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Abstract—Using | ledge on ¢ , and mul-
tiprocessor topology, a class of global pnonty—hased scheduling hcurlstlcs,
called Generalized List Scheduling (GLS) is proposed. Task-priority is
defined as the completion time of the task following backward scheduling
the computation over the multiprocessor by using the best local heuristic.
GLS scheduling consists of using the task-priority in forward, graph-
driven scheduling.

Evaluation of local (ETF) and GLS heuristics is carried out by altering
over the ¢ ication, parallelism, and system topology. Analysis shows
that local heuristics rely on Im'all.y maximizing the efficiency and gives
acceptable sniuuuns only when the para llelism is large h to cover
the (bounded GLS scheduling outperforms
the local approaches versus change in para]le]ism, communication, and
network topology. The time complexity of GLS heuristics in O(pn®),
where p and n are the number of processors and that of the tasks,
respectively.

Index Terms— Bounds, distributed systems, heuristics, performance,
scheduling.

I. INTRODUCTION

A fundamental result of scheduling theory is the introduction of
the list scheduling [3] and the establishment of its performance
guarantee. Graham's List-Scheduling is based on: 1) evaluation of
the task level or length of the shortest path from starting a task
to completion of the computation, and 2) minimizing the processor
idle time by scheduling the ready task with the highest level on any
idle processor. List-scheduling [1] is found to be near optimum as
the finish time deviates by at most 4% from the optimum solution.
The success of list-scheduling is due to the use of task-level to
differentiate critical from non-critical tasks and the simplicity of the
model for which the inter-task communication overhead is negligible
compared to the computation, But due to significant communication
overhead, this assumption cannot be justified [7] for message-passing
architectures. Therefore, the need to handle the communication and
the multiprocessor topology in designing effective scheduling for
message-passing systems.

Linear clustering [S] has been applied for iteratively merging the
most communicating paths as an attempts to optimize the computation
time. After multiple refinements the resulting graph is mapped onto
the target multiprocessor using graph theoretic approach. Another
method based on clustering immediate tasks [8] has been proposed
for minimizing the critical path length over infinite number of
processors. When the minimum critical path is found, merging
operations are performed in order to match the clusters with the
number of processors.

By assuming that delay in communication is mainly due to channel
latency, a scheduling based on Task Duplication (TD) over idle
processors was proposed [6] to reduce the communication. The
impact of task and processor selection and TD were experimentally
studied in [7) by evaluating the task-priority as the sum of task
times (Hu's approach) from the graph bottom. In [10], the ASAP
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and ALAP times are evaluated by adding up all the computation and
communication times along the corresponding paths. The task with
the smallest mobility (ALAP-ASAP) is selected first.

These approaches either minimize objective functions other than
the computation finish time and lack global evaluation because only
sub-problems are investigated [5, 8], discarding the communica-
tion and network effects in evaluating the task-priority [6, 7], or
pessimistically accounting for all of them [10].

Our abjective is to find configuration-dependent global scheduling
heuristics by generalizing the concept of task-level so that to in-
corporate the available knowledge such as that of the computation
graph, communication aspects, and multiprocessor topology. This
methodology extends the list scheduling concept, that has previously
been applied to computation model G(I', —, s}, to a new approach
called Generalized List Scheduling (GLS) that is applied to sched-
ule precedence-constrained computations with communication times
over an MIMD message-passing system. Experimental evaluation
of local and GLS scheduling is carried out with respect to task-
selection strategy, amount of communication/computation, inherent
parallelism, and multiprocessor topology.

Section Il defines the notation and the problem. Sections II1 and IV
presents the proposed task-level and scheduling, respectively. Section
V presents the evaluation and Section VI conclude about this work.

II. BACKGROUND

A set of D(T1,...,Ta) of n tasks (T) with their precedence
constraints and communication costs are to be scheduled on p
identical processors so that their overall execution time is minimum.
The computation can be maodeled [4] by using a directed acyelic
task graph G(I, —, u,¢) where —, u(7"), and ¢(T,T"') denote the
precedence constraints, the task execution time, and the number
of communication messages (volume of data) that are sent from
task T to its immediate successor 1", respectively. The multipro-
cessor is denoted by S(FP. RB) where P is a set of processors and
R is the interconnection network. The time to transfer a unit of
message from a processor p(T) to processor p(T') is denoted by
r(p(T),p(T")), therefore the time to transfer o(T, T') message is
e(T, T yr(p(T), p(T")), ie., the communication media is assumed
to be contention free. Parameter r(p,p’) is the topology factor that
is proportional to the number of hops between p and p'.

