EFFECTS OF LOOP FUSION AND STATEMENT
MIGRATION ON THE SPEEDUP OF VECTOR
MULTIPROCESSORS

Mayez Al-Mouhamed (1) and Lubomir Bic (2)

(1) Department of Computer Engineering
King Fahd University of Petroleum and Minerals (KFUPM)
31261 Dhahran, Saudi Arabia

(2) Department of Information and Computer Science
University of California Irvine,
California 92717, USA.

Summary: Vector multiprocessors rely on both spatial and temporal parallelism for achieving
significant speedup. For singly nested loops, we study the effect on the speedup of: 1) loop fusion and,
2) increasing the granule-size of parallel-vector loops using extracted statements from scalar loops.
The proposed optimizations migrate vector statements from one loop to another, create new loops, and
reduce others. Loops and statements that belong to strongly connected data paths are vertically fused,
whenever possible, in order to promote chaining and cache/register reuse. To reduce loop
synchronization, horizontal fusion is also used for independent loops having compatible dependence
types. Finally, vector operations are scheduled based on knowledge of the timing of arithmetic
pipelines, load/store operations, and management of the available resource. Testing is carried out using
synthetic Fortran programs on the Convex C240 vector multiprocessor. The proposed loop fusion
improves the speedup by 18% to 43% over the C240 commercial optimizing compiler. Chaining-
oriented scheduling and allocation yield 9% to 15% improvement over the highest optimization option
of the C240 compiler.



JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 31, 56-64 (1993)

Effects of Loop Fusion and Statement Migration on the Speedup of
Vector Multiprocessors

MavEzZ AL-MouHAMED® AanD Lusomir Bict

*Computer Engineering Department, College of Computer Science and Engineering, King Fahd University of Petroleurn and Minerals, Dhahran
31261, Saudi Arabia; and tDepartment of Information and Computer Science, University of California-Irvine, Irvine, California 92717

Vector multiprocessors rely on both spatial and temporal
parallelism for achieving significant speedup. For singly nested
loops, we study the effect on the speedup of (1) loop fusion
and (2) increasing the granule size of parallel-vector loops using
extracted statements from scalar loops. The proposed optimiza-
tion migrate vector statements from one loop to another, create
new loops, and reduce others. Loops and statements that belong
to strongly connected data paths are vertically fused, whenever
possible, in order to promote chaining, register, and cache reuse.
To reduce loop synchronization, horizontal fusion is also used
for independent loops having compatible dependence types.
Finally, vector operations are scheduled based on knowledge
of the timing of arithmetic pipelines, load and store operations,
and management of the available resource. Testing is carried
out using synthetic Fortran programs on the Convex C240
vector multiprocessor. The proposed loop fusion improves the
speedup by 18 to 43% over the C240 commercial optimizing
compiler. Chaining-oriented scheduling and allocation yields
9 to 15% improvement over the highest optimization option of
the C240 compiler. © 1995 Academic Press, Inc.

1. INTRODUCTION

Research of the past decade has generated impressive
improvements [16] in the design of parallel vector proces-
sors (VPs), due primarily to decreasing cycle time, the use
of faster pipelined memories, and the increasing number
of VPs. Vector multiprocessors allow exploiting spatial and
temporal parallelism [20, 4] bsed on recurrence analysis
that enables finding the maximum inherent parallelism
in loops.

Restructuring compilers such as Parafrase [15, 20], PFC
[3], UFTN [8], or V-Pascal [17] perform data dependence
analysis of loops in order to classify them depending on
their inherent parallelism. Scalar loops (SL) are the least
reduceable because of their tight recurrences. Techniques
for extracting parallelism out of SL loops have been devel-
oped based on recurrence analysis [10]. For example, Cycle
Shrinking [16] and Graph Traverse Scheduling [4] split
the loop iteration range into independent or synchronized
partitions which can run in parallel.

Loop fusion has been considered [7] as an optimization

0743-7315/95 §12.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

method for compiling programs targeted to distributed-
memory systems. Loop fusion simplifies [13, 14] data parti-
tioning and allows increasing memory reuse. Loop fusion,
however, has not been utilized heavily with vector multi-
processors.

Vectarizing compilers support operators to extract par-
allelism from loops that are primarily classified as scalar
or having limited parallelism. Unfortunately, the extracted
parallelism is distributed only out of the original loop. The
work presented in this paper is based on the use of known
techniques for extracting parallelism but with the objective
of reducing the granule size of some scalar loops, fusing
loops, forming new loops, or migrating statements from
one loop to another whenever possible. With this ap-
proach, vector scheduling is proposed in order to exploit
the locality of data producers and consumers that results
from fusion. Scheduling of vector operations is based on
the use of an accurate model and timing of the underlying
vector processor. The benefits are an increase of the gran-
ule size of parallel vector loops at the expense of scalar
loops, increasing reuse of cache memory and vector regis-
ters, improved chaining, and reduced loop synchronization.
The approach has been tested on the Convex C240 main-
frame.

This paper is organized as follows. In Section 2, we
present a review of recurrence analysis. Section 3 presents
our approach to loop distribution and fusion. Loop sched-
uling for the Convex C240 is developed in Section 4. Re-
solving conflicts due to register and data-path allocations
is presented in Section 5. Section 6 presents the evaluation
of this work and Section 7 concludes about this work.

2, BACKGROUND

Recurrences [16, 18] are the most important inhibitors
of loop vectorization. A recurrence consists of a value that
is computed in one iteration and used in another iteration
of the same loop. To preserve the original chronology of
the references, it is important to find out whether the loop
can be vectorized while still generating the results wanted
by the user. The basis for the detection of recurrences is
the analysis of the dependence distance and recurrences.

