linear pafterns, ar-
batrary mulbistage nelworks, and arbafrory number of
power-of-2 memories. We propose a new heuristic for
synihesizing combined X OR-matrices. Performance of
optimized storage schemes is presented for sorting ond
Jfor combining arbitrary sets of power-of-2 patferns,

1 Introduction

Mon-uniform access to parallel memories and net-
work contention are responsible for sipnificant per-
formance degradation, especially in SIMD systems.
The use of a prime number of memories [5] signifi-
cantly outperforms interleaving but requires expensive
address translation. Conflict-free access [2] to rows,
columns, and diagonals of arrays was propesed on the
basis of row rotations. The drawbacks are the depen-
dence on the array size, the number of memories, and
the complex address transformation.

Based on skew storage, XOR-schemes were pro-
posed [6, 4] for eliminating most of the above prob-
lems. The scheme can be efficiently used for power-of-
2 strides but other strides can also be accessed through
the use of few buffers at the memory inputs and out-
puts. The buffers reduce the effects of transient degra-
dation in pipelined memories.

Linear permutations for the Omega network have
been studied by using non-singular matrices. In most
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cases, conflict-free access to the networlk is obtained for
some fixed data templates. For row, column, diage-
nals, and square blocks, & scheme [3] based on compos-
ite linear permutations was proposed for the Omega
network,

Our objective is to find a storage scheme that
combines the constraints of composite patterns and
the network in synthesizing dynamic storages so that
memory and network contentions are minimized.

Section 2 presents linear permutations and the
networks. Section 3 presents properties of storage
schemes, Sections 4 and 5 present our method for com-
bining data patterns into one single compiler transfor-
mation. In Sections 6 and 7 we present applications to
sorting and arbirary sets of data patterns. Section 8
concludes this work.

2 Linear permutations and networks

In a multistage network, routing a source s =
Sn—1.-- 8 to destination d = d,_; ... dy consists of
finding a path of switches that connect # to d.

In an 11, network, the position of the messagze at
the input is posq(s,d) = s5-1... 50, we can easily find
the position of the message at the output of the ith
stage:

posiis,d) = su_i 1. sednay o dnoipadang

We can similarly find the position of the message
for other networks. A network input is denoted by
g = (%n-1,...,8) € 5 and output is denoted by
d = (dy-1s...,dy) € 5. This applies to n-stage net-
works, A linear permutationis a function M : § = 5§
for which each source s € § maps into destination
d=Ms=(dy_1,...,ds) where d; is a linear combi-
nation of the bits of s by using the logical AND and



XOR operators as the multiplication and addition, re-
spectively.

We wish to know under what condition an 1), net-
work can perform permutation M. We shall abbrevi-
ate pos;(s, Ms) to pos;(s) which can be written as a
matrix product MJi)s:

pos| (5) = (5511 --5pdg_1 gy ;) = M55 _p.. 5519 1 ..50)
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Where the (n—1) =1 matrix in the upper-left corner
is formed by Os, the {m—1) = (n—2) matrixin the upper-
right corner is the identity, the ¢ x (n — i) matrix in
the lower-right corner will be denoted by B[:], and the
i %1 matrix in the lower-left corner will be denoted by

Mli]:
L T | e L |
M['r1=(::: . . )
Tpmi,m=1 e Bpei i

The permutation matrix M that gives the position
podn(s) = d = Ms of the message at the output of the
nth stage is defined as follows:

(3
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Note that M [i] is the § » i sub-matrix in the upper-
left corner of M. We present s number of Theorems
that characterize permutations. The proof of these
Theorems can be found in[1].

Theorem 1 All inputs of the ith stage map one-fo-
one to all oulputs of the same stage if and only 1f M[1]
is non-singular (NS).

We now characterize linear permutations M which
the Omega network can perform. An n % 7 permu-
tation moetrix M i sed to be Sﬁmng]’y-Nna-S’ingm;Iﬂr
(SNS) if and only if its restriction M[1] is NS for arbi-
trary {, where 1 <1 < n.
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Theorem 2 A hinear permutation M defined cver Z
can be performed by 0, if and only if M is SN3 for
0,.