To differentiate between critical and noncritical computation, one
needs to define a global task-level that accounts for the characteristics
of the computation and the multiprocessor. The task-level (I(T))
is defined as the length of the shortest path from starting the task
10 any exit node such that all the precedence and communication
constraints are satisfied. Unfortunately, the accurate evaluation of the
1(T) is very difficult because: 1) the length of paths, in the task-graph,
are differently affected depending on the way each path is mapped
onto the processors, and 2) by definition the [{T') derive from the
optimum solution. To avoid these problems, only local scheduling
heuristics have been proposed such the earliest-task-first [4] and the
largest-communication- first [2]. Discarding all the communication
aspects [9], [7], [6], or accounting for all of them [10], in evaluating
the task-priority leads to excessively inaccurate evaluations that fail
specifying the degree of criticality of the tasks with respect to the
overall computation.

Our objective is to find configuration-dependent global schedul-
ing heuristics by generalizing the concept of task-level so that to
incorporate the available knowledge such as that of the computation
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graph, communication aspects, and multiprocessor topology. Using
the generalized task-level, a number of scheduling heuristics are
proposed by combining the task-level with efficient management of
the processor idle times in defining a new global task-priority concept.

11I. GLoBaL TASK-LEVEL

Let T be a task and denote by D(T) the set of predecessors of T'.
By considering only one predecessor task, the earliest-starting-time
est(T, p) of T for some processor p depends on the finish time f(T")
of the predecessor T' € D(T'), the number of messages e(T",T) sent
from task T" to T, and the processor p' on which task T" has been
running:

(T = SO+ {4 7). o),

By considering all the predecessors of T', the est(T,p) is the ear-
liest time the latest message from the predecessors reaches processor
Fie

if p=p,
otherwise.

es(T,p) = max {f(T)+e(T',T) - 7(p(T), 2T}

where f(T') = est(T'.p(T")) + p(T"). In the event D(T) =
(. est(T, p) = 0 for every p. As the est(T, p) depends on the routing
cast r(p, p'), then there exists a processor p" for which task T can
start at the earliest time (est(T)) among all the available processors:

est(T) = est(T,p") = mjn{est(T,p)}. (1)

The effective earliest-starting-time (est(T,p")) is the least time
at which T can start on some processor p~ by considering the
precedence of T and the current free time t(p) of every processor p:

est(T,p") = m;n{ma.x{est('r,p),:(p)}}, (2)

The earliest-completion-time ect(T), that is est(T) + w(T), pro-
vides a heuristic approach to measurement of the shortest path from
starting the computation graph to completion of task T such that
all the precedence constraints are preserved. A heuristic approach to
evaluate the task-level can be obtained by evaluating the earliest-
completion-time let(7T) that results from backward scheduling the
graph over the multiprocessor.

An algorithm called LST is proposed to evaluate the the latest-
completion-time that defines the task-level in the proposed scheduling.
LST operates as follows: 1) Obtain the dual graph (G") by reversing
all arc direction in the original graph (G), 2) Schedule G over system
S(P. R) such that the earliest startable task is scheduled first, 3) for
every task T, the achieved ect(T') time becomes the task-level I(T").
According to this method, [(T’) represents an approximation of the
shortest path from task T to any exist node of G that accounts for
the precedence constraints, the communication (terms e(T,T')), and
the network latency (term r(p,p’)). Each task requires al most pn
steps to evaluate its est(7, p) time and n tasks require O(pn®) that
is the time complexity of algorithm LST.

IV. GENERALIZED LIST SCHEDULING

In this section, we generalize the Graham’s list scheduling by
defining global priority based scheduling heuristics that incorporate
the effect of inter-task communication and multiprocessor topology-
The new scheduling is called Generalized List Scheduling (GLS). A
heuristic that belong to this class consists of two steps: 1) obtain
the priority list of the tasks by using algorithm LST, 2) scheduling:
among the ready-to-run tasks, select the most prior task and assign
it to run at the earliest. The second step of GLS heuristics can
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be implemented using different strategies depending on how the
task-priority is mapped to the task level.

