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Abstract—The serialization of memory accesses is a major limiting factor in high performance SIMD
computers. The data patterns or templates that are accessed by a program can be perceived by the
compiler, and, therefore, the design of dynamic storage schemes that minimize conflicts may
dramatically improve performance. The problem of finding storage schemes that minimize the access
time of arbitrary sets of power-of-two data patterns is proved to be NP-complete. We propose linear
address transformations that can be dynamically applied by each processing element for mapping array
references onto memories. An efficient approach for combining the constraints of different access
patterns into one single linear address transformation is presented. We prove that finding the
transformation that minimizes the access time is reducible to N-coloring, where N is the number of
parallel memories. Using coloring heuristics, storage schemes are investigated with respect to
minimizing the implementation cost (perfect storage) and overall access conflicts (semi-perfect storage).
Results show that the perfect-storage may deviate on the average by 20% from the optimum access time
in the case of 10 arbitrary data patterns and 16 memories. However, semi-perfect schemes lead to
dramatic reduction of the degree of conflict compared to perfect-schemes. The proposed heuristic
storage largely outperforms interleaving and row-column-diagonals storages. The method can be
implemented as compiler procedure for synthesizing storage schemes that promote parallel access to
arbitrary sets of data patterns.
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1 INTRODUCTION

HE serialization of memory accesses is a major limiting

factor to bandwidth balancing between processors and
parallel memories. Memory interleaving maps consecutive
addresses into different physical memories so that simulta-
neous accesses can be performed in one memory cycle.
Conflict-free access is possible only when the stride associ-
ated with successive references is relatively prime to the
number of memories. The use of prime number of memo-
ries [1] greatly reduce potential conflicts but at the cost of
expensive address calculation.

Budnik and Kuck [2] proposed the row-rofation scheme
that allows conflict-free access to arbitrary row, and column
of arrays. To avoid run-time overhead, Sohi [3] proposed
bit-wise Boolean address transformations for vector proces-
sors in order to determine the memory number where a
given array element should be stored. The scheme can be
efficiently used for power-of-two strides but other strides
can also be accessed through the use of few buffers at the
memory inputs and outputs. The buffers reduce the effects
of transient degradation.

The image by the storage scheme of all the elements of a
given pattern should map into different memories. There-
fore, the columns or the rows of the needed transformation
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matrix should be linearly independent [4]. Norton and
Melton [5] synthesized a transformation matrix that al-
lows conflict-free access to a number of power-of-two
strides. As the interconnection network should provide
data alignment between processors and memories, other
constraints [6] can then be used for finding the storage
matrix. Boppana and Raghavendra [7] proposed a bit-wise
linear transformation matrix (nonsingular) for accessing to
the row, column, main-diagonal, and square blocks.

We are concerned with dynamically reconfigurable
storage schemes for SIMD models that minimize the over-
all access time of an arbitrary set of weighted data pat-
terns. The problem is to find how arrays can be stored
into parallel memories in order to enforce the elements
of a given data pattern be uniformly distributed over the
memories. Given a program that requires access to a set
of data patterns, our objective is to find a cost-effective
storage scheme that minimizes overall memory access
time.

This paper is organized as follows. Section 2 presents the
background. The template bases are defined in Sections 3.
Sections 4 and 5 present the perfect storage that allows com-
bining data patterns and minimizing the implementation
cost. Section 6 presents the semiperfect storage that allows
minimizing overall access conflicts. Section 7 presents our
method for synthesizing storage schemes. The evaluation of
this work and comparison to other proposals are presented
in Sections 8 and 9, respectively. The conclusions to this
work are presented in Section 10.

1045-9219/97/$10.00 ©1987 IEEE
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2 BACKGROUND

Any processor in an SIMD system can access any memory
through an interconnection network. Assume there are an
equal number P = 2” of processors and memories. Conflicts
occur when 1 processors (i > 1) try to access the same memory
during a given cycle which requires i cycles for the memory to
serve them. Since all processors run in lock-step, the entire
computation is dramatically slowed. It would be desirable to
store the data that should be simultaneously accessed into
different memories so that parallel access can be achieved.
Suppose that we know a priori the memory access pat-
terns of a given program. We assume that the data to be
accessed is a two dimensional array. For example, the pro-
gram shown in Fig. 1a that uses array ¢ with size 2% x 2%,

where d, and d, are two positive integers. Fig. 1b shows the
vectorized program that can run on an SIMD system for
which the number of PEs as well as the number of parallel

memories is 2°,

forii=0to 2%~% -1,2°
sy all PE, 1y < c(ii +k,0)
forj=0to 2" -2
s;:all PEy r, e cfii+k,j+1)

fori=0to 2{ ~1
forj=0to 28 -2
i+ 1) = i +1) <t
end
end syall Py n <1+,
spall PEg i+ k,j+1) < n
end

end

(a) original program (b) SIMD program

Fig. 1. Example of a loop that requires accessing template T;.