We generalize the above result to an arbitrary net-
work that belongs to the class of dynamic, full access_
unique path, multistage networks,

Theorem 3 An  arbitrary dynamic, full
unigue path, mullistage network (v) con achieve ar-
bitrary linear permutation defined by an n x n boolean
maitriz M if and ondy if M is SNS for ~.

Note that the position of sub-matrices M[i] can be
different for each type of network. For the Omega
network, the N3 submatrices are located in the upper-
left corner of M. For the Baseline metwork, the NS
sub-matrices start at the lower-left corner of M.

We can define a permutation d = Ms @ x which we
call Complement-Permulafion, where r is a constant.,

LCCERS,

Theorem 4 An arbitrary  complement-permutation
d=Mshx passes o multistage network if and only of
M 1= SNS for the nefwork.

It can also be proved that the set of all complement-
permutations associated with all SNS matrices M are
all distinet for any multistage network.

3 Characterization of SNS matrices

We now evalnate the number B, of n % n SNS ma-
trices. Since R, is identical for each type of network,
we use the notation for f1,, It is obviouns that fi = 1
We define algorithm (H-2) that finds and assigns the
set of 2 x 2 matrices which are SNS

(0 3) (£ 9) (o1) (s

and so fy = 4. We now show that:
Theorem 5 The number of permutations d = Msha
that an arbitrary n-stage multistage metwork can per-
form is Ty = 27, where M is an n % n SN§ matric
and x i3 ann X 1 arfitrary vector.

Proof Suppose we are given an arbitrary n x n matrix
M. Assume that M|:] is SNS. Then by performing row
and column operations, we can transform M such that
M[i] is the identity matrix thus:

1 L) R a0 aa
1] 1 o 1] =TT

M= LU L] 1 a @4
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We examine the matrix M[i+1]. We denote the entry
in the lower-right corner as ¢, the entries above ¢ as
ay ... ai—1, and the entries to the left of ¢ as by ... b4,
We ean determine whether M[i 41] is NS. If all a; and
b; are zero and ¢ in one, it is easily seen that M[i 4 1]
is NS. For the general case, the fact that M[i] is the
identity makes it easy to cancel the a;’s and b;’s using
row and column operations. M [i+ 1] will be NS if and
only if after these operations e = 1. Ifa; = 1, add the
column containing b; to the column containing © of
M. This changes a; to zero and « becomes c & by,
Similarly, if b; = 1 and we add the row containing oy
to the row containing c of M, this changes b; to zero
and ¢ becomes ¢ 2 gy, These operations may affect
¢ as follows: 1) ¢ does not change if a; = b; = 0 or
aj B by =1, or2) cis flipped if a; =b; = 1.

In the last case, both a; and B; are one. If we choose
to cancel a; fiest, the value of b; = 1 is added to ¢
changing it from a one to a zero, or vice-versa. If we
choose to cancel By first, the value of ¢; = 1 is added
to ¢, and ¢ is again changed. In all other cases, we
can cancel a; and by without affecting ¢. The meon-
singularity of M[{ + 1] depends on two factors: the
initial value of ¢ and the number of fips. Counting
the mumber of ways we get 0 flips, we find that we
can do so in 3 ways. There are i3! ways we can
get one flip, and i(i — 1)3°%/2 ways we can get two
fips. In general, the total number of ways is simply
E;=D (-:_}31—_r_

If there are f; ways that M[i] can be NS, then there
are R ¥ ()37 = Ri(3+ 1)' = Ry ways that
Mli £ 1] ean be NS. Combining this with our walue
for Hy we have Ay = 1 and Ay = Rad™. There-
fore, we have R, = dln=1im/2 _ a(n-1l  For each
SNS matrix M, we can find 2" distinct vectors for r.
Therefore, the number of permutations d = Wsdw is
T, = R,2" =2, .