For GLS scheduling, there are two approaches to control the
scheduling process: Processor-driven (PD)) and Graph-driven (GD).
The PD approach consists of updating the set of ready-to-run (RTR)
tasks when any processor completes execution of some task and
becomes idle. The successors of those newly completed tasks are
involved in the updating process. This leads the PD scheduler to
track the increasing sequence of processor completion times using a
global time. For example, algorithm [4] implements the local strategy
called earliest-task-firse by using the PD approach.

The GD approach consists of updating the set RTR following the
starting of each task and only the successors of this task are involved
in the updating process without global time. This anticipating process
promotes in-depth expansion of the task-graph compared to the
rather horizontal expansion in case of PD. These approaches will
be investigated in the evaluation.

Depending on how task-selection maps into the generalized task
level and the incurred processor idle time, we define the following
GLS heuristics. Heuristics GD/HLF is Graph-driven/Highest-level-
first, i.e., highest I(T) first. Selecting tasks according to the HLF
criteria may lead to increasing the processor idle time that precedes
the starting of the highest level task. Therefore, a heuristic that
imposes a penalty function of the idle time that precedes its starting
time consists of defining the task-priority as I(T') — est(T'), where
I(T) is the length of the shortest path from a starting T to any exit
node as achieved by heuristic LST and est(T) is the effective earliest-
starting-time. This approach leads to define heuristic GD/HLETF
that is called Highest-level-earliest-task-first. According to the level
function, the selected task T satisfies [(T) —est(T") > ((Ti) —est(T5)
for any RTR task T:. In other words, we have: ! (T) — I(T3) =
est(T) — est(Ty), ie., to select task T' the difference in levels
between T' and T should be higher than the amount of idle time
(est(T) — est(T)) that would be saved if T, was selected first.

In the following, we present algorithm GD/HLETF as one repre-
sentative heuristic for the GLS class. The inputs to GD/HLETF are
the task-graph and the list of ect(T") times that are generated by LST.
This heuristic consists of selecting a task 7'~ and a processor p* such
that 1(T") — est(T",p") is the highest among all the RTR tasks.
Following the scheduling of T on p°, the time at which p~ becomes
free is f(p™) = est(T™,p")+p(T") is used to update the est(T,p")
for all the RTR tasks, i.e. est(T, p") — max{est(T,p"), f(p7)}. The
outputs are the starting time est(T") of each task and the processor
p(T) on which T is assigned. Algorithm GD/HLETF is the following:
(1) Initialize: A — {T: D(T) =0}, B ~ B, for each T and

each p: est(T,p) = 0,t(p) =0
(2) While |B] < n Do
Begin
(2.1) Select T* € A and p™: {(T™) —est(T",p")
= maxrea{l(T) — miny {est(T,p)}}
(2.2) Assign T* on p™: p(T7) = p", t(p") = u(T")
+est(T",p"), remove T" from A, add T* to B,
For each T' € A, update:
est(T,p") = max{est(T,p"),t(p")}
(2.3) Repeat for each task T' € S(17"):
Aa(T) = AalT) — 1,
If Ag(T) = 0 Then update A: 4 — A +{T},
evaluate the effective est(T, p) for each p:
est(T, p) = max{maxrreper){ F(T')
+ (T, T) - r(p(T"), p) }: t(p)}
End

Similar analysis to that of LST shows that the time complexity of

GD/HLETF is O(pn®). An optimization technique that can reduce
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the processor idle time is to attempt filling the idle time that precedes
the starting of the most prior task T by a less prior task T provided
that this operation does not lead to delay T" whose scheduling decision
will be postponed without affecting its earliest starting time. If such
task T' is found, then updating the set RTR by eventually adding
some successor 1" of T' cannot cause any delay to T because
I(T) — est(T) = I{T" )est(T") because T" € D(I") implies that
HT') —est(T') = I(T") — est(T"). This method allows defining
heuristic GD/HLETF* that applies the above idle time optimization
techniques. This approach leads to only increasing the constant in
pn®, thus leaves the time complexity as O(pn”).

V. EXPERIMENTAL EVALUATION

The objective is to compare performance of local scheduling
heuristics and the proposed approach that is based on pre-evaluation
of the task-priority and generalized list scheduling. We compare our
approach to the well known PD/ETF [4]. A heuristic called Random
is used to randomly select tasks and assigned them to run at their
earliest starting times. This is useful to compare the effect of random
and deterministic task selections.