Data dependence analysis [10] is concerned with the



LOOP FUSION AND STATEMENT MIGRATION 57

memory access order as required by a program. A data
dependence between references indicates that they access
the same memory location with a given order. The types
of accesses can be: (1) read-after-read (RAR) or input
dependence, (2) read-after-write (RAW) or true depen-
dence, (3) write-after-read (WAR) or anti dependence,
and (3) write-after-write or output dependence. We note
that RAR does not constrain the access order.

The number of iterations d between the source and the
sink of the dependence is called the dependence distance.
Consider a loop indexed by (i, ..., ix, ..., i,,) from outermost
to innermost and let a(iy, .., iy, - i) = F(a(i, -
iy — dg, ..., i,)) be an expression of the innermost nest.
Evaluation of a(iy, ..., iy, ..., I,) is dependent on reference
a(iy, ..., iy — dy, ..., i,) that has been evaluated d, iterations
earlier. For a given array reference, the dependence dis-
tances can be represented by a vector D = (dy, ..., d,)
whose elements are displayed from left to right to represent
the dependence from the outermost to the innermost loop
of the nest. The element d, is the dependence distance of
the referenced array of the kth nest of the loop.

To illustrate, assume the loop body is a(i — 2) =
F(a(i — 4), ...), where a is an array and F is some function.
The dependence distance is d; =1 — 4 — (1 — 2) = —2.
At iteration i = 8, a(4) is read but two iterations earlier
a(4) was written, which indicates the presence of a
RAW dependence.

Recurrence analysis [19] is useful to determine the chro-
nology and the relationship of operations. A recurrence
order cannot be changed without affecting the results.

A loop-carried-dependency (LCD) is the minimum con-
dition for a recurrence to exist. An LCD test uses function
led(ry, r») that can be defined by using an n-nested loop
for which the jth iterator is i; - [b;, ub;, 5;, where [b;, ub;, 5;
are the lower bound, upper bound, and stride, respectively,
The range of the jth normalized iterator is b; = [1, (ub, —
Ib; + s;)/5;]. A loop carries an LCD dependency when
there exists at least two references r; and r;, to the same
array, such that fed(r,. ry) gives true value. In the case of
a singly nested loop, r, is generally defined by a( f1(i;. i>.
) Blin, b, ), ). The value of ry is computed an iteration
(i1, &z, ...) and used by reference r, = a(gi(i). iz, ...), (i,
I3, ...), ...) at some iteration (i, + ky, i> + ka2, ...) . Therefore,
ldc(ry, r;) = 1if there exists integers k| € by, k; € b, etc
such that fi{ils 1‘2‘ ...) = gl(il = ki.s‘l s+ kzs;. ), fz{f] o
I, ) = g2l + kysy. b + koss, ). elc.

Recurrence analysis establishes the validity of loop
transformations [15] that can be applied to each type of
loops in order to exploit its inherent parallelism. The most
used loop transformations [16] are strip-mining, loop distri-
bution, and loop interchanging.

Strip-mining splits the original loop, that is generally the
innermost loop, into two loops: (1) a sequential or vector
iterator whose bounds match the vector register size and
(2) a parallel iterator that controls the number of times
the vector iterator should execute.

Loop distribution creates many loops from a composite

loop in order to overcome the limitation of only being
able to vectorize innermost loops. A simple loop nest is a
multinested loop where all calculations are done in the
innermost loop. This enables distributing the outermost
loop and vectorizing each of the resulting simple loop nests.

Loop interchanging consists of permuting the order of
loop nests to achieve any of the following objectives: (1)
interchanging the most vectorizable loop (avoiding a recur-
rence in the original inner loop) to innermost and the most
parallelisable loop to outermost, (2) increase spatial reuse
of data in cache memory, (3) order the loop nests in increas-
ing order of loop counts from outermost to innermost,
which is more suitable for vectorization. The way arrays
are stored in memory influences spatial reuse of the cached
data. For example, column-major organization of the array
a(i, j) leads to positioning of the i loop as innermost.

3. LOOP DISTRIBUTION AND FUSION

Our objective is to investigate the benefit of fusing loops
and statements following the extraction of parallelizable
computations out of loops that are primarily classified as
scalar loops. We do not search to extract all the parallelism
out of such loops. There are many approaches to exploit
most of the inherent parallelism in loops [15, 16, 18]. The
effectiveness of the gained speedup is necessarily depen-
dent on the reduction factor, the granule size of the loop,
and the amount of needed synchronization.

In the following, we present an algorithm called Distrib-
ute for reducing the granule size of loops that are primarily
classified as scalar loops. Algorithm Distribute classifies
loops into a number of categories depending on the amount
of available parallelism and synchronization needed to gen-
erate correct results. The algorithm for distributing loops
can be described by the following steps:

1. Aloop L is classified as loop-independent-dependency
(LID) if L does not carry dependency from one iteration
to another but dependency may occur across the references
of the same iteration. This is true when every pair of refer-
ences r; and r» of L satisfy led(r,, 1) = 0, where led(r,.
r2) is the loop-carried-dependence test. The test led(ry, r2)
yields true value only when r, is referenced in some itera-
tion and assigned in another iteration. A loop-indepen-
dent-dependency (L) can be strip-mined to gencrate a
parallel vector loop (PVL). If this step succeeds in classify-
ing L as an L, then processing of L terminates and pro-
cessing of the next loop L' is started.