4 Combined storage schemes by using
SNS matrices

Consider an SIMI} computer that consists of 27
processing elements interconnected to 27 remorics
through 12, We assume that the data to be accessed
is a one dimensional array denoted by A = {a{é) : 0 <
i £ 2% _ 1} that is accessed by using a skew storage
scheme defined by (i) = ®4, where ® is some boolean
matrix, and d(t) is the memory number where array

element afi) is stored. Assume that the dimension of
A is 2%, The binary of 7 is vp_qtg_1,...,vpig, where
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Tgo1y--- Uy are k canonical vectors of sz.

Assume & 15 to used for accessing power-of-2
stricles, such as strides 1, 2, and 4 with n = 3. We
denote these patterns by Fy, Fs, and F;. We may
choose matrix ® as follows

oy ]

dz 1 0 0
diip = (dl) (n 1 1)_
da 1 1 0

where ¢; denotes the jth column of & and ¢ is re-
stricted to its 5 least-significant bits, Each pattern
can be translated within the array which leads to ac-
cess different instances of that pattern. For each in-
stance of Py, the group of bits {iz,43,in) takes all pos-
sible binary combinations and the remaining bits of
i are constant. Each power-of-2 pattern can entirely
be specified by some basis, Patterns Py, Py, and Py
have bases Py = {va,v1 00}, Po = {vs,v2, 01}, and
Ps = {vq,vs, vz}, respectively.

The union of all pattern bases is {vp, ..., 04} Gen-
erally, the storage matrix ¢ should then be an m = p
matrix, where p is the number of distinet canonical
vectors In the union of all pattern bases. When ac-
cessing Py, function d(i) = ®i can be decomposed into

the following sum:
o
1} T
i £

ia
Mg, - iy =
in

where Mp, is the left-hand matrix of the sum and
the right-hand term is constant () when accessing Iy.
Mp, is said to be © resiricted fo paitern . Equa-
tiom 5 is & complement-permutation whenever Mp, is
SNS. The processors numbers (o, 81,..., §7) are iden-
tified with the values taken by (iz, i1, d0), (iz,92,61)
and (4, ig,99) during access to instances of P, Py,
and Ps, respectively, The permutation matrices asso-
clated with P and P are:

ty fx o Lh €x

oy
1 1 o 1 1 1

M - 1 i 1 LY - 5} 1 a

e (l][ll) 2 (luu)
The product Mﬁ i also takes all possible binary val-
ues because Mp, is NS which causes the clements of
F, be distributed over the memmories. Network align-
ment is guarantee for £ because Mp,, My, and Mg,
are SNS for {13. Thus the storage scheme defined by

¥ is network contention-free as well as free of memory
conflicts.
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5 Storage schemes and multistage net-
works

The problem of finding a linear storage scheme
which allows conflict-free and network-contention-free
access for a given set of patterns is tractable forp = 2,
but NP-complete for p > 2. The problemr of finding
an assignment of vectors in ZF such that the matii-
ces corresponding to all tuples are SNS is called non-
stngu'ar sefisfiability (NSS). It is proved that NSS is
NFP-complete for i = 3 [1].

We present an efficient algorithm for ficding a lin-
ear storage scheme for a given pattern set. We as-
sume that, for cach pattern, the matrix £ 5[] s SMS
and attempt to construct the row $,_; . so that each
@ p.[7+ 1] is SNS. Algorithm (H-n) is as follows

1. Determing the upper two rows of the matrix.

2, Create each remaining row, working from top to
Lottom.
Foriin 2 to n— 1 loop:

(a) For each pattern P; do:

i. Obtain a matrix &p, by reducing the
matriv @ p, to the identity in its apper-

~ left corner, using ouly row operations.

il. Use the oh column of this matrix to
determine the squation associated with
this pattern. Let the basis of F; Le
Ugyq oo Wiy Bnd g = {@Pj}n—k—l.&-'
Then the equation is:

(6)

b)Y Solve the system of simultaneous equations,
Assign entry $,_;.1 1 the value ry.