Due to data dependency between c(i, j) and c(i, j + 1)
across the iterations, one way to vectorize the program is
that all the eight PEs should simultaneously operate on one
subcolumn of eight elements of array ¢, at each iteration.
Statements s;, 5,, and s, require parallel access to the data
template T; shown in Fig, 2.

To Ty

JddH-

Ty

Fig. 2. Example of four templates.

A template is defined as a pattern of array elements
whose addresses are related by some relationship such as
those shown in Fig. 2. A template is a set of data elements
that should be accessed in parallel, by all the PEs, during
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the running of the program. We are interested in templates
having power-of-two elements. The origin of a template is
the coordinate, within the array, of its upper left-most ele-
ment. For example the set of all rows (columns) is a tem-
plate, and each row (column) is a template instance [4], [5].

The memory is assumed to be a single two dimensional
array of size 2 x 2" such that the element in the ath row and
the bth column is denoted by (a, b). The upper left-most ele-
ment is (0, 0). The sizes of the horizontal and vertical dimen-
sions are both 2°. An integer x is represented by xpxy ... X4 .

A row position a can also be thought of as a vector, over
the finite field Z,, the integers modulo 2. In Z,, addition
corresponds to logical exclusive or, and multiplication corre-
sponds to logical and. We define a vector space F= Z for

horizontal position. Let F = {fy, f;, ..

basis of F, ie, fo=(1,0,0...0,/=00,10...0) ... fiu=
(0, 0, 0 ... 1). Each row has a unique representation as a vec-

. f4-1] be the canonical

torin F. A Row a is expressed as agfo @ a4, f; @ ** @ a4 fy in
terms of F. We similarly define vector spaces G for column
positions and H or memory unit numbers, with canonical

bases G = {gq. &1, -.- 844} and H = {l, hy, ... ), respectively.
The Cartesian product of the vector spaces Tand G s a

new vector space V= Fx G with basis Ify, fi, ... fo-1, &0 &1/
... a1)- Let n = 2d. We denote this combined basis as V =

{vg, Oy ... Dyl where vy = fo. 1 = f1, ¥4 = 8o, etc. This vector
space is isomorphic to Z;. Any location (a, b) in memory is

uniquely associated with a linear combination of the basis

elements aglg ® - Ay 1V =] bUUﬂi D@ bif—'lvu—]' Addmg
two vectors in Z, corresponds to bitwise exclusive or. We

refer to the elements of the basis V using either fs and gs, or
vs, depending on which is notationally convenient.

3 TEMPLATES

We define a template 7; by a basis T;, which is a nonempty
subset of V. Notice that there is a definite distinction be-
tween the definition of a template T;, which is a set of sub-
arrays, and its basis T;, which is a set of vectors. We assume
all templates bases are of size p, i.e., there are 2" elements in
any given template instance. This is best explained by
looking at some examples. Let p and d both be 3. Qur basis
is V.= Ifo, fi, fo. 8or 81- Qo}, T, alternatively, V = {vg, v; ... vs).
Consider the template 7T, defined by T; = (fy, fi, f). The set
of templates instances described are all nonoverlapping
columns of eight elements, the upper left-most template
instance having origin (0, 0). Every element in a template
instance is a linear combination a, fy ® a;f; @ a. fr ® by gy @
big, @ b, g,, where the bs are constant, and the as are al-
lowed to vary (bygo ® by g ® by g, is the template instance’s
origin). Intuitively, we are letting the three least signifi-
cant bits of a vary, while the other bits of a, and all bits of
b, remain fixed. By allowing different bits to vary, we
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generate templates of different shapes. Let 7, have ba-
sis T, = fy, fi, ). Then, in 7; all template instances are
four elements tall. Since g, is omitted, this template skips
a column. Thus, we have two 4 x 1 subarrays, spaced two
columns apart. We define T; by T5 = {fy, fa, g0l This tem-
plate is four 1 x 2 subarrays spaced two rows apart. We let
T, have basis T, = [fy, fi, gol- It is a 4 % 2 subarray. All of these
templates are illustrated in Fig. 2.