2. Loop L could be partitioned into a number of Ly,
loops and one reduced L;, loop if some expressions of
L are only involved in LID dependence which enables
distributing each of these expressions out of the original
LCD loop. In other terms, there is no reference ry € Ly,
for which there exists another reference r, € L such that
led(ry, r») = 1, where both ry and r, reference the same
array. Each synthesized Ly, loop will be formed by one
expression that is free of LCD dependencies. Based on



58 AL-MOUHAMED AND BIC

data producer—consumer relationships, a resulting L, loop
could either be predecessor or successor with respect to the
remaining L., loop in the corresponding dataflow graph.

3. Partial vectorization (PV) is attempted in order to
reduce the granule size of the current L., loop. PV consists
of distributing parallelizable and vectorizable statements
out of LCD vector expressions. The distributed statements
should not be involved in LCD dependence with the re-
maining expressions of the same loop. Temporary arrays
are used to store the results of the distributed statements
that become predecessors to their original LCD expres-
sions in the dataflow graph. PV may generate an arbitrary
number of Ly, loops that will be classified as PVL.

4. A reduction is detected whenever two references r;
and r, of one expression reference a scalar or array with
led(ry, r2) = 0 and r, is used prior to storing a computed
value into r,. A reduction operation can be vectorized by
using dedicated vector accumulator, vector compress and
merge, thus leading to a parallel vector loop with dedicated
code (PVLD).

5. The remaining L, could be partitioned into a back-
ward-LCD (B-LCD) and a forward-LCD (F-LCD). An F-
LCD exists when one iteration references value that will
be assigned in a latter iteration. This can be determined
by using a write-after-read (war(r,, r;) = 1) test which can
be combined with led(r,, r,) = 1 to indicate the presence
of B-LCD dependency between ry and r . An F-LCD loop
does not prevent vectorization because a write-after-read
dependence proceeds in the correct order when executed
on a vector pipeline. Because some iteration boundaries
can concurrently proceeds across the processors, F-LCD
loops cannot be safely parallelized without adding synchro-
nization to guarantee correct results. A distributed F-LCD
loop is labeled as parallel vector loops with synchronization
(PVLS). The remainder of the original loop is Ly_j,q with
B-LCD dependence type.

6. Two expressions for which there is a B-LCD depen-
dence can be interchanged if the result generated in one
expression is not used in evaluating the second expression
and no other dependence is violated. Although, s, and
s can be involved in B-LCD dependence they can be
interchanged without altering the results if s, does not
reference the computed value of 5. If 5; and s, are not
involved in other dependence, expressions s; and s, can
then be distributed out of the current L, ., loop and two
new loops can be created.

7. The remaining loop is considered as unreduceable
because of its limited parallelism (if any) and marked as
scalar loop (SL) that should be executed in sequence.

The formal steps of algorithm Distribute can be summa-
rized as follows:

Variables and Functions:

5 is an arithmetic expression of loop L

T, are two references to the same scalar or array

led(ry, r;)  gives true only if there is loop-carried-depen-
dency between ry and r;

war(ry, r,) write-after-read returns true only if r, is read
and r; 1s write

dep(s, 52) gives true only if computation of 52 depends
on the result of s1

PV partial vectorization routine

Input: A candidate loop L from a program {L,. ..., L,}
Output: Distributing L into loops of type SL, PVL, PVLD,
and PVLS

Algorithm Distribute:

Step 1: ¥ ry,r, € L led(ry, r2) = 0, then mark L as PVL

and exit

Step 2: Attempt partitioning L into Ly and Ly,

Step 2.1: Find expressions of L that have LID de-
pendence only: s, is selected if for ¥V r
€ 5, that is referenced in 7, € 5, we neces-
sarily have led(r;, ;) = 0
Create a loop Ly, for each expression s,
and mark it PVL

Step 2.2: The remaining expressions form an L.
Vs C Lyq and ry € s led(ry, 1) = 1,
where r» € 5, and 5, C Ly

Attempt applying PV to L, and mark output frag-

ments as required

Search for a reduction:
1f (35, C Ly and r; € s, such that led(ry,
r») = 1 only for r» € s and war(ry, r;)
= 1), then create L,.;, = {s;} and mark
it PVLD

Attempt partitioning Ly, into Ly and Ly

Step 5.1: Find a set of expressions § = {s;, 53, ...}
such that Vry € s, then led(ry, r;) = 1
only for r, € s; and war(r;, ;) = 1
Create Ly, = § and mark it PVLS

Step 5.2: The remaining expressions of L, form
one single Ly_j,

Attempt finding pairs s; and s, such that the only

r1 € sy and r, € 5, which cause led(ry, ;) = 1 and

war(ry, r;) = (0 satisfy: dep(s;, 5,) = 0

Interchange and distribute s, and s, into two loops

and mark them as required

Step 7: Mark the nonreduceable L;_,; as SL

Step 3:

Step 4:

Step 3:

Step 6:

Following the above analysis the program is represented
by a data dependence graph (DDG) in which the nodes
represent loops of type SL, PVLD, or PVLS or simply
PVL. The method used for loop fusion is based on Vertical
and Horizontal fusion:

1. Vertical fusion: statements or loops of the same type
and with the same headers which belong to a dependence
path are fused whenever possible. Using the previously
generated loop labeling, fusing condition for PVL or PVLS
loops is examined in order to ensure preserving the loop
type of the fused loop. Fusion is not performed if the fused
loop could contain: (1) F-LCD (prevent parallelization),
or (2) B-LCD (fusion preventing).



LOOP FUSION AND STATEMENT MIGRATION 59

2. Horizontal fusion: data independent loops or state-
ments having the same types and loop counts are also fused
in order to reduce synchronization and loop overhead.