A random graph generator (RGG) is used for generating com-
putation graphs with few hundred tasks and with task computation
time ranging from 10 to 190 time units. The average communication
cost, number of level, and the number of processors are indirectly
controlled using the parameters: 1) the ratio (o = care/pr) of
average communication carried by each edge (Care) to the average
task computation time (pr),2) the degree of parallelism (3 =
N /Nr.p that is the average number of tasks (N) over the product
of the average number of levels (N ) by the number of processors
p, and 3) the topology of the interconnection network that is the
fully-connected (FC), the hypercube (HC), and the ring (RG).

The studied ranges of o and 3 is [0-3] and [0.5-4], respectively.
The variance on Care 15 set to 50% of the current average of Cice.
Each graph has at least 6 levels and T0% of the outgoing arcs from
one level are incoming arcs to the next level and the remaining 30%
reach arbitrary forward levels. For each instance of these parameters,
the RGG uses the uniform distribution to generate 500 random
computation graphs that are scheduled by each of the previously
defined heuristics, The shortest finish time that is achieved by some
heuristic for a given task graph is denoted by (whest) and used as a
reference of the optimum solution.

A. Deterministic/Random Selection

Fig. 1 shows the average percent deviation of the finish time as
achieved by Random over the FC topology. Random task selection
may increase the finish time up to 40% on the average. Therefore,
deterministic task selection is needed specially when the parallelism
exceeds some threshold (F > 2), i.e. there are at least two tasks that
compete for cach processor on the average. The peaks and valleys
on the presented plots are due to fluctuation of the reference (wiest)
that is an approximation of the optimum solution.

B. Local Heuristics

Heuristics PD/ETF and GD/ETF have nearly the same average
deviation from wyese with small advantage to GD/ETF (2%). The
PD and GD approaches are identical within the framework of local
scheduling. However, the slight advantage of GD/ETF over PD/ETF
is due to the use of the effective earliest-starting-time in GD/ETF (2)
against the theoretical one (1) in PD/ETF. Figs. 2-4 show the average
deviation of PDYETF from whee: for the FC, HC, and RG topologies,
respectively. A deviation of 5% is achieved by PD/ETF only when
Bla 2 €iop, Where €op is a topology dependent parameter. Using
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ge Percent Devi of Rai

for the FC Topology

Av. Arc Communication ( Av. Task Time {a}

Fig. 1. Randomly selected tasks arerunning at their earliest-starting times,
but the lack of deterministic task selection leads to waste significant paral-
lelism.

Avaeraga Porcent Doviation of PDJETF for tha FC Topalogy

p=nsfi=1 f=2

p=25 p=2 fi=4q

Av. Are Communication / Av. Task Tima (1)

Fig. 2. Applying the ecarliest-task-first to the Processor-Driven PD/ETF
approach leads to acceptable performance (5%) only when the inherent
parallelism is sufficient to cover the communication(3/a > 1.5 for FC).

the definition of o and 3, analysis of the data gives:

L L

N ' Care

Therefore, to achieve acceptable deviation (5%) the inherent paral-
lelism (Nt /Ny ) and the communication ratio {Care/pr) impose a
bound on the number of processors used. We conclude that local
heuristics that are based on earliest-task-first rely on overlapping
computation and communication as a strategy to minimize the finish
time. Therefore, these heuristics require increasing the parallelism, or
decreasing the number of processors, in order to achieve acceptable
deviations as shown on Figs. 2-4.

Z €op " P+ {3)

C. Generalized List Scheduling

The heuristics GD/HLF, GD/HLETF, and GD/HLETF* give ac-
ceptable deviation from wye,. for low to average communication
(0 < o < 1.5). To save the area of this paper, only the plots of the
average deviation for heuristic GD/HLETF* are shown on Figs. 5-7
for the FC, HC, and RG topologies, respectively. While GD/HLF
deviates by more than 8% for (@ > 1.3), heuristic GD/HLETF has
overcome most of the deficiency of GD/HLF with respect to processor
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graph, communication aspects, and multiprocessor topology. Using
the generalized task-level, a number of scheduling heuristics are
proposed by combining the task-level with efficient management of
the processor idle times in defining a new global task-priority concept.