An XOR-scheme is a linear function ¢: F x G = H . The
function ¢ is represented by a p x n matrix, which we de-
note ®@. We apply ¢ to a vector X by matrix multiplication:

.to
B(xg) Xy Xpy) = @

The ith entry of the jth column of @ is @;,. (The upper left-
most entry is @;,.) We denote the ith column of ® by @,
and the ith row of @ by @;.. The columns of this matrix rep-
resent the values, in terms of the basis H, of ¢ on the mem-
bers of the basis V, i.e,, ®, ; is the value of ¢(v)).

We can also consider ¢ as an ordered set of p functions,
{¢o, &1 ... §,4}, mapping from F x G to Z,, where ¢(X) =
B(XHy ® 6,C0h, © - @ §,.,(X)h,.1. The matrix of ¢, is ®;..

Then ¢ allows contlict free access to 7;, if and only if ¢
maps each linear combination of T; to a unique element of
H. Since ¢ is linear, all translations of these linear combina-
tions are also conflict free. In other words, if for one template
instance X in 7;, ¢ restricted to X is one to one, then for all
template instances X in T}, ¢ restricted to X is one to one.

4 PerRfFecT XOR-SCHEMES

We say that an XOR-scheme is perfect if and only if all col-
umns @, ; contain at most one nonzero entry. In other words,
in the expression ¢(X) = ¢y(X)hy @ ¢,(X)h, @ - @ ¢, COh,y,
any particular x; is used at most once, where h; is the ith ca-
nonical vector of the basis of the memory numbers. A perfect
XOR-scheme only requires n XOR gates to be implemented.
We give an example using the templates of Section 3 for
which n = 6 and p = 3. We would like to find a perfect XOR-
scheme for this set of templates. But first, let us consider the
subset of templates (7], T,, 7,]. Notice that f; appears in all
templates bases of this subset. Therefore, let ¢y(ay, a;, a,, by,
by, by) = a,. Further, notice that gy appears only in T; and f;
appears only in Ty and T,. Therefore, let ¢;(ap, a;, ay, by, by, b3)
= by @ ap. Finally, notice that g; appears only in T, and f;
appears only in T; and T5. We let ¢y(ag, ay, ay, by, by, by) = by @ a,.
Let us generalize this procedure.
THEOREM 4.1. Let < be the matrix of a perfect XOR-scheme. If
Oy; =1 and Oy = 1 where i # j, and v; and v; are both in
T, then ‘T; cannot not be accessed conflict free.

PROOF. This is easily seen by a counting argument. ¢ can only
take on two values. x; and x; can each take on two values,
for a total of four. Further, because each column of &
contains at most one nonzero, no other ¢, varies with x; or
;. Therefore, given a template instance, we are mapping
two elements of it to each memory unit in its image. O
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Let T:V — 2 bea function mapping from a given basis
vector to the set of templates bases which contain that vec-
tor. More precisely, T; € T(v) if and only if v € T;, We allow
®y; =1 and @; = 1 only if T(v) and T(UI-) are disjoint. The
conflict graph (V, E) of the template set represents this re-
lationship. The vertices of the graph are the vectors of the
basis V. An edge (v, v)) is in E if and only if i # j and T(v)) n
T(v)) # @. The graph for Ty, Ty, and T is illustrated in Fig. 3.

N
S
@ (*
Fig. 3. Gonflict graph for templates T;, Ty, and Ta.

THEOREM 4.2. For a set of templates T, a conflict free XOR-
scheme for P menory units exists, if and only if the conflict
graph of the templates is p-colorable.