In case of different fusion alternatives, priority is given
to fusing loops and statements that maximizes the number
of shared vector data. For example, if (s1, s2) and (s1, 53)
are valid fusions and (s2, s3) is fusion-preventing, then
(s1, 52) is selected if they share the use of larger number
of vector data than (s1, 53). Analysis of conditions that
prevent loop fusion can be found in [18]. Loop boundaries
in the output program are mainly those corresponding to
loops with different types, different loop counts, or same
type but with fusion preventing condition.

We examine the program shown in Fig. 1 as an example
of distributing and fusing loops. The loop has an LCD with
respect to references a(f) and a(i — 1) which indicates that
Step 1 of Distribute fails. In Step 2, s2 is distributed out
of the original loop. In Step 3, PV distributes statements
s1':01(6) = b)) *c(i), s3":12() = sgri(e(i)), and
3" :43(f) = a(i) = 12(i) out of the original LCD loop, where
s1',53', and 53" are identifiers for the three new statements.
Statements 51, s3', and 53" are labeled as PVL loops be-
cause they are free of LCD dependencies. The previous
statements s1 and s3 are then reduced to sl:a(i) =
a(i — 1) + t1(z) and s3:sum = sum + 13(i) as a result of
the previous partial vectorization. Step 4 finds the reduc-
tion that is present in s3 and creates a new loop for 53 that
is labeled PVLD. The remaining LCD loop is reduced to
s1. Step 5 indicates that 51 is a B-LCD and there is no F-
LCD. Step 6 fails because the B-LCD loop is formed by
one single expression s1 that is labeled as SL loop.

The resulting data dependence graph has four levels:
11 = {s1', 52}, 2 = {s1, 53"}, 3 = {53'}, and /4 = {53}. The
dependence edges are: (s1' — s1), (s2 — 53"), (s1, 53" —
53"), and (53’ — s3).

Vertical fusion leads to fuse expressions s2 and s3". As
51 is SL and 52 is LID, horizontal fusion inserts then term
s1' within loop (52, s3") that becomes (s1', 52, s3"). The
type of s3' is different from that of s1 or s3. The above
three loops remain separate as shown in Fig. 2.

4. LOOP SCHEDULING

The traditional approaches [9, 11] are based on the use
of reservation tables that result from gross estimating the
functional unit (Fus) times as one or two units of times
and scheduling the vector operations. Resolving problems
with respect to memory load and store operations, resource
availability, and resource allocation is done in a separate

do i=1n

st a(i)=a(i-1)+b(i)*c(i)

s2: ei)=c(i)-b(i)

§3: sum=sum-+a(i)*sqre(e(i))
enddo

FIG. 1. Example of a loop carrying a B-LCD.

do i=1n
s2: e(i)=c(i)-b(1)
s3": t2(i)=sqrt(e(i))
s1': t1(i)= b(i)*e(i)

(Parallel-vector loop)

enddo

do i=1n (Scalar loop)
sl: a(i)=a(i-1)+t1(i)

enddo

do i=1n (Parallel-vector loop)
s3': t3(i)= a(i) * t2(i)

enddo

do i=1n (Add-reduce loop PVLD)
s3: sum=sum-t3(i)

enddo
FIG. 2. Output program following distribution/fusion.

step. The result is that isolating the above constraints from
the first step leads the schedule makespan to be excessively
increased by adding delays for resolving the various regis-
ter and data-path constraints in the final step.

Our approach consists of early incorporation of all the
available constrainis by scheduling the load/store and arith-
metic operations over the Fus based on accurate timing of
the VP and the management of the available resources
during scheduling. This results in a conflict-free schedule
with respect to Fus, memory utilization, and resource avail-
ability. The schedule generated is used to resolve conflict-
ing assignment of register and data-path allocations. This
consists of resolving conflicting allocation of registers and
data paths by minimizing the additional delays to be incor-
porated in the original schedule. We expect this approach
to better preserve the benefits of our chaining-oriented
scheduling because most of the problem constraints are
early taken into account.

4.1. Earliest-Starting-Time of Vector Operations

Loop scheduling is needed in order to exploit increasing
vector locality within each PVL and PVLS loop and to
promote vector chaining. The reader can refer to [12] for
a discussion on the synchronization needed for PVLS
loops. The key point to this approach is an algorithm that
selects the vector operation which can start at the earliest
time as an approach to find real chaining conditions. Below
we present the model of the C240 vector processor that is
used as the basis for evaluating the earliest-starting-times
of vector operations as well as for loop scheduling.

The vector processor unit of C240 [9, 6] (Fig. 3) has the
following vector pipelines (Fus): (1) concurrent vector load
(M,,,) and store (M), (2) add and logical (Fu, ), (3) multi-
ply and divide (Fu,), and (4) merge/compress and condi-
tional pipes (not shown). The timing of some typical opera-
tions of the C240 is shown on Fig. 4. Any of the four
register bank outputs (bo;) can route vector data to any
of three functional pipelines inputs (fi). The functional
unit output (fo) and M, can be routed to any of the



60 AL-MOUHAMED AND BIC

out T T 1
L% mam nBe mhk
| P
[mox | [mex | [ ] [ mex |
by [ biyy bi.
[} r T, o
by !(1] b ,‘5 By ’g b, o
bag ] b9, i
| — =11 = 11 | |
= Bl e o el
DOy 1 23 DByt 2 3 By 23 P12 3 B0 24
i
X X I mux mux
) ey | ] Al fio] fiy
n
FU, L FU,
I'o‘ I%
Architecture of VP/C240 | |

FIG. 3. Architecture of the C240 vector processor.

register bank inputs (bi). Each bank has two vector regis-
ters but only one bank input.

In the following, we investigate evaluation of the earliest-
starting-time (est(n)) of vector operation n by using the
resources of the C240.