I1. GroBaL Task-LEVEL

Let T be a task and denote by D(T) the set of predecessors of T.
By considering only one predecessor task, the earliest-starting-time
est(T. p) of T for some processor p depends on the finish time f(T")
of the predecessor I' € D(T'), the number of messages (1", T") sent
from task T' to T, and the processor p' on which task T" has been
running:

_ 0, ifp=p',
est(T.p) = £(T) + {C(T,m el A
By considering all the predecessors of T, the est(T,p) is the ear-
liest time the latest message from the predecessors reaches processor
P

est(T.p) = T,lggb{(ﬂ{ffT'} +e(T.T) - r(p(T'),p(T))}

where f(T') = est(T',p(T")) + p(T'). In the event D(T) =
B, est(T, p) = 0 for every p. As the est(T, p) depends on the routing
cost r(p.p'), then there exists a processor p~ for which task T can
start at the earliest time (est(7")) among all the available processors:

est(T) = est(T,p" ) = m’:m{est{T,p)}, (1)

The effective earliest-starting-time (est(T,p")) is the least time
at which T can start on some processor p° by considering the
precedence of T and the current free time ¢(p) of every processor p:

est(T, p") = min{max{est(T.p).#(p)} } (2)
P

The earliest-completion-time ect(T"), that is est(T') + p(T), pro-
vides a heuristic approach to measurement of the shortest path from
starting the computation graph to completion of task 7" such that
all the precedence constraints are preserved. A heuristic approach to
evaluate the task-level can be obtained by evaluating the earliest-
completion-time let(T) that results from backward scheduling the
graph over the multiprocessor.

An algorithm called LST is proposed to evaluate the the larest-
completion-time that defines the task-level in the proposed scheduling.
LST operates as follows: 1) Obtain the dual graph (G') by reversing
all arc direction in the original graph (G). 2) Schedule &' over system
S(P, R) such that the earliest startable task is scheduled first, 3) for
every task T, the achieved ect(T') time becomes the task-level 1(T").
According to this method, [(1") represents an approximation of the
shortest path from task T to any exist node of G that accounts for
the precedence constraints, the communication (terms (T, T")), and
the network latency (term r(p.p’)). Each task requires at most pn
steps 1o evaluate its est(T, p) time and n tasks require O(pn®) that
is the time complexity of algorithm LST.

IV. GENERALIZED LIST SCHEDULING

In this section, we generalize the Graham’s list scheduling by
defining global priority based scheduling heuristics that incorporate
the effect of inter-task communication and multiprocessor topology.
The new scheduling is called Generalized List Scheduling (GLS). A
heuristic that belong to this class consists of two steps: 1) obtain
the priority list of the tasks by using algorithm LST, 2) scheduling:
among the ready-to-run tasks, select the most prior task and assign
it to run at the earliest. The second step of GLS heuristics can
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be implemented using different stralegies depending on how the
task-priority is mapped to the task level.

For GLS scheduling, there are two approaches to control the
scheduling process: Processor-driven (PD) and Graph-driven (GD).
The PD approach consists of updating the set of ready-to-run (RTR)
tasks when any processor completes execution of some task and
becomes idle. The successors of those newly completed tasks are
involved in the updating process. This leads the PD scheduler to
track the increasing sequence of processor completion times using a
global time. For example, algorithm [4] implements the local strategy
called earliest-task-first by using the PD approach.

The GD approach consists of updating the set RTR following the
starting of each task and only the successors of this task are involved
in the updating process without global time. This anticipating process
promotes in-depth expansion of the task-graph compared to the
rather horizontal expansion in case of PD. These approaches will
be investigated in the evaluation.

Depending on how task-selection maps into the generalized task
level and the incurred processor idle time, we define the following
GLS heuristics. Heuristics GD/HLF is Graph-driven/Highest-level-
first, i.e., highest I(T) first. Selecting tasks according to the HLF
criteria may lead to increasing the processor idle time that precedes
the starting of the highest level task. Therefore, a heuristic that
imposes a penalty function of the idle time that precedes its starting
time consists of defining the task-priority as I(T') — est(T), where
I(T') is the length of the shortest path from a starting T to any exit
node as achieved by heuristic LST and est(1") is the effective earliest-
starting-time. This approach leads to define heuristic GD/HLETF
that is called Highest-level-earliest-task-first. According to the level
function, the selected task T satisfies [{T) —est(T) = I(T:) —est(T:)
for any RTR task 7}. In other words, we have: I(T) — I(T}) =
est(T) — est(T), ie., to select task T the difference in levels
between T and T, should be higher than the amount of idle time
(est(T) — est(T3)) that would be saved if T: was selected first.