PROOF. Suppose the conflict graph is p-colorable. Then, let
®;; =1 if and only if vertex v; has color i. ¢ is perfect
and conflict free, since for all {, if ®;; =1 and ®; =1,
then 7; and v; cannot be in the same template. Con-
versely, given a conflict free XOR-scheme ¢, color the
conflict graph of its templates by giving a vertex v; the
color j if and only if ®; = 1. No vertex is assigned
more than one color, because each column of @ con-
tains at most one nonzero entry. No two adjacent verti-
ces are assigned the same color, because this would
imply that the XOR-scheme is not conflict free. ]

Indeed, the graph in Fig. 3 is three-colorable. The matrix
of the perfect XOR-scheme is:

h fih &% & %

01 0000
®=/1 0 0 1 0 0
001010

However, consider what happens when 7 is added. The
graph of T; ... Ty is shown in Fig. 4. This graph is not three-
colorable, because gy, fo, fi, and f; form a clique, and, thus,
no perfect XOR-scheme exists. We can prove [8] that find-
ing a perfect XOR-scheme for a set of templates and arbi-
trary p is NP-complete. Note that two-coloring is polyno-
mial, and, thus, finding a perfect XOR-scheme for four
memory units is tractable.

®)
AN

@/
‘ g

Fig. 4. Conflict graph for templates Ty ... Ts.
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5 NoNnpPERFECT XOR-SCHEMES

Suppose we do mot restrict ourselves to perfect XOR-
schemes. Does the set of templates in Fig. 2 have an XOR-
scheme? By inspection, we find the matrix of one possible
XOR-scheme is:

o i i3 & &
01 00 0O
®&=(1 0 0 1 0 0}
1 01 0 10
Why does this function allow conflict free access? Consider

¢ restricted to the template 7;. The matrix of this restricted
function is:

fo h £
01 0
®(T;) = [1 0 0].

1)
Notice that this matrix has rank 3; its columns are linearly
independent. The dimension of the image of ¢ restricted to
T, is three, and, therefore, conflict free access is assured. We
denote ¢ restricted to T; by ¢(T)). The matrix of ¢(T}) is
®(T;) = (CD_J-]U & The matrices of ¢ restricted to T, ... T

have all rank 3. In general, we need to find a function ¢
with matrix @, such that ®(T;) has rank l'.ﬁ

, for all templates
7,. How can such XOR-schemes be found? First consider a
more general problem.

Suppose we are given:

1) a vector space Z = Z},
v}, and
3) aset T={T;, Ty, ... T}, where each T; is some member

2) a set of variables V = {vg, vy, ...

v ; -
of 2" and each variable must appear in some T,

The problem is to assign each variable a value in Z, such that
for all i, the vectors assigned to the variables in T; are linearly
independent. We call this problem linear independence satisfi-
ability (LIS). We can prove [8] that LIS is NP-complete. Our
proof that LIS is NP-complete does not depend on the fact
that Z is over Z,. LIS is NP-complete over any finite field.

It is easily seen that LIS is equivalent to finding a nonper-
fect XOR-scheme. Note that finding a general XOR-scheme
for four memory units is NP-complete, where finding a per-
fect XOR-scheme for four memory units is polynomial. Also
note that we can build independence graphs only for p = 2.
We need to find a model of XOR-schemes for p > 2, from
which good heuristics can be derived.

6 SeEMmMIPERFECT XOR-SCHEMES

We investigate a class of XOR-schemes which are some-
where between perfect and general XOR-schemes. We call
this class of XOR-schemes semiperfect. We say that an XOR-
scheme ¢, represented by a matrix ®, is semiperfect if and
only if for all templates 7} in 7, the matrix of ¢ restricted to
’1} contains at most one column with two nonzero entries,
and the rest of the columns have one or zero nonzero entries.

THEOREM 6.1. Let @ be a matrix over Z, with at most one
nonzero entry in each column. Let @' be defined by:

" 1
;= @,

i=cand j=k
otherwise

for some fixed ¢ and k. Then rank(®") = rank(<b).

PROOE. If @, = 1, then @’ = ®, and, therefore, rank(®’) =
rank(®). Otherwise, if some other column @ , has a
nonzero in row ¢, then add @ | to ©, giving a new
matrix ®”, which has the same rank as ®’. Since this

other column must have at most one nonzero entry,
the only change to ®” is that ®, = 0. Now @” = &,

and, therefore, rank(®”) = rank(®). If no other column

®. , has a nonzero in row ¢, then the rank of @’ is one
greater than that of @. m}

Given a perfect XOR-scheme for a set of templates (in
which some templates are not accessed conflict free), we
can use the preceding theorem to create a semiperfect
XOR-scheme with a decreased number of conflicts, by se-
lectively adding ones to its matrix. In fact, the example
given in Section 5 is a semiperfect XOR-scheme. We call this
process of selectively adding ones augmenting.