We start by defining the notation used prior to linding
the est time for each possible case. Variable vs denotes a
vector or a scalar, vs.n. denotes a vs that is input operand
for vector operation n. n.vs denotes a vector/scalar that is
produced by n. Fu(n) denotes the functional unit on which
n is to run. Denote by s(n), 1(n), ;(vs) the starting time of
n, finishing time of n, and the time to load vs from memory
into some register, respectively. (M) and ((Fu) denote the
earliest time the memory (M, or M,,,.) and functional unit
Fu are free, where M, (loading) and M,, (storing) are
memories used to establish two independent data paths
(C240) with the vector processor.

Evaluation of the earliest-starting time (est(#)) is based
on the previous status of the Fus, M;, and M,,,, and the
number of registers and data-paths used. Evaluation of
the est(n) for the C240 requires analysis of the following
three cases:

= For Case 1, n requires loading of two vectors vs;.n and
vsi.n. Denote by 1, (vsy, vs2) = t(M,.) + t(vs;) + t(vss)
the time at which both operands vs;.n and vs,.n will be
loaded from the memory into some registers. As there is

no possible chaining, est(n) is defined by esi(n) =
maxi{t; (vs,, vs,), t(Fu(n))}.

» For Case 2, n requires loading of one vector vs.n while

the other operand is generated by a predecessor n'. If no
chaining is possible (Fu(n) = Fu(n')). then est(rn) depends
on the later of the loading time 1 (vs) and the time #(Fu(n"))
the functional unit Fu(n') is free, ie., est(n) =
max{t, (vs). t(Fu(n'))}.
In the other case (Fu(n) # Fu(n')), chaining can be done
if at the chaining time (r.(n) = s(n’) + 6(n")) the loading
of vs.n is complete and Fu(n) is free, where &(n') is the
delay on of n due to its chaining with operation n'. If the
previous condition is not satisfied, then running n may take
place following the completion of n’. To summarize, the
est(n) will be defined by

est(n) =
{It.(n}, if 1.(n) = maxit; (vs), f(Fu(n))},
max{z, (vs), ((n"), ((Fu(n))}, otherwise (no chaining).

= For Case 3, both operands of n are generated by prede-
cessors n’ and n”, respectively. If there is no chaining
(Fu(n) = Fu(n') = Fu(n")), then est(n) = t(Fu(n)) because
no loading is needed.
There is potential chaining on one unit when (Fu(n) #
Fu(n')) but (Fu(n) = Fu(n")). Chaining is possible if at
the chaining time 7.(n) = s(n') + &(n") the computation
n" is complete and Fu(n) is free, where 8(n") is the time
to store the first result of n'. In other words, est(n) is
defined by

est(n) =

{:c(n), it 1.(n) = max{t(n"), ((Fu(n))},
max{i( Fu(n)), f(Fu(n"))},

There is potential chaining on two units when Fu(n) #
Fu(n') and Fu(n) # Fu(n"). We restrict ourselves to the
case of the C240 that has two arithmetic units. Therefore,
operations n’ and n" are sequentially executed and the
chaining time of n is t.(n) = max{ti(n), ti(n)}, where
t/(n) =s(n’) + 8(n") and t:(n) = s(n") + &(n"). The chaining
is possible if Fu(n) is [ree at the chaining time ¢.(n), other-
wise 1 is to start following the completion of both predeces-
sors n' and n". To summarize this case. we have

otherwise (no chaining).

est(n) =
L(n), it (n) = (Fuln)),

max{t(Fu(n)), t(Fu(n')), t(Fu(n"))},

otherwise (no chaining).

Typical pipeline execution times for some operations

Load Integer Integer Floating | Floating
Store Add/Sub | Mul/Div Add/Sub | Mul/Div
Clocks | 3+ve/2 | 8+ve/2 12411 (ve-1)/8 | 12+4ve 364-35(ve-1)/8
FIG. 4. Execution times (clocks) on the C240 vector processor.



LOOP FUSION AND STATEMENT MIGRATION 61

Finally, we evaluate the earliest time (1,.(n)) at which
the needed resource (Fu, M,,, M;,, and bank inputs and
outputs) for n becomes available. The register and data-
path availability are examined at time point est(n) that has
been evaluated previously so that .(n) = est(n). If the
needed resource is available, then ¢,.(n) = est(n). Other-
wise, t,.(n) will be the earliest time the needed resource
will be released. The final earliest-starting-time of n will
be used by the scheduling algorithm.

4.2. Chaining-Oriented Scheduling

Using the above evaluation of the earliest-starting-time,
the proposed vector-scheduling is based on minimizing the
Fu idle times in an attempt to maximize the efficiency
and to promote potential vector-chaining. Each loop is
separately scheduled. Vector load is not considered as a
separate operation but included within each of its arithme-
tic vector operation. At any given time, the operands of
ready-to-run operations are available in memory or in
some vector registers.

The notation used is as follows:

* The set of vectors or scalars that are consumed
by operation n is denoted by prod(n) = {vs.n}
Set cons(vs) = {n} denotes the set of operations that con-
sumes vs. Pred(n) and Suce(n) denote the sets of predeces-
sors and successors of n, respectively. npred(n) is a variable
that is initialized to the number of predecessor operations
of n.

° Fu(n) is the functional unit on which n should execute,
i.e., the load/store, mul/div, or add/sub for the Convex
C240. Load(vs) is a flag that is used to state whether vs is
loaded on some register. Times 7, (vs), T,(vs), t,,(n) are
the times at which load, store, and operation n, will be
complete respectively.