In the following, we present algorithm GD/HLETF as one repre-
sentative heuristic for the GLS class. The inputs to GD/HLETF are
the task-graph and the list of ect(T") times that are generated by LST.
This heuristic consists of selecting a task T~ and a processor p~ such
that I(T") — est(T",p") is the highest among all the RTR tasks.
Following the scheduling of 7" on p°, the time at which p* becomes
free is f(p~) = est(T™,p” )+ p(T") is used to update the est(T',p")
for all the RTR tasks, i.e. est(T, p”) — max{est(T,p"). f(p")}. The
outputs are the starting time est(T") of each task and the processor
p(T) on which T is assigned. Algorithm GD/HLETF is the following:
(1) Initialize: A — {T : D(T) =0}, B — @, for each T" and

each p: est(T,p) = 0,t{p) =0
(2) While |B| < n Do
Begin
(2.1) Select T™ € A and p": I(T"*) — est(T",p")
= maxrea{l(T) — min,{est(T.p)}}
(2.2) Assign T" on p™: p(T") = p", t(p") = pu(I7)
Lest(T".p"), remove T" from A, add T" to B,
For each T' € A, update:
est(T,p") = max{est(T,p"). t(p")}
(2.3) Repeat for each task T € S(T7):
Aa(T) = Aa(T) -1, °
If Ay(T) = 0 Then update A: A — A 4+ {T},
evaluate the effective est(T. p) for each p:
est(T, p) = max{maxrrepnr {f(T)
+ (T T) - r(p(T"), p)}:t(p) }
End

Similar analysis to that of LST shows that the time complexity of

GD/HLETF is O(pm*®). An oplimization technique that can reduce
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graph, communication aspects, and multiprocessor topology. Using
the generalized task-level, a number of scheduling heuristics are
proposed by combining the task-level with efficient management of
the processor idle times in defining a new global task-priority concept.

II. GroBaL Task-LEVEL

Let T be a task and denote by D(T) the set of predecessors of T
By considering only one predecessor task, the earliest-starting-time
est(T, p) of T for some processor p depends on the finish time f(T")
of the predecessor T' € D(T), the number of messages c(T", T') sent
from task T' to T, and the processor p’ on which task 7" has been
running:
ifp=p,
otherwise.

0,

ST0) = 10+ (G 1)),

By considering all the predecessors of T, the est(T, p) is the ear-

liest time the latest message from the predecessors reaches processor
p:

estT,p) = max {f(T') + (T T) - r(p(T').p(T))}
where f(T') = est(T'.p(T")) + p(T’). In the event D(T) =

(. est(T, p) = 0 for every p. As the est(T, p) depends on the routing
cost r(p,p'), then there exists a processor p* for which task T can
start at the earliest time (est(T")) among all the available processors:

est(T) = est(T,p") = min{est(T, p)}. (1)
P

The effective earliest-starting-time (est(T, p")) is the least time
at which T' can start on some processor p° by considering the
precedence of T and the current free time #(p) of every processor p:

est(T,p") = mpin{max{est.(T.p}A(pJ}}. (2)

The earliest-completion-time ect(T'), that is est(T') + p(T"), pro-
vides a heuristic approach to measurement of the shortest path from
starting the computation graph to completion of task T such that
all the precedence constraints are preserved. A heuristic approach to
evaluate the task-level can be obtained by evaluating the earliest-
completion-time let(7) that results from backward scheduling the
graph over the multiprocessor.

An algorithm called LST is proposed to evaluate the the latest-
completion-time that defines the task-level in the proposed scheduling.
LST operates as follows: 1) Obtain the dual graph (G') by reversing
all arc direction in the original graph (G'), 2) Schedule G' over system
S{P, R) such that the earliest startable task is scheduled first, 3) for
every task T°, the achieved ect(T") time becomes the task-level 1(T).
According to this method, I{T') represents an approximation of the
shortest path from task T to any exist node of G that accounts for
the precedence constraints, the communication (terms (T, T")), and
the network latency (term r(p.p’)). Each task requires at most pn
steps to evaluate its est(T, p) time and n tasks require O(pn®) that
is the time complexity of algorithm LST.