Given a perfect XOR-scheme which is not conflict free,
we want to know if it can be augmented to a conflict free
semiperfect scheme. Unfortunately, answering this is NP-
complete. Each column @, ; will either be augmented or not.
For each template 7}, at most one column of ®(7;) may be
augmented. Given these restrictions, we wish to find a sub-
set of columns fo augment such that all ®(7} ) are aug-
mented. For p = 3, this problem is exactly ONE-IN-THREE
SAT, which is NP-complete [9].

7 HEeuRisTIC APPROACHES

To p-color conflict graphs, we extend the weight function to
the edges and vertices of the graph. The weight of an edge
is proportional to the number of extra CPU cycles that will
be spent if the vertices of that edge are identically colored
(assuming that all other edge constraints are met). Thus, the

weight of an edge is m[ﬂ,-, vj-) = ZU_ s o(T,), where o(T,)
is the access frequency of T;. The weight of a vertex is defined
by @(v,) = max, {m{v;, v, )} The weighted graph for 7 is

shown in Fig. 5.

Fig. 5. Weighted conflict graph.
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Graph coloring heuristics are used for solving problems
such as scheduling [10], and register allocation [11]. One of
the simplest heuristics is the greedy coloring algorithm [12].
We present two heuristics called Highest-Weighted-Conflict-
First (HWCF) and Most-Immediate-Conflict-First (MISF) for
generating perfect XOR-schemes. These are modifications
of the basic greedy method for weighted graphs.

A color number is an integer in the range [0 ... p - 1]. A
vertex number is an integer in the range [0 ... n - 1]. A tem-
plate number is an integer in the range [0 ... ¢ - 1]. An array
cost(v, ¢) indexed by vertex numbers and colors is used.
Initially, cost(v, ¢) = 0 for all v and all c.

HWCF works as follows. Put all vertices in a priority
queue H sorted in the decreasing order of the weight. Pick
the maximally weighted vertex from H, say v, and assign it
color ¢ so that cost(v, ¢) is the least among all colors (least
conflict). The next step is to updates the cost values of the
vertex’s neighbors. For this cost(w, ¢) is augmented by w(w, v)
for each vertex w that is adjacent to v and edge (w, ) is re-
moved from the adjacency list as it will need no further
consideration, Repeat until all vertices are expended.

We are best equipped to decide the color of a vertex
when some of its neighbors have already been colored. The
uncolored neighbors of vertices in the colored set are col-
oring candidates. MICF works as follows. Pick the maxi-
mally weighted vertex from H, say v, and color it as in
HWCE. Next, add the vertices adjacent to v to a priority
queue H,; that is empty before any vertices are colored. We
repeatedly remove the maximal vertex from H,y and color
it, until the current component is completely colored (the
graph may not be connected). We have completely colored
the current component. We proceed to the next component
by deleting the colored vertices from H and setting H,;; = @.
This proceeds until H becomes empty.

Analysis of the time complexity [8] shows that HWCF and
MISF run in O(p(t + n) + 1't) time, where t, 2”, and n, are the
number of templates, the number of processors, and the
number of distinct vectors of the template bases, respectively.

We now introduce a heuristic SP for augmenting a perfect
XOR-scheme, which has conflicts, to a semiperfect scheme,
with fewer conflicts. We assume that a perfect XOR-scheme
is given. SP works as follows. If a one is added to a column
®.;, then a one cannot be added to any column &. ;, where
®,; and @, ; are both in some ®(T}). Or, alternatively, v, and
v; are both in Tj. Whenever a one is added to a column @, ;,
mark all 7, such that v; is in T}, as blocked.

Initially, no columns are blocked. We consider templates
in order of their weight (maximal first). 7} is conflict free, go

to the next template. Otherwise, two columns of ®(7;) are
necessarily identical. Adding a nonzero to one of the col-

umns will increase the rank of ®(7}), provided that the row
to which the nonzero is added contains only zeros, and that
the column is not blocked. In the case that one of the col-
umns is blocked, we augment the other one. If neither is
blocked, we may choose to augment either. We choose the
one which is contained in the least number of templates. Let

the column so chosen be @, . We examine the rows of ®(T;).
If some row k contains only zeros, we set ®y; =1, and add
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all the vectors (columns) which appear in some template
with 7; to the blocked set. We then proceed to the next tem-
plate. The time complexity [8] of SP is O(p’tlogt + apn)

where « is the number of calls to SP.