* Function res(vs) is a dual operation on the number of
available registers and the number of available data paths.
Its operation consists of decrementing these numbers de-
pending on the current operation. Note that the available
resource is guarantee at the time operator res(vs) is acti-
vated because of the method used to evaluate est(n). Oper-
ation Deallocate frees a resource.

¢ Function allocate n to Fu(n) leads to generation of a
vector machine instruction, i.e., adding vector v1 to v2 and
storing the resulting data into vector v3 (Add v1, v2, v3).

The proposed vector scheduling is shown below. In Step
1, the set of ready-to-run operations are stored into A.
Step 2 is the main loop. Step 2.1 selects operation n that
can start at the earliest time as a heuristic to maximize the
efficiency of the Fus. Step 2.2.1 updates the time Fu(n)
becomes free and allocates one register to the output of n.
Step 2.2.2 performs loading input operands (if necessary),
allocates one register, and updates the time M, will be
free. Step 2.2.3 checks whether a successor operation of n
becomes ready to run (npred(n) = 0) and eventually inserts
it in A. The case of a vector-store is treated in Step 2.3
that updates the time M;, becomes free following the store

and the register holding the vector becomes free if the
vector has no consumer operations.
The Vector Scheduling algorithm is the following:

Input: A set of parallel loops
Output: Program to execute the vector operations
(1) Initialize: A < {n: Pred(n) = &}
(2) While A = & Do
Begin
(2.1) Select n € A:est(n) = min, = {est(n")}
(2.2) If n # store then
(2.2.1) Allocate nto Fu(n):s(n) = est(n),t(n) =s(n) +
Lop(n), t(Fu(n)) = t(n), A «— A — {n}, Allocate
reg(n.us) at time s(n)
(2.2.2) For each vs.n do
If load(vs) = 0 then Load vs on reg(vs),
Allocate reg(vs) at time t(M.,,,).

f(Mam) (M) + fL(US), and set
Load(vs) = 1
Endif

(2.2.3) For each n' € Succ(n) Do:
npred(n') = npred(n') — 1
If npred(n') = 0 Then A «— A + {n'}

(2.3) Else store vs.n: s(n) = est(n), t(n) = s(n) + f,(vs),

(M) = t(n)

If cons(vs) = & then Deallocate reg(vs) at time 1(n)
(2.2) Endif

end

The main loop of the allocation algorithm is statement
2 that executes m times because one vector operation is
allocated for each run of the body, where m is the number
of vector operations. Operation npred(n') = npred(n') —
1 executes O(m”) times but the condition npred(n’) = 0
occurs only for each operation. The time complexity of
the scheduling algorithm is O(m?).

5. MINIMIZING REGISTER AND DATA-PATH
CONFLICTS

The previous scheduling guarantees that (1) different
loads (M,,,) or stores (M,,) are properly serialized, (2)
allocation of vector operations to Fus do not conflict and,
(3) resource availability is guaranteed. In the following we
analyse the three types of conflicts that might result from
the use of the previous schedule.

* Querlapped lifetime of vectors may lead to conflicting
utilization if at least two vectors are allocated to the same
register or to different registers but within the same register
bank. Denote by w,,(v, v') the time cost, or delay over the
finish time of the previous schedule, of spilling either v or
v’ whenever their lifetimes overlap. The cost wg, (v, v') is
the time to store and load one vector’s data.

* Querlapped bank outpur occurs when two vectors v
and v’ are allocated to registers of the same bank and their
loading into the corresponding Fus overlap with respect
to time. Denote by wg,,.(v, v') the cost associated with the



62 AL-MOUHAMED AND BIC

least delay incurred to the schedule as a result of serializing
the use of the bank output. Therefore, w,,(v, v') =
min{e(n') — s(n), {n) — s(m’)}, where n and n’ are the
operations that consume v and v', respectively, and s(n)
and #(n) are the starting and ending times of n.

= Quverlapped bank input occurs when two vectors v and
v’ are allocated to registers of the same bank and their
storing into their registers overlap with respect to time.
The associated cost wy,, is the least delay incurred by the
schedule when serializing the use of the bank input.

Based on the above time delays, we heuristically define
the global weight w(v, v") of edge (v, v') as the maximum
delay caused by the interfering operations of vectors v and
v'. Each vector v is further assigned a weight w(v) that is
the sum of all the delays caused to the schedule.

0 if no lifetime overlap.

3

o ={
240' max{m_,p(ﬂ. Ur) + mhm(“’ U‘} + WM,,,(U,Ur)},
otherwise.

In the following, we use Weighted Graph Coloring for
allocating banks and registers to the vectors of each loop.
The vectors used in each loop are associated an undirected
graph in which a node v has the weight @(v) and an edge
(v, v') has the weight e(v, v'). The graph is formed by a
collection of nonconnected subgraphs. The used coloring
algorithm is a variant of [5]. The algorithm uses two heaps
A and B:

1. Initially, A contains all nodes except the one with the
highest weight which is placed in B,
2. Repeat the following steps until A is empty
(a) Repeat the following step until B is empty
i. Remove a node v from B (highest weight), color
v, and add to B all immediate neighbors of v
after removing them from A
(b) Remove from A the node (first node of a new com-
ponent) with the highest weight and insert it into B

The time complexity of this algorithm is Q(cm?), where
¢ is the number of components and m is the number of
vectors within a component.

6. PERFORMANCE EVALUATION

Qur objective is to develop a compiler optimization to
assists nonexpert programmers. We consider synthetic For-
tran programs. Each is formed by a total of 30 arithmetic
vector expressions. Each expression may include up to
four vector operations. To generate these programs, the
dependence edges between the expressions were randomly
generated in order to specify the vector-operands for each
expression including possible vector-loads. The maximum
number of expressions that belong to the same level in the
data dependence graph (DDG) were at most four and the
number of levels was at least 5. All LCD was present in

20% of the expressions and all loop counts were set to
1000. We use L(k) to denote that each loop is allowed to
incorporate at most k expressions.