IV. GENERALIZED LIST SCHEDULING

In this section, we generalize the Graham’s list scheduling by
defining global priority based scheduling heuristics that incorporate
the effect of inter-task communication and multiprocessor topology.
The new scheduling is called Generalized List Scheduling (GLS). A
heuristic that belong to this class consists of two steps: 1) obtain
the priority list of the tasks by using algorithm LST, 2) scheduling:
among the ready-to-run tasks, select the most prior task and assign
it to run at the earliest. The second step of GLS heuristics can
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be implemented using different strategies depending on how the
task-priority is mapped to the task level.

For GLS scheduling, there are two approaches to control the
scheduling process: Processor-driven (PD) and Graph-driven (GD).
The PD approach consists of updating the set of ready-to-run (RTR)
tasks when any processor completes execution of some task and
becomes idle. The successors of those newly completed tasks are
involved in the updating process. This leads the PD scheduler to
track the increasing sequence of processor completion times using a
global time. For example, algorithm (4] implements the local strategy
called earliest-task-first by using the PD approach.

The GD approach consists of updating the set RTR following the
starting of each task and only the successors of this task are involved
in the updating process without global time. This anticipating process
promotes in-depth expansion of the task-graph compared to the
rather horizontal expansion in case of PD. These approaches will
be investigated in the evaluation.

Depending on how task-selection maps into the generalized task
level and the incurred processor idle time, we define the following
GLS heuristics. Heuristics GD/HLF is Graph-driven/Highest-level-
first, i.e., highest [{T") first. Selecting tasks according to the HLF
criteria may lead to increasing the processor idle time that precedes
the starting of the highest level task. Therefore, a heuristic that
imposes a penalty function of the idle time that precedes its starting
time consists of defining the task-priority as [{1') — est(T), where
I(T) is the length of the shortest path from a starting T to any exit
node as achieved by heuristic LST and est(T) is the effective earliest-
starting-time. This approach leads to define heuristic GD/HLETF
that is called Highest-level-earliest-task-first. According to the level
function, the selected task T satisfies [{T) —est(T) > I(T;) —est(T3)
for any RTR task T.. In other words, we have: !(T) — (T}) >
est(T) — est(T;), i.e, to select task T the difference in levels
between T' and T} should be higher than the amount of idle time
(est(T') — est(T:)) that would be saved if T; was selected first.

In the following, we present algorithm GD/HLETF as one repre-
sentative heuristic for the GLS class. The inputs to GD/HLETF are
the task-graph and the list of ect(T") times that are generated by LST.
This heuristic consists of selecting a task T'" and a processor p~ such
that {(T") — est(T",p") is the highest among all the RTR tasks.
Following the scheduling of 77 on p”, the time at which p~ becomes
free is f(p™) = est(T™,p" )+ p(T™) is used to update the est(T,p")
for all the RTR tasks, i.e. est(T,p") +— max{est(T.p"), f(p")}. The
outputs are the starting time est(T") of each task and the processor
p(T) on which T is assigned. Algorithm GD/HLETF is the following:
(1) Initialize: A — {T': D(T) = @}, B — 0, for each T and

each p: est(T,p) = 0,2(p) =0
(2) While |B| < n Do
Begin
(2.1) Select T™ € A and p™: {{T™) — est(T",p")

= Iuiu:qr‘e,q{f(T) — min,{est(T,p)}}

(2.2) Assign T" on p*: p(T") = p".t(p") = p(T)

Lest(T",p*), remove T from A, add T"° to B,

For each T' € A, update:

est(T.p*) = max{est(T.p"),1(p")}

(2.3) Repeat for each task T € S(T"):
AalT) = Xa(T) =1,

If A¢(T) = 0 Then update A: 4 — A+ {T}.
evaluate the effective est(T, p) for each p:
est(T,p) = ma_x{max‘;-aep(n{f{Tr]

+ (T, T)-r(p(T').p)}, t(p)}
End

Similar analysis to that of LST shows that the time complexity of

GD/HLETF is O(pn®). An optimization technique that can reduce
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exceeds the average communication(3/a > 4) due to excessive interproces-
sor communication penalty of the ring,

utilization because GD/HLETF slightly increases its deviation with
increasing communication. For all studied levels of parallelism, the
peak deviation of GD/HLETF is 4.5%. 6%, and 7.5% for the FC,
HC, and RG topologies, respectively. Heuristic GD/HLETF* achieves
the lowest average deviation that is nearly 2% for all studied level
of parallelism and communication. This shows a clear advantage
of global priority-based scheduling over the local approaches. The
slight deviation of GD/HLETF* compared to those of GD/HLF and
GD/HLETF indicates that the major issue is to combine the task-
level with efficient management of the processor idle times. This
objective seems to be achieved within heuristic GD/HLETF* that
maintains small deviation over the studied range of communication,
parallelism, and multiprocessor topologies.