8 PERFORMANCE EVALUATION

We experimentally evaluate the performance of the pro-
posed schemes and compare them to other known schemes.

Let @(T;) be the number of accesses to 7. A lower

bound A, on the number of accesses can be defined as
A= Zw(’fr) Unfortunately, there is no guarantee that

Anin s achievable. Therefore, the optimum access time

(Agpy) of a perfect scheme, for a given set of templates each
with a given frequency, is found by using a branch-and-
bound algorithm.

We evaluate the performance of a perfect XOR-scheme
by comparing the number of accesses required with the
optimal perfect XOR-scheme. Denote by A, the average
number of accesses of storage scheme s and let P, = (A,/Aqp

- 1)100 be the percentage of extra memory accesses beyond
the optimal that s requires. The number of memory accesses
for a perfect XOR-scheme is:

As o ZW(TI,)Z(V rank{ﬁ-‘['f, ]J]
T,eT

We tested heuristics HWCF and MICF using a Monte
Carlo simulation. Template sets were generated randomly.
Given n, p, and f, we generated randomly t unique tem-
plates consisting of p unique vectors, selected randomly
from a basis of n vectors. Each template was given a ran-
dom weight between 1 and 105, inclusive. Heuristics HWCF
and MICF were run on each template set. The results of this
simulation are displayed in Fig. 6.

30 T T v T
B
a8 - e -
o Pl —
® = =
- -
20k ; & i -
@ 5 [ M
2 : o e
A - >
E o : 4
e -
& L ; -
0 g L - .
A .
w0 5 . - + 4
- " -
.v"l' T
5 _,.:,'"' s
=
[ L n e
3 4 5 12

[] Ik ] ]
NUMBER OF TEMPLATES

Fig. 6. Plots of Pywerand Pyyse for perfect storages.

Average Pywer and Pyyge are shown for 3 < £ <12 and
§ = P = 64. One thousand cases were run for each instance
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TABLE 1
PERCENTAGES OF TEST CASES WITHIN PERFORMANCE RANGES
0-4 5-9 10-14 15-19 20-24 25-29 30-34
HWCF & SP 76.2 5.2 33 19 0.9 0.5 0.2
MICF & SP 78.7 35 1.9 0.9 0.4 0.2 0.1

of P and t. The speed of the branch-and-bound algorithm
prohibited us from completing the figures. The number of
distinct vectors of all the generated template bases was
fixed at n = 17 (17 is prime). Note that, in general, HWCF
was outperformed by MICF. Both heuristics degrade in a
smooth fashion with increasing numbers of templates and
increasing template size. However, for a dozen templates
and ‘16 memory modules, both heuristics deviate on the
average by more than 20% from the optimum solution.

The semiperfect heuristic SP has been applied to each of
the perfect schemes that are found using HWCF, MICF, and
branch-and-bound, respectively. The percentage deviation
from branch-and-bound of semiperfect schemes are de-
noted by Sywer and Sys. Fig. 7 shows the plots of Sywer
and Syger. For example, using six templates and 32 memo-
ries, the average increasing over the optimum in the access
time (MICF) of a template is 0.058 cycles (Fig. 7) if the op-
timum access is one cycle. The semiperfect heuristic
strongly reduces the degree of conflict and decreases its
deviation by nearly 50% from that obtained for perfect-
schemes. This significant improvement is achieved at the
cost of incorporating few percents of additional 1s in the
storage matrix, i.e., minimizing the number of gates to
implement the transformation matrix. For all the studied
cases, the cost of upgrading a perfect scheme to semiper-
fect is below 5% the implementation cost of the perfect
scheme.
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Fig. 7. Plots of Spwer and Syygr for semiperfect storages.

Analysis of the distribution for the deviations of Sywcr
and Sy g indicates (Table 1) that nearly 76% and 78% of the
population is within the 4% deviation boundary, respec-
tively. It gives the percentages of test cases (for the entire
study) which fell within the given performance ranges.

Comparison of the proposed scheme is carried out with
respect to traditional row-major interleaving and to a fixed-

pattern scheme similar to the one proposed in [6]. The se-
lected fixed-pattern scheme allows conflict-free access to
rows, columns, and both diagonals, For the generated tem-
plates, the average access time for interleaving ranges from 6
to 18.64 fold the optimum access time for P € (8, 16, 31, 64].
The average access time of the fixed-pattern scheme ranges
from 4.23 to 5.84 fold the optimum access time for the same
memories. The fixed-pattern scheme is superior to the row-
major scheme, but it is largely outperformed by the semi-
perfect scheme. This shows that our storage scheme signifi-
cantly reduces the access time in the case of arbitrary types
of templates.