Let’s Scaanimap: be the speedup of the highest optimization
level of the Convex C240 over the No-Optimization or
scalar execution. We also use the speedup Sy Where
opt refers to the proposed approach. Finally, we use the
Speedup S,pyca0 1o compare our approach to that of the
€240 highest optimization option. All the studied cases
use one processor only. Table I shows the results of averag-
ing the running of 10 programs for each value of L(k).

The first entry in Table I shows the measured speedup
of the €240 optimizer over the scalar processor (—no)
when only one VP is used. The highest speedup is 11 which
is measured when the program is formed by loops that
contain only one vector expression. This speedup decreases
with increasing the granule size of the loops (L(1), L(2),
etc.). The reason is that the vector processor of the C240
has hardware support to implement the loop overhead that
is much faster than the software approach used by the
scalar processor.

With loops having few statements (L(1), L(2), and L(3)),
the newly loaded vector data in the beginning of each loop
could have been made available in vector registers during
the running of previous loops. The overhead of multiple
vector load and store is avoided in our approach through
loop fusion. The effect of loop fusion allows improving the
speedup as shown in S,pmop and S,pueaa 0f Table 1 All
assignment statements require storing data regardless of
loop boundary. The difference is that with loop [usion
some of these vector store can occur while the arithmetic
pipelines can be active.

The effect of statement migration appears more sharply
when the number of expressions within each loop is maxi-
mum (L(max)). In this case, the opportunity of loop fusion
is reduced but there is still some benefit from transferring
expressions from one loop to another in order to align
vector data producers with vector data consumers as an
attempt to promote pipeline chaining. The benefit of state-
ment migration (L(max)) allowed to improve the speedup
obtained by the C240 by 18% as shown by S,,./c240.

Generally, loop fusion was studied for optimizing data
locality through increasing reuse of data caches on scalar
processors [14, 2]. In this work, loop fusion is investigated
only for singly nested loops. However, it can be extended
to multiple-nested loops by using the control structure that
has been proposed for V-Pascal [17].

TABLE I
Speedup of C240 and This Approach (opt)—Different
Programs and Different Allocations

Speedup L(1) L(2) L(3) L{max)
Seantnope 11 9.75 872 8.6
Sopinopt 15.73 12.87 10.55 10.15
Sope/C24n 1.43 1.32 121 118




LOOP FUSION AND STATEMENT MIGRATION 63

The convex compiler has a number of traditional vector
and parallel loop optimization such as strip-mining, loop-
distribution, loop-interchanging. hoisting and sinking, pat-
tern matching, etc. The newer version of the C240 opti-
mizer now includes automatic parallelization of loops with
routine calls. Currently, some loop fusion is being imple-
mented [1] as part of the loop transformation phase of the
Convex Compiler that uses the technique of loop unrolling
and jamming,.

6.1. Effect of Scheduling and Allocation

The objective of the second experiment is to study the
effects of the proposed vector scheduling and resource
allocation. For this, the C240 optimizer and our scheduler
were run using the same restructured program in an at-
tempt to isolate and compare the scheduling and allocation
effects which have been done separately.

Table IT shows the measured speedup for this experi-
ment, The achievement of our scheduling and allocation
are still those obtained in the first experiment. However,
the C240 optimizer improves its speedup (Scaso/nep)> When
using restructured programs, by a 10 to 24% factor com-
pared to that achieved without restructuring the program.

The C240 can find more opportunities for chaining in
the restructured programs as most producers/consumers
are now located within the boundary of each loop. Our
approach improves its speedup by a 9 to 15% factor over
that of the C240 due to our scheduling and allocation.

The C240 optimizer uses the technique of reservation
table in scheduling vector operations over the available
pipelines [9]. The timing of all the operations is rounded
so that it can either be one or two macro-cycles. Vector
scheduling that is a variant of list-scheduling [11] is per-
formed in the first pass. There are many reasons for in-
serting delays into the reservation table in the allocation
pass. For example, delays are inserted [11] in order to
satisfy the load/store timing and to avoid conflicting use
of registers (spilling) and data-paths between registers and
Fus. In general, the inserted delays negate some of the
chaining benefits of the first step. When load/store, regis-
ters, and data paths requires major revision of the schedule
(delays), some of the benefit of scheduling the with chain-
ing in mind is lost.

In this approach, we use a more accurate model for the
machine in the first step because the delays caused by
the load/store and resource scarcity are considered in the

TABLE 11
Effect of the Allocation and Scheduling of the VP—Same
Programs but Different Allocations

Speedup L(1) L{(2) L(3) L{max)
Sczavmops 13.69 11.50 9.68 9.31
S 15.73 12.87 10.55 10.15
Soprcain 1.15 112 1.09 1.09

scheduling decisions. Therefore, the generated schedule
guarantees resource availability but cannot ensure conflict-
free data paths. In the second step, less delays are inserted
in the schedule to avoid conflicting use of registers and
data paths. A conservative conclusion is that early incorpo-
ration of timing constraints in allocating the vector registers
and data-paths yields better results than the approach used
in commercial vectorizers such as that of the C240.