=1
2, DBy ee, e =1

The time complexity of this algorithm is O(a?).
Since there are potentially several alternatives =t
Steps 1 and (b), one possibility s to use backtrack-
ing to exhaustively search for a solution.

G Surting

Bitonic sorting can be implemented on the hasis of
the four group of access patterns shown in Figure 1 fer
a 1G-point arrey and 8 memory-PE. Tor each group,
every processor s o read a pair of items from meinory,
sort taem, and stor: the sorted items back into mem-
ory. Each pair of items (0-1) involved in one group
are connected by an edge in Figure 1. The problem
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Viemony g1 32 a7 54 48T 8 2 3 1 0

Figure 1: Sorting 16-items over 8 membories

is to find the mapping of data elements to memories
and the implied access patteras.

Twe accesses are needed for each group: 1) the left-
hand items which are all sccessed in step 0, end 2) the
right-hand items which are all accessed in step 1. The
bases of the patterns are By = 2090y, B) = yipiyg,
B: = i1y, and By = i31zip and correspond to access
patterns (Fy, My, M, Fy) shown in Figure 1. For an
0y network, the leading NS matrices are located at
the upper left edge of the storage matrix. Therefore,
algorithm H-2 assigns {,;1} s the upper left corner
of the storage matrix. Algorizhm H-n completes the
pravious sub-matry and finds a complete solution so
that each of the restricted sub-matrices ($p ) is SNS:

iy i

1
1 1 40 0
= @ 1 1 0
LU | 1

and the restricted sub-matrices to sach pattern are:

L
=
|
—
-
k-]

Each data element a(d), for 0 < § < 15 is stored

iy dp iy
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Mem My My Lk LR iy g g meT
(1) a 1 3 2 T & 1 L
15 14 12 12 & L] 11 10
Py 1] 1 1 [1] 1 [1] ] 1
1 o 0 1 ) 1 1 1
Py [ [ 1 1 1 1 [ c
1 1 o o ) o 1 I
Py [ [] a 1] 1 1 1 1
1 1 1 1 a 0 1) C
Fy [1] [1] ] [i] a a i [
1 1 1 1 1 1 1 1

Table 1: Storage scheme and access patterns

Table 1 shows the storage of the data elements by
@ and the ficst (marked by 0) and second {markesd by
1) access to each pattern Py, The elements of each
pattern Fj map to distinct memories because dp, is
NS. The elements of each Pj can be aligned to the PEs
without conflict because each $p, is SN3 for {13,

T General patterns

Testing algorithm H-n is carried on for arbitrary
sets of data patterns. We iterated H-n until a network-
contention-free XOR-scheme was found, or the limit
of ten backtracking tries was exceeded. The studied
range of memories (N = 2"} is 8 < N < 256 and
the number of patterns p ranges from 3 to 16. One
hundred cases were generated for each combination of
these parameters,

The average numhber of clocks achieved by the XOR-
scheme found by using H-n is displayed in Figure 2.
Our scheme finds solutions requiring nearly one clock
access for small numbers of patterns and moederate
numbers of processors. The access time increases
smoothly with increasing either the number of memo-
ries or the number of patterns. This approach largely
outperfoms interleaving (6 to 26 fold) and the static
row-column-diagonals [3] scheme (4 to 7 fold).

8 Conclusion

Given an arbitrary set of power-of-2 data patterns,
we have addressed the preblem of finding compiler
address transformations for storing arrays in paral-
lel memories so that any imstance of a pattern can be
memory conflict-free and accessed without contention
through an arbitrary multistage network. To auto-
mate the above process we proposed a compiler oper-
ator for synthesizing combined storages for arbitrary
sets of power-of-2 data patterns so that memory and
network conflicts are minimizged. Algorithms (Serting
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Figure 2: Awverage mumber of clocks for memory-
network access

and FF'T) written for a given network can be con-
verted with little address emulation (hardware or soft-
ware) to other networks. Some of the results may also
apply to secondary memory organization.
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