Finally, we show that our approach to perfect storage
finds optimum combined address transformations for arbi-

trary sets of power of two strides. Denote by s¢ = {fiw frwrr oo

fiep) the basis of a template that allows conflict-free access
to stride 2" with 2" memory modules. Similarly, the basis of
stride 2" is $401 = Ufia1s fisz -+os frsp)- The bases s, and sy,

share p — 1 canonical vectors that are fr.y, ..., fiap1- There-

fore, the vectors of s; and s;,, are p-colorable by using our
perfect storage scheme. Moreover, our heuristic approach
to perfect storage schemes enables finding an optimum com-
bined address transformation for arbitrary sets of power of
two strides.

For example, the address transformation matrix that is

found by the perfect storage scheme for strides
{2":051'57} and eight memories is:
o i bl B ki bk
18000 0k 10 S0 SOAEETERORR0 ]
®=|0 1 0 0 1 0 0 1 0 0}
8: 0 100 a RIS SORETISI0

9 COoMPARISON TO OTHER APPROACHES

By considering a given set of templates, Frailong et al. [4]
analyzed the conditions for conflict-free access of data pat-
terns. They proved that the columns or the rows of the
needed address transformation matrix should be linearly
independent. Qur approach extends the concepts intro-
duced by the above researchers and proposes an efficient
method for combining arbitrary templates within one single
address transformation. We have identified the necessary
and sufficient conditions that a combined storage scheme
should satisfy in order to minimize access conflicts.

Norton and Melton [5] proposed a transformation matrix
for the RP3 multiprocessor that allows conflict-free access
to some power of two strides. Sohi [3] used manually syn-
thesized address transformations (bit-wise) for stride access
in vector processors. He proved that few memory buffers
can reduce the effects of transient degradation in pipelined
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memories when arbitrary strides are accessed. By using
bitwise linear transformation matrices, Boppana and
Raghavendra [7] proposed a conflict-free storage scheme to
the row, column, main-diagonal, and square blocks. While
all the above schemes are manually synthesized, we pro-
posed heuristic approaches for automatic (compiler) syn-
thesis of general storage schemes that minimize overall ac-
cess time of arbitrary data templates. We proved that
finding the address transformation for a given set of data
patterns is reducible to N-coloring, where N is the num-
ber of memory modules, We also proposed heuristics for
synthesizing storage schemes for arbitrary data templates.
More sophisticated coloring heuristics can be used as well
for refining the solution.

10 CONCLUSIONS

The performance of SIMD computers can be dramatically
affected by the serialization of memory accesses. Perceiving
data templates and their access frequency is within com-
piler capability. The use of this knowledge by a cost-
effective heuristic storage scheme has been proposed in an
attempt for minimizing access time.

In this work, we generalized the concept of conflict-free
access Lo data palterns in SIMD systems, proposed an effi-
cient approach combining arbitrary templates within one
single address transformation, and found the necessary and
sufficient conditions for conflict-free access.

Our objective was to find heuristic approaches for auto-
matic synthesis of general storage schemes. For this, we
proved that finding the address transformation for a given
set of data patterns is reducible to graph coloring. We also
proposed heuristics for synthesizing address transforma-
tions for arbitrary data patterns. Evaluation of this ap-
proach has experimentally proved to be effective in reduc-
ing the amount of conflicts while using reasonable imple-
mentation cost. The contribution of our work are:

1)} a nonredundant XOR-matrix for arbitrary combined
templates,

2) use of conflict graphs to represent the optimization
problem, and

3) an efficient heuristic for minimizing the access time.

To our knowledge, our work is the first attempt to auto-
mate the process of synthesizing dynamic storage schemes
that allows minimizing overall access time of arbitrary
power-of-two data templates.

The proposed dynamic storage schemes are intended to be
part of the processor segment translation table. Since the allo-
cation scheme is invisible to the programmer, reduced algo-
rithm complexity and reduced design time are immediate
developments of this research. One possible future extension
to this work is to use more sophisticated coloring heuristics,
incorporate network and data alignmént requirements, and
study of application in secondary memory organization.
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