7. CONCLUSION

The objective of this work was to investigate some as-
pects of global restructuring of synthetic programs based
on restructuring of the source program and the use of a
chaining-oriented machine dependent allocation. For this,
we proposed reducing the granule size of scalar loops by
extracting vectorizable and parallelizable statements. Fur-
thermore, these statements can be fused within other loops
of the same type and having similar loops count in an
attempt to increase the granule size of parallel loops. The
other benefit of this operation is that placing data produc-
ers closer to their consumers increases the opportunity for
chaining their execution, and increasing reuse of data in
vector-registers and cache-memory. At a lower level, we
proposed a horizontal scheduling and allocation method
based on locally maximizing the efficiency and incorpora-
tion of the vector load/store delays.

Qur approach allows improving the highest optimization
option of the convex C240 by a speedup factor fo 18 to
43%. Chaining-oriented scheduling and allocation gave an
improvement of 9 to 15%.

Further extension to this work would be the integration
of expert techniques in parallelism extraction for each type
of loops. This would greatly help scientists in optimizing
large-scale programs within the framework of an inter-
active optimizer.

ACKNOWLEDGMENTS

This work was done during the sabbatical year of the first author.
Thanks to King Fahd University of Petroleum and Minerals, Dhahran
31261, Saudi Arabia, for its financial support of the sabbatical leave of
the first co-author. Thanks to the Office of Academic Computing (OAC),
the University of California Irvine, and especially to Mrs. Donald Freder-
ick, Joseph Farran, and Paul Higgins for their assistance with the Convex
240 Mainframe. We especially thank Donald Frederick for useful discus-
sions on vector processing,

REFERENCES

1. Based on personal communication with Steve Wallach, cofounder of
Convex Computer, PO Box 833851, 300 Waterview Pkwy., Richard-
son, TX 75083-385. Internet: wallach@concave.convex.com.

2. Aba-Sufah, D. I, Kuck, W_, and Lawrie, D. H. On the performance
enhancement of paging systems through program analysis and trans-
formation. JEEE Trans. Comput. 30(5), 341-356 (1981).

3. Allen K. and Kennedy, J. R. Automatic translation of FORTRAN
programs to vector form. ACM Trans. Programming Languages Sys-
tems 9(4), 491-542 (Oct. 1987).



64

4,

v

o

~1

[+~

o

111 1]

12.

14,

AL-MOUHAMED AND BIC

Ayguade E. et al. GTS: Parallelization and vectorization of tight
recurrences. Proc. of the ACM Conf. on Supercomputing, 1989, pp.
531-539.

. Chaitan, G. J. Register allocation and spilling via graph calaring,

ACM SIGPLAN Naotices 17(2), 201-207 (1982).

. Chastain, G., Gostin, M., and Mankocich, . The Convex C240 archi-

tecture. IEEE Proc. Supercomput. 321-329 (1988).

. Choudhary A., and Hiranandani, 5. Compiling Fortran 77D and 90D

for MIMD distributed-memory machines. Proc. FMPC-92, pp 4-11.

. Coleman, H. B. The vectorizing compiler for the UNISYS ISP. Proc.

of the 1987 ICPP. pp. 567-576.

. Convex Computer Corporation, The Convex Hardware Manual. Con-

vex Press, Richardson, TX, Feb. 1987,

Cytron, R. G. Doacross: Beyond vectorization for multiprocessors.
Proc. of the 1986 ICPP, pp. 836-844.

Eisenbeis, W, Jalby, C., and Lichnewasky, A. Squeezing mare CPU
performance out of a CRAY-2 by vector block scheduling. JEEE
Proc. Supercomput. 237-246 (1988).

Herbert, U. C. Some timings for synchronization on the multiproces-
sor system Cray X-MP. Proc, of the Parallel Compusing '85, pp.
457-462. Elsevier, Amsterdam, 1986,

. Kennedy K., and McKinley, K. 8. Maximizing loop parallelism and

improving data locality via loop fusion and distribution. ACM Confer-
ence on Programming Language Design and Implementation, 1989,

Kennedy K., and McKinely, K. S. Optimizing for parallelism and
data locality. Inter. Conf. On Supercompurting, Washington, DC, 1992,

Received May 20, 1994; accepted November 22, 1994

15

18.

. Kuck ). 1. et al. The structure of an advanced vectorizer for pipelines
processors. In K. Hwang (Ed.). Tutorial on Supercomputers: Designs
and Applications, pp. 163~178, 1984,

. Polychronopoulos, C. P. Parallel Prog ing and Compil
Kluwer, London, 1988,

. Tsuda T., and Kunieda. Y. V-Pascal: An automatic vectorizing com-

piler for Pascal with no language extensions. [EEE Froc. Supercom-

put, 182-198 (1988).

Warren, J. A hierarchical basis for reordering transformation. Confer-

ence Record of the 11th Annual ACM Symp. on Principles of Program-

ming Languages, Jan. 1984.

. Wolle, M., and Banerjes, U, Data dependence and its application to

parallel processing. J. Parallel Programming 16(2), (Apr. 1987),

Wolfe, M. J. Optimizing supercompilers for supercomputers. Dept.

of Comp. 5Sci. Univ. of Illinois at Urbana-Champain, R-82-1105,

Oect. 1982

MAYEZ AL-MOUHAMED received his B.S., M.5., and Ph.D. de-

grees in electrical engineering from the University of Paris, in 1975, 1977,

an

d 1982, respectively. Since 1983, he has been a member of the Computer

Engineering Faculty at the King Fahd University of Petroleum and Miner-
als in Dhahran, Saudi Arabia. Dr. Al-Mouhamed's primary research
interests lie in the areas of parallel computers and parallel programming
languages with applications to real-time processing. The research prob-
lems he is currently working on include static and dynamic scheduling,
parallelizing of real-time applications, shared-memory multiprocessors,

o

haotics, and robotic vision.