D. Analysis of the Distribution

Analysis of the distribution is carried out for PD/ETF and
GD/HLETF* because these heuristics are representative of local
and GLS scheduling, respectively. Figs. 9 and 10 show the boundary
of the best 50% and 90% population of the finish time versus the
available parallelism () for heuristics PD/ETF and GD/HLETF*.

for the HC. Higher parallelism (3 > 1) gives more opportunity to overlap
computation with communication and results in shorter finish times.

Each point of the boundary is taken as the maximum deviation for
all levels of studied communications.

While the 50% boundary for PD/ETF is at the 10% deviation
level, that of GD/HLETF* does not exceed the 1.5% level. The
90% boundary is nearly about 18% for PD/ETF against 4% 1o 7%
maximum deviation for GD/HLETF*.

Changing the topology from FC, to HC, and to RG has the
effect of increasing the communication requirements on the original
computation but the general shape of the distributions is nearly
maintained. PD/ETF is more sensitive to the inherent parallelism than
GD/HLETF*. PD/ETF slightly reduces its 50% deviation boundary
versus increasing parallelism while GD/HLETF* maintains constant
deviation at the same boundary level. The dependency on paral-
lelism and topology appears only at the 90% boundary level for
GD/HLETF*.

E. Comparison 1o Other Contributions

The task priority used in [10] is too unnacurate because it incorpo-
rates all the communication carried by the edges and does not address
the processor selection problem. Its time complexity is 0(n®).
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within 3% regardless of the level of parallelism, communication, and topology.
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Fig. 8. The boundary indicates maximum deviation for all levels of commu-
nication () under each instance of parallelism (3) and topology.

Pase [7] experimentally studied 12 heuristics (S; — 512} including
the TD technique (O(pn®)) [6] and ETF [4] (S2). His heuristic
(.51) assigns priority from the graph bottom and select the task that
is closest to top. He founds that S; and ETF are among the best
heuristics and both outperform the TD scheduler of [6]. Our study
indicates that the proposed GLS outperforms ETF (Sa) versus change
in communication, parallelism, and network topology. Comparing
time complexity, all these heuristics fundamentally have identical
number of steps (O{pn®)) but slightly differ in the constant.

V1. CoNCLUSION

Using knowledge on computation, communication, and multipro-
cessor topology, a class of global priority-based scheduling heuristics
called Generalized List Scheduling or GLS has been proposed.
The task-level is evaluated as the completion time of the tasks
that results from backward scheduling the computation over the

Boundary of tha bast 50% and 390% deviation for GO/HLETF*

0.5 1 1.5 2 25 3 as 4
Av. Number of Tasks per Level/Number of Pracessors (8)

Fig. 9. The boundary indicates maximum deviation for all levels of commu-
nication (o) under each instance of parallelism (3) and topology.

multiprocessor. GLS scheduling operates on the forward task-graph
by using differential task-priority concept based on the generalized
task-level and the incurred processor idle time.

Experimental evaluation of local and GLS scheduling is carried
out by stepping over the communication and parallelism and by
considering different multiprocessor topologies. The communication
media was assumed to be contention free. Analysis shows that local
scheduling rely on maximizing the processor utilization. This strategy
leads to acceptable deviation, from the best known solution, only
when the available parallelism is sufficient to cover the communica-
tions, and therefore, leads to limit potential speedup.

Even with approximate task-level, GLS scheduling maintains ac-
ceptable deviation from the best known solution versus increasing
parallelism, communication, and restricting the multiprocessor topol-
ogy. The superiority of graph-driven over processor-driven has been
shown. The efficiency and compactness of GLS scheduling makes
it very attractive for compile-time scheduling over regularly and
irregularly connected multiprocessor topologies.

Future extension is to find more refined evaluation for the task-
level by using local search or iterative pre-processing. The use of
generic model for the interconnection network to account for the
communication delay is interesting to make the evaluation sharper
and more realistic,